地球科学进展 ›› 2015, Vol. 30 ›› Issue (2): 276 -283. doi: 10.11867/j.issn.1001-8166.2015.02.0276

上一篇    下一篇

无人飞机在台风探测中的应用进展
雷小途( )   
  1. 中国气象局上海台风研究所,上海,200030
  • 出版日期:2015-03-08
  • 基金资助:
    国家重点基础研究发展计划项目“上层海洋对台风的响应和调制机理研究”(编号:2013CB430300);公益性行业(气象)科研专项“近海及登陆台风强度变化科学试验预研究”(编号:GYHY201406010)资助

Progress of Unmanned Aerial Vehicles and Its Application in the Detection of Tropical Cyclone

Xiaotu Lei( )   

  1. Shanghai Typhoon Institute of China Meteorological Administration, Shanghai, 200030,China
  • Online:2015-03-08 Published:2015-02-20

与有人飞机的台风探测不同,无人飞机(也称无人机)因其相对低的成本且无人员伤亡风险等优势,自1997年一款名为“气象侦察兵(Aerosonde)”投入台风探测试验以来,受到国际社会的广泛关注。随着无人机技术[JP2]的迅猛发展,无人机的飞行高度、有效荷载和续航能力等性能不断提高,更多的台风特种观测仪器被搭载,特别是2010年NASA使用高空长航时无人机“全球鹰(Global Hawk)”对大西洋5个飓风的飞行探测取得成功后,基于无人机平台建立高空下投探空和近地/水面飞行观测相结合的台风精细结构探测体系渐成趋势。目前我国尚未建立飞机探测台风的业务,严重制约了我国台风定位定强和台风数值预报精度的进一步提高。鉴于此,简要概述了境内外无人机在台风探测中的实践和发展趋势,旨在推进我国无人机探测台风的实践及其业务化体系的建设。

:Since the practice by using the “aerosonde” in mornitoring typhoon in 1997, the unmanned aerial vehicles (UAVs) have attracted widespread attention because of their riskfree casualty and relatively low cost advantages. With the rapid development of UAVs technology, and the continued improvement of payload and endurance capacities, more and more special observational instruments have been mounted on the UAVs. Particulary, since the “Global Hawk” was successfully used in the hurricane mornitoring experiment in 2010, the integrated and collaborative aircraft observations based on UAVs, including drop sounding and nearsurface flying, have become the trend. This paper briefly outlined the development of UAVs and their application to the detection of tropical cyclone, including the practice and trends. The aimes were to promote the practice of using the UAVs in tropical cyclone observation, and to improve its operational detection system development.

中图分类号: 

图1 澳大利亚“MK-III”型无人机
Fig.1 The unmanned aerial vehicle “MK-III” of Australia
图2 2005年9月16日飓风“Ophelia”的 GOES-12 可见光云图及17-19点飞行观测路径(左)及飓风中的观测风速(右) 红:P-3,蓝:无人机,绿:浮标;黑对角线:飓风在16日12时至17日00时的移动路径
Fig.2 The GOES-12 visible image of hurricane “Ophelia” in 16 Septmber 2005 and the flight path of UAV from 17-19UTC (left), and the wind mornitored by UAV (right) Red:P-3, Blue:UAV, Green:buoy, Black:track of hurricane from 12UTC of 16 to 00UTC of 17 September 2005
图3 2005年10月1日16时龙王台风的雷达反射率及无人机穿越台风眼的轨迹图
Fig.3 The radar reflectivity of typhoon Longwang at 16UTC 1 October 2005 and the UAV’s flight path
图4 中国“晨鸟”无人机(左)及其对“海鸥”(中)和“森拉克”(右)台风探测的飞行轨迹
Fig.4 The Chinese UAV “Chenniao”(left) and its flight path during typhoon “Kalmaegi”(middle) and “Sinlaku”(right)
图5 2010年8~9月美国NASA利用“全球鹰”无人机探测飓风 (a)飞行路径;(b)探测“弗兰克”飓风时无人机飞行在18 km高空
Fig.5 The UAV “Global Hawk” be used in hurricane monitoring by NASA in August-September 2010 (a)Fight path;(b)The “Global Hawk” at 18 km high altitude during monitoring “Frank” hurricane
图6 在“全球鹰”基础上改装的美国NASA“超强风暴哨兵(HS3)”无人机(a)及其对穿越飓风眼的观测试验(b) GH:“全球鹰”/HS3; WB-57和DC-8是NASA的有人机; P-3和G-IV是NOAA的有人机
Fig.6 The UAV “HS3” of NASA (a) and the observating experiment of flight path pass through hurrican’s eye (b) GH:Global hawk/HS3;WB-57 and DC-8:Manned aircraft of NASA;P-3 and G-IV:Manned aircraft of NOAA
图7 美国现役探测台风的有人机(ER-2,WB-57,G-IV,DC-8,C-130,P-3)和 无人机(GH,Aerosonde)的飞行高度及其航程示意图
Fig. 7 The schematic diagram of altitude and flight of the operational manned typhoon mornitoring aircraft (ER-2, WB-57, G-IV, DC-8, C-130 and P-3) and UAV (GH, Aerosonde) in USA
[1] Chen Guomin, Yu Hui, Cao Qing.Verification on forecasts of tropical cyclones over Northwest Pacific in 2012[J]. Meteorological Monthly, 2013, 39(10):1350-1358.
[陈国民, 余晖, 曹庆. 2012年西北太平洋热带气旋预报精度评定[J].气象,2013,39(10):1350-1358.]
[2] Chen Qigang, Wu Tianquan, Qiu Junrui.The overview of tropical cyclones over Northwest Pacific in 1991[J]. Research and Application,1992, 1(1):100-110.
[陈企岗, 吴天泉, 邱君瑞. 1991年西北太平洋热带气旋综述[J].大气科学研究与应用,1992,1(1):100-110.]
[3] Qian Chuanhai, Li Zechun, Zhang Fuqing, et al.Review on international aircraft reconnaissance of tropical cyclones[J]. Advances in Meteorological Science and Technology, 2012, 2(6):6-16.
[钱传海, 李泽椿, 张福青, 等. 国际热带气旋飞机观测综述[J].气象科技进展,2012,2(6):6-16.]
[4] Wu C C, Chou K H, Lin P H, et al.The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR[J]. Weather and Forecasting, 2007,22:1157-1176.
[5] [JP2]Zhang Chengzhong, Wan Qilin, Ding Weiyu, et al. An experiment in application of the dropsonde data to forecasting the track of typhoon morakot[J]. Acta Meteorological Sinica, 2012, 70(1): 30-38.
[张诚忠, 万齐林,丁伟钰, 等. 下投探空资料在台风莫拉克路径预报的应用试验[J]. 气象学报, 2012, 70(1): 30-38.]
[6] Ma Shuqing, Guan Fushun, Ma Ruisheng, et al.The meteorological aircraft mornitoring system[C]∥The Chinese UAV Conference Proceeding. Beijing, 2006: 456-460.
[马舒庆,官福顺,马瑞升,等. 气象飞机探测体系[C]∥中国无人机大会论文集.北京,2006: 456-460.]
[7] Holland G J, Webster P J, Curry J A, et al.The aerosonde robotic aircraft: A new paradigm for environmental observations[J]. Bulletin of the American Meteorological Society, 2001,82: 889-901.
[8] Rogers R, Aberson S, Black M, et al.The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts[J]. Bulletin of the American Meteorological Society, 2006, 87: 1 523-1 537.
[9] Aberson S D,Cione J, Wu C C, et al.Aircraft observation of tropical cyclones[C]∥Global Perspectives on Tropical Cyclones from Science to Mitigation-World Scientific.2009:227-242.
[10] Lin P H.The first successful typhoon eyewall-penetration reconnaissance flight mission conducted by the unmanned aerial vehicle aerosonde[J]. Bulletin of the American Meteorological Society,2006, 87:1481-1483.
[11] Lin P H, Lee C S.The eyewall-penetration reconnaissance observation of typhoon Longwang (2005) with unmanned aerial vehicle, Aerosonde[J]. Journal of Atmoshperic and Oceanic Technology, 2008, 25:15-25.
[12] Li Yang, Ma Shuqing, Wang Guorong, et al.Characteristics of meteorological elements during typhoon Kalmaegi observed by unmanned aerial vehicle[J]. Journal of Applied Meteorological Science, 2009, 20(5):579-585.
[李杨,马舒庆,王国荣,等. 利用无人机探测台风海鸥的气象要素特征[J].应用气象学报, 2009, 20(5): 579-585.]
[13] Langford J S, Emanuel K A.An unmanned aircraft for dropwindsonde deployment and hurricane reconnaissance[J]. Bulletin of the American Meteorological Society, 1993, 74: 367-375.
[14] Braun S A, Kakar R, Zipser E, et al.NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment[J]. Bulletin of the American Meteorological Society, 2013, 94: 345-363.
[15] Yamaguchi M, Iriguchi T, Nakazawa T, et al.An observing system experiment for typhoon Conson (2004) using a singular vector method and DOTSTAR data[J]. Monthly Weather Review, 2009, 137(9): 2 801-2 816.
[16] Zhi Xiefei, Chen Wen.New achievements of international atmospheric research in THORPEX program[J]. Transactions of Atmospheric Sciences, 2010, 33(4): 504-511.
[智协飞,陈雯.THORPEX国际科学研究新进展[J].大气科学学报, 2010, 33(4): 504-511.]
[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[3] 栾威, 申文斌. 地球内核平动振荡模研究进展[J]. 地球科学进展, 2021, 36(5): 461-471.
[4] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[5] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[6] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[7] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[8] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[9] 陆大道. 地理国情与国家战略[J]. 地球科学进展, 2020, 35(3): 221-230.
[10] 葛玉娟,赵宇鸾,任红玉. 山区耕地细碎化对不同利用方式农地集约度的影响[J]. 地球科学进展, 2020, 35(2): 180-188.
[11] 张菁,路紫,杜欣儒,杜晓辉,高玉健. 京津石多机场系统航空流运行结构及其对比研究[J]. 地球科学进展, 2020, 35(12): 1281-1291.
[12] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[13] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[14] 雷小途,张雪芬,段晚锁,李泓,高志球,钱传海,赵兵科,汤杰. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
[15] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
阅读次数
全文


摘要