1 |
LORENZ E N. Deterministic nonperiodic flow [J]. Journal of Atmospheric Sciences, 1963, 20(2): 130-141.
|
2 |
LORENZ E N. A study of the predictability of a 28-variable atmospheric model [J]. Tellus, 1965, 17(3): 321-333.
|
3 |
LORENZ E N. Effects of analysis and model errors on routine weather forecasts [C]//Annual seminar on 10 years of medium-range weather forecasting. Reading, UK: European Centre for Medium-Range Weather Forecasts (ECMWF), 1989: 115-128.
|
4 |
THOMOPSON P. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns [J]. Tellus, 1957, 9(3): 275-295.
|
5 |
MORSS R E, EMANUEL K A. Influence of added observations on analysis and forecast errors: results from idealized systems [J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(579): 285-321.
|
6 |
LANGLAND R H. Issues in targeted observing [J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3 409-3 425.
|
7 |
MORSS R E, EMANUEL K A, SNYDER C, et al. Idealized adaptive observation strategies for improving numerical weather prediction [J]. Journal of Atmospheric Sciences, 2001, 58(2): 210-232.
|
8 |
ZHOU Feifan, MU Mu. The impact of horizontal resolution on the CNOP and on its identified sensitive areas for tropical cyclone predictions [J]. Advances in Atmospheric Sciences, 2012, 29(1): 36-46.
|
9 |
MAJUMDAR S J, BISHOP C H, BUIZZA R, et al. A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance [J]. Quarterly Journal of the Royal Meteorological Society, 2010, 128(585): 2 527-2 549.
|
10 |
HUANG Ling, MENG Zhiyong. Quality of the target area for metrics with different nonlinearities in a mesoscale convective system[J]. Monthly Weather Review, 2014, 142(7): 2 379-2 397.
|
11 |
MU Mu, WANG Hongli, ZHOU Feifan. A preliminary application of conditional nonlinear optimal perturbation to adaptive observation [J]. Chinese Journal of Atmospheric Sciences, 2007, 31(6): 1 102-1 112.
|
|
穆穆, 王洪利, 周菲凡. 条件非线性最优扰动方法在适应性观测研究中的初步应用[J]. 大气科学, 2007, 31(6): 1 102-1 112.
|
12 |
MA Xulin, YU Yueming, CHEN Dehui. The present situation and prospects of the adaptive observation [J]. Acta Meteorologica Sinica, 2015, 73(2):221-235.
|
|
马旭林, 于月明, 陈德辉. 适应性观测研究现状和展望[J]. 气象学报, 2015, 73(2):221-235.
|
13 |
LIU Deqiang, DING Ruiqiang, LI Jianping, et al. Preliminary application of the nonlinear local Lyapunov exponent to target observation [J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 329-337.
|
|
刘德强, 丁瑞强, 李建平,等. 非线性局部Lyapunov指数方法在目标观测中的应用初探[J]. 大气科学, 2015, 39(2): 329-337.
|
14 |
MAJUMDAR S J, ABERSON S, BISHOP C H, et al. Targeted observations for improving numerical weather prediction: an overview [R]. Geneva, Switzerland: World Meteorological Organization (WMO), WWRP/THORPEX No. 15, 2011.
|
15 |
LIMPERT G L, HOUSTON A L. Ensemble sensitivity analysis for targeted observations of supercell thunderstorms [J]. Monthly Weather Review, 2018, 146(6): 1 705-1 721.
|
16 |
KERR C A, WANG Xuguang. Ensemble-based targeted observation method applied to radar radial velocity observations on idealized supercell low-level rotation forecasts: a proof of concept [J]. Monthly Weather Review, 2019, 148(3): 877-890.
|
17 |
CHOU K H, WU C C, LIN P H, et al. The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC [J]. Monthly Weather Review, 2011, 139(6): 1 728-1 743.
|
18 |
MU Mu, ZHOU Feifan, WANG Hongli. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation [J]. Monthly Weather Review, 2009, 137(5): 1 623-1 639.
|
19 |
KIM H M, KIM S M, JUNG B J. Real-time adaptive observation guidance using singular vectors for typhoon Jangmi (200815) in T-PARC 2008 [J]. Weather & Forecasting, 2011, 26(5): 634-649.
|
20 |
BUIZZA R, MONTANI A. Targeting observations using singular vectors [J]. Journal of Atmospheric Sciences, 1999, 56(17): 2 965-2 985.
|
21 |
YAMAGUCHI M, IRIGUCHI T, NAKAZAWA T, et al. An observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data [J]. Monthly Weather Review, 2009, 137(9): 2 801-2 816.
|
22 |
WEISSMANN M, HAMISCH F, WU C C, et al. The influence of assimilating dropsonde data on typhoon track and midlatiyude forecasts [J]. Monthly Weather Review, 2011, 139(3): 908-920.
|
23 |
KIM H M, JUNG B J. Singular vector structure and evolution of a recurving tropical cyclone [J]. Monthly Weather Review, 2009, 137(2): 505-524.
|
24 |
CHEN Boyu, MU Mu, QIN Xiaohao. The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts [J]. Monthly Weather Review, 2013, 141(8): 2 669-2 682.
|
25 |
WU C C, CHEN J H, LIN P H, et al. Targeted observations of tropical cyclones based on the adjoint derived sensitivity steering vector [J]. Journal of Atmospheric Sciences, 2007, 64(7): 2 611-2 626.
|
26 |
ZHOU Qian, DUAN Wansuo, HU Junya. Exploring sensitive area in the tropical Indian Ocean for El Ni?o prediction: implication for targeted observation [J]. Journal of Oceanology and Limnology, 2020, 38(16): 1 602-1 615.
|
27 |
HU Yajun, DUAN Wansuo. Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: implications to target observations for ENSO prediction [J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 2 901-2 917.
|
28 |
DUAN Wansuo, HU Yajun. The initial errors that induce a significant "spring predictability barrier" for El Ni?o events and their implications for target observation: results from an Earth system model [J]. Climate Dynamics, 2015, 46(11/12): 3 599-3 615.
|
29 |
FENG R, DUAN W, MU M. Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions [J]. Climate Dynamics, 2016, 48(3): 1 173-1 185.
|
30 |
DAI G, MU M, JIANG Z. Targeted observations for improving prediction of the NAO Onset [J]. Journal of Meteorological Research, 2019, 33(6): 1 044-1 059.
|
31 |
ZHANG Xing, MU Mu, WANG Qiang, et al. Application of the conditional nonlinear optimal perturbation method in targeted observation studies of Kuroshio [J]. Journal of Marine Meteorology, 2018, 38(1): 1-9.
|
|
张星, 穆穆, 王强, 等. 条件非线性最优扰动方法在黑潮目标观测中的应用 [J]. 海洋气象学报, 2018, 2018, 38(1): 1-9.
|
32 |
WANG Qiang, MU Mu, DIJKSTRA H A. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation [J]. Journal of Geophysical Research: Oceans, 2013, 118(2): 869-884.
|
33 |
HU Shu, LI Ying, WEI Na. Diagnostic analysis on Nari(0116) structure and intensity changes during its landfall process on Taiwan Island [J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1): 81-90.
|
|
胡姝, 李英, 魏娜. 台风Nari (0116)登陆台湾过程中结构强度变化的诊断分析[J]. 大气科学, 2013, 37(1): 81-90.
|
34 |
LANG S T K, LEUTBECHER M, JONES S C. Impact of perturbation methods in the ECMWF ensemble prediction system on tropical cyclone forecasts [J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(669): 2 030-2 046.
|
35 |
WU C C, CHEN S G, LIN S C, et al. Uncertainty and predictability of tropical cyclone rainfall based on ensemble simulations of Typhoon Sinlaku (2008) [J]. Monthly Weather Review, 2013, 141(10): 3 517-3 538.
|
36 |
CHAN S T, DAVIDSON J, CAROFF P, et al. Track, intensity, and structure changes at landfall-forecasting challenges [C]//The third international workshop on tropical cyclone landfall processes, Jeju, republic of Korea: World Meteorological Organization (WMO), 2014.
|
37 |
CHEN T C, WU C C. The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan [J]. Monthly Weather Review, 2016, 144(9): 3 109-3 131.
|
38 |
LEI Xiaotu, ZHANG Xuefen, DUAN Wansuo, et al. Experiment on coordinated observation of offshore typhoon in China [J]. Advances in Earth Science, 2019, 34(7): 671-678.
|
|
雷小途, 张雪芬, 段晚锁,等. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
|
39 |
LIU Deqiang, ZHANG Xubin, FENG Yerong, et al. Analysis of uncertainties in forecasts of Typhoon Soudelor (2015) from ensemble prediction models [J]. SOLA, 2018, 14(0): 203-209.
|
40 |
SHAPIRO M A, THORPE A J. THORPEX international science plan version 3 [R]. Geneva, Switzerland: World Meteorological Organization (WMO), WWRP/THORPEX No.2, 2004.
|
41 |
DUAN Wansuo, DING Ruiqiang, ZHOU Feifan. Several dynamical methods used in predictability studies for numerical weather forecasts and climate prediction [J]. Climatic and Environmental Research, 2013, 18(4): 524-538.
|
|
段晚锁, 丁瑞强, 周菲凡. 数值天气预报和气候预测可预报性研究的若干动力学方法 [J]. 气候与环境研究, 2013, 18(4): 524-538.
|
42 |
ZHANG Z, KRISHNAMURTI T N. Adaptive observations for hurricane prediction [J]. Meteorology and Atmospheric Physics, 2000, 74(1/4): 19-35.
|
43 |
BERGOT T. Adaptive observations during FASTEX: a systematic survey of upstream flights [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 271-3 298.
|
44 |
SZUNYOGH I, TOTH Z, EMANUEL K A, et al. Ensemble-based targeting experiments during FASTEX: the effect of dropsonde data from the lear jet [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 189-3 217.
|
45 |
REYNOLDS C A, WEBSTER P J, KALNAY E. Random error growth in NMC's global forecasts [J]. Monthly Weather Review, 1994, 122(6): 1 281-1 305.
|
46 |
GELARO R, LANGLAND R H, ROHALY G D, et al. As assessment of the singular vector approach to targeted observing using the FASTEX dataset [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 299-3 327.
|
47 |
EMANUEL K, ZHANG F. On the predictability and error sources of tropical cyclone intensity forecasts [J]. Journal of Atmospheric Sciences, 2016, 73(9): 3 739-374.
|
48 |
EMANUEL K, ZHANG F. The role of inner-core moisture in tropical cyclone predictability and practical forecast skill [J]. Journal of Atmospheric Sciences, 2017, 74(7): 2 315-2 324.
|
49 |
ZHANG F, TAO D. Effects of vertical wind shear on the predictability of tropical cyclones [J]. Journal of Atmospheric Sciences, 2013, 70(3): 975-983.
|
50 |
TAO D, ZHANG F. Effects of vertical wind shear on the predictability of tropical cyclones: practical versus intrinsic limit [J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1 534-1 553.
|
51 |
QIN Xiaohao, DUAN Wansuo, XU Hui. Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF [J]. Advances in Atmospheric Sciences, 2020, 37(3): 291-306.
|
52 |
MUNSELL E B, ZHANG F. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations [J]. Journal of Advances in Modeling Earth Systems, 2014, 6(1): 38-58.
|
53 |
YAMAGUCHI M, MAJUMDAR S J. Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts [J]. Monthly Weather Review, 2010, 138(9): 3 634-3 655.
|
54 |
EMANUEL K A, DESAUTELS C, HOLLOWAY C, et al. Environmental control of tropical cyclone intensity [J]. Journal of Atmospheric Sciences, 2004, 61(7): 843-858.
|
55 |
TANG B, EMANUEL K A. Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model [J]. Journal of Atmospheric Sciences, 2012, 69(8): 2 394-2 413.
|
56 |
BUIZZA R, HOUTEKAMER P L, PELLERIN G, et al. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems [J]. Monthly Weather Review, 2005, 133(5): 1 076-1 097.
|
57 |
KUNII M, MIYOSHI T. Including uncertainties of sea surface temperature in an ensemble Kalman filter: a case study of Typhoon Sinlaku (2008) [J]. Weather Forecasting, 2012, 27(6): 1 586-1 597.
|
58 |
CHEN S S, ZHAO W, DONELAN M A, et al. Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: results from CBLAST-Hurricane [J]. Journal of Atmospheric Sciences, 2013, 70(10): 3 198-3 215.
|
59 |
LIN I I, BLACK P, PRICE J F, et al. An ocean coupling potential intensity index for tropical cyclones [J]. Geophysical Research Letters, 2013, 40(9): 1 878-1 882.
|
60 |
ROGERS R. Convective-scale structure and evolution during a highresolution simulation of tropical cyclone rapid intensification [J]. Journal of Atmospheric Sciences, 2010, 67(1): 44-70.
|
61 |
ROZOFF C M, KOSSIN J P, SCHUBERT W H, et al. Internal control of hurricane intensity variability: the dual nature of potential vorticity mixing [J]. Journal of Atmospheric Sciences, 2009, 66(1): 133-147.
|
62 |
JUDT F, CHEN S S, BERNER J. Predictability of tropical cyclone intensity: scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles [J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(694): 43-57.
|
63 |
LANGLAND R H, TOTH Z, GELARO R, et al. The North Pacific Experiment (NORPEX-98): targeted observations for improved North American weather forecasts [J]. Bulletin of the American Meteorological Society, 1999, 80(7): 1 363-1 384.
|
64 |
LANGLAND R H, GELARO R, ROHALY G D, et al. Targeted observations in FASTEX: adjoint-based targeting procedures and data impact experiments in IOP17 and IOP18 [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 241-3 270.
|
65 |
LORD S J. The impact on synoptic-scale forecasts over the United States of dropwindsonde observations taken in the northeast Pacific [C]//11th conference on numerical weather prediction. Norfolk: American Meteorology Society, 1996: 70-71.
|
66 |
BURPEE R W, FRANKLIN J L, LORD S J, et al. The impact of omega dropwindsondes on operational hurricane track forecast models [J]. Bulletin of the American Meteorological Society, 1996, 77(5): 925-933.
|
67 |
ABERSON S D, FRANKLIN J L. Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft [J]. Bulletin of the American Meteorological Society, 1999, 80(3): 421-427.
|
68 |
PALMER T N, GELARO R, BARKMEIJER J, et al. Singular vectors, metrics, and adaptive observations [J]. Journal of Atmospheric Sciences, 1998, 55(4): 633-653.
|
69 |
MU Mu, ZHOU Feifan. The research progress of the typhoon targeted observations based on CNOP method [J]. Advances in Meteorological Science and Technology, 2015, 5(3): 6-17.
|
|
穆穆, 周菲凡. 基于CNOP方法的台风目标观测研究进展[J]. 气象科技进展, 2015, 5(3): 6-17.
|
70 |
BAKER N L, DALEY R. Observation and background adjoint sensitivity in the adaptive observation‐targeting problem [J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(565): 1 431-1 454.
|
71 |
LANGLAND R H, ROHALY G D. Adjoint-based targeting of observations for FASTEX cyclones[C]//Proceedings of the 7th Mesoscale Processes Conference. American Meteorological Society, 1996: 369-371.
|
72 |
PU Zhaoxia, LORD S J, KALNAY E. Forecast sensitivity with dropwindsonde data and targeted observations [J]. Tellus A, 1998, 50(4): 391-410.
|
73 |
PU Zhaoxia, KALNAY E. Targeting observations with the quasi-inverse linear and adjoint NCEP global models: performance during FASTEX [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 329-3 337.
|
74 |
REYNOLDS C A, GELARO R, Palmer T N. Examination of targeting methods in a simplified setting [J]. Tellus A, 2000, 52(4): 391-411.
|
75 |
WU C C, CHOU K H, LIN P H, et al. The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR [J]. Weather & Forecasting, 2007, 22(6): 1 157-1 176.
|
76 |
WU C C, CHEN J H, MAJUMDAR S J, et al. Intercomparison of targeted observation guidance for tropical cyclones in the northwestern Pacific [J]. Monthly Weather Review, 2015, 137(8): 2 471-2 492.
|
77 |
LORENZ E N, EMANUEL K A. Optimal sites for supplementary weather observations: simulation with a small model [J]. Journal of Atmospheric Sciences, 1998, 55(3): 399-414.
|
78 |
BISHOP C H, TOTH Z. Ensemble transformation and adaptive observations [J]. Journal of Atmospheric Sciences, 1999, 56(11): 1 748-1 765.
|
79 |
BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects [J]. Monthly Weather Review, 2001, 129(3): 420-436.
|
80 |
WANG Bin, TAN Xiaowei. A fast algorithm for solving CNOP and associated target observation tests [J]. Acta Meteorologica Sinica, 2009, 67(2): 175-188.
|
|
王斌, 谭晓伟. 一种求解条件非线性最优扰动的快速算法及其在台风目标观测中的初步检验[J]. 气象学报, 2009, 67(2): 175-188.
|
81 |
WANG Bin, TAN Xiaowei. Conditional nonlinear optimal perturbations: adjoint-free calculation method and preliminary test [J]. Monthly Weather Review, 2010, 138(4): 1 043-1 049.
|
82 |
TAN Xiaowei, WANG Bin, WANG Dongliang. Impact of different guidances on sensitive areas of targeting observations based on the CNOP method [J]. Acta Meteorologica Sinica, 2010, 24(1): 17-30.
|
83 |
TOTH Z, KALNAY E. Ensemble forecasting at NCEP and the breeding method[J]. Monthly Weather Review, 1997, 125(12): 3 297-3 319.
|
84 |
DING Ruiqiang. Nonlinear error dynamics and predictability study [D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2006.
|
|
丁瑞强.非线性误差增长理论与可预报性研究 [D].北京: 中国科学院大气物理研究所, 2006.
|
85 |
DING Ruiqiang, LI Jianping. Nonlinear error dynamics and predictability study [J]. Chinese Journal of Atmospheric Sciences, 2007, 31(4): 571-576.
|
|
丁瑞强, 李建平.误差非线性的增长理论及可预报性研究[J]. 大气科学, 2007, 31(4): 571-576.
|
86 |
DING Ruiqiang, LI Jianping. Application of nonlinear error growth dynamics in studies of atmospheric predictability [J]. Acta Meteorologica Sinica, 2009, 67(2): 241-249.
|
|
丁瑞强, 李建平. 非线性误差增长理论在大气可预报性中的应用[J]. 气象学报, 2009, 67(2): 241-249.
|
87 |
DING Ruiqiang, LI Jianping. The temporal-spatial distributions of weather predictability of different variables [J]. Acta Meteorologica Sinica, 2009, 67(3): 343-354.
|
|
丁瑞强, 李建平. 天气可预报性的时空分布[J]. 气象学报, 2009, 67(3): 343-354.
|
88 |
LI Jianping, DING Ruiqiang. Temporal-spatial distributions of predictability limit of short-term climate [J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 975-986.
|
|
李建平, 丁瑞强.短期气候可预报期限的时空分布[J]. 大气科学, 2008, 32(4): 975-986.
|
89 |
LI Jianping, DING Ruiqiang. Studies of predictability of single variable from multi-dimensional chaotic dynamical system [J]. Chinese Journal of Atmospheric Sciences, 2009, 33(3): 551-556.
|
|
李建平, 丁瑞强. 混沌系统单变量可预报性研究[J]. 大气科学, 2009, 33(3): 551-556.
|
90 |
DING Ruiqiang, LI Jianping. Nonlinear finite-time Lyapunov exponent and predictability [J]. Physics Letters A, 2007, 364(5): 396-400.
|
91 |
DING Ruiqiang, LI Jianping, HA K J. Trends and interdecadal changes of weather predictability during 1950s-1990s [J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D24112.
|
92 |
DING Ruiqiang, LI Jianping, SEO K H. Predictability of the Madden-Julian oscillation estimated using observational data [J]. Monthly Weather Review, 2010, 138(3): 1 004-1 013.
|
93 |
DING Ruiqiang, LI Jianping, SEO K H. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations [J]. Monthly Weather Review, 2011, 139(8): 2 421-2 438.
|
94 |
LI Jianping, DING Ruiqiang. Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogues [J]. Monthly Weather Review, 2011, 139(10): 3 265-3 283.
|
95 |
LI Jianping, DING Ruiqiang. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans [J]. International Journal of Climatology, 2013, 33(8): 1 936-1 947.
|
96 |
FENG Jie, DING Ruiqiang, LIU Deqiang, et al. The application of nonlinear local lyapunov vectors to ensemble predictions in the lorenz systems [J]. Journal of Atmospheric Sciences, 2014, 71(9): 3 554-3 567.
|
97 |
FENG Jie, DING Ruiqiang, LI Jianping, et al. Comparison of nonlinear local Lyapunov vectors and bred vectors in estimating the spatial distribution of error growth [J]. Journal of Atmospheric Sciences, 2018, 75(4): 1 073-1 087.
|
98 |
MA Xulin, YU Yueming, JING Sheng, et al. Optimization and influence experiment to identify sensitive areas for target observations on ETKF method [J]. Transactions of Atmospheric Sciences, 2014, 37(6): 749-757.
|
|
马旭林, 于月明, 姜胜, 等. 基于集合卡尔曼变换的目标观测敏感区识别系统优化及影响试验[J]. 大气科学快报, 2014, 37(6): 749-757.
|
99 |
BERGOT T, HELLO G, JOLY A, et al. Adaptive observations: a feasibility study [J]. Monthly Weather Review, 1999, 127(5): 743-765.
|
100 |
MOLTENI F, BUIZZA R, PALMER T N, et al. The ECMWF ensemble prediction system: methodology and validation[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(529): 73-119.
|
101 |
BUIZZA R, PALMER T N. The singular-vector structure of the atmospheric global circulation [J]. Journal of Atmospheric Sciences, 1995, 52(9): 1 434-1 456.
|
102 |
ANDERSON J L. The impact of dynamical constraints on the selection of initial conditions for ensemble predictions: low-order perfect model results [J]. Monthly Weather Review, 1997, 125(11): 2 969-2 983.
|
103 |
BERGOT T, MALARDEL S, JOLY A. Sensitivity and singular vector calculations in the operational context of FASTEX [C]//Proceedings of the 7th Mesoscale Processes Confevence. American Meteorological Society, 1996: 366-368.
|
104 |
MU Mu, DUAN Wansuo. Conditional nonlinear optimal perturbation and its applications to the studies of weather and climate predictability [J]. Chinese Science Bulletin, 2005, 50(24): 2 695-2 701.
|
|
穆穆, 段晚锁.条件非线性最优扰动及其在天气和气候可预报性研究中的应用[J]. 科学通报, 2005, 50(24): 2 695-2 701.
|
105 |
YU Yanshan, MU Mu, DUAN Wansuo, et al. Contribution of the location and spatial pattern of initial error to uncertainties in El Ni?o predictions [J]. Journal of Geophysical Research: Oceans, 2012, 117: C06018.
|
106 |
MU Mu, YU Yanshan, XU Hui, et al. Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Ni?o predictions [J]. Theoretical and Applied Climatology, 2014, 115(3/4): 461-469.
|
107 |
QIN Xiaohao, DUAN Wansuo, MU Mu. Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations [J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(675): 1 544-1 554.
|
108 |
ZHOU Feifan, MU Mu. The impact of verification area design on tropical cyclone targeted observations based on the CNOP method [J]. Advances in Atmospheric Sciences, 2011, 28(5): 997-1 010.
|
109 |
YU H, WANG H, MENG Z, et al. A WRF-based tool for forecast sensitivity to the initial perturbation: the conditional nonlinear optimal perturbations versus the first singular vector method and comparison to MM5 [J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(1): 186-206.
|
110 |
TIAN Xiangjun, FENG Xiaobing. An adjoint-free CNOP-4DVar hybrid method for identifying sensitive areas in targeted observations: method formulation and preliminary evaluation [J]. Advances in Atmospheric Sciences, 2019, 36(7): 721-732.
|
111 |
MU Bin, REN Juhui, YUAN Shijin, et al. Identifying typhoon targeted observations sensitive areas using the gradient definition based method [J]. Asia-Pacific Journal of Atmospheric Sciences, 2018, 55(6): 1-13.
|
112 |
EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics [J]. Journal of Geophysical Research: Oceans, 1994, 99(C5). DOI: 10.1029/94JC00572.
doi: 10.1029/94JC00572
|
113 |
MAJUMDAR S J, BISHOP C H, ETHERTON B J, et al. Can an ensemble transform Kalman filter predict the reduction in forecast‐error variance produced by targeted observations [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(578): 2 803-2 820.
|
114 |
PETERSEN G N, MAJUMDAR S J, THORPE A J. The properties of sensitive area predictions based on the Ensemble Transform Kalman Filter (ETKF) [J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(624): 697-710.
|
115 |
ZHANG Yu, XIE Yuanfu, WANG Hongli, et al. Ensemble transform sensitivity method for adaptive observations [J]. Advances in Atmospheric Sciences, 2016, 33(1): 10-20.
|
116 |
ZHANG Guangzhi, XU Xiangde, WANG Jizhi, et al. A study on wind and disturbance characteristics of landing typhoon "Vongfong" by using data of CLATEX [J]. Journal of Applied Meteorological Science, 2004, 15(): 110-115.
|
|
张光智, 徐祥德, 王继志,等. 采用外场观测试验资料对登陆台风"黄蜂"的风场及湍流特征的观测研究[J]. 应用气象学报, 2004, 15(): 110-115.
|
117 |
GELARO R, LANGLAND R H, PELLERIN S, et al. The THORPEX Observation Impact Intercomparison Experiment [J]. Monthly Weather Review, 2010, 138(11):4 009-4 025.
|
118 |
RABIER F, GAUTHIER P, CARDINALI C, et al. An update on THORPEX-related research in data assimilation and observing strategies [J]. Nonlinear Processes in Geophysics, 2008, 15(1): 81-94.
|
119 |
SZUNYOGH I, TOTH Z, MORSS R E, et al. The effect of targeted dropsonde observations during the 1999 Winter Storm Reconnaissance Program [J]. Monthly Weather Review, 2000, 128(10): 3 520-3 537.
|
120 |
WU C C, CHEN S G, YANG C C, et al. Potential vorticity diagnosis of the factors affecting the track of Typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC[J]. Monthly Weather Review, 2012, 140(8): 2 670-2 688.
|
121 |
CHOU K H, WU C C. Development of the typhoon initialization in a mesoscale model—Combination of the bogused vortex with the dropwindsonde data in DOTSTAR [J]. Monthly Weather Review, 2008, 136(3): 865-879.
|
122 |
ANCELL B, HAKIM G J. Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting [J]. Monthly Weather Review, 2007, 135(12): 4 117-4 134.
|
123 |
QIN Xiaohao, MU Mu. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts [J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(662): 185-197.
|
124 |
QIN Xiaohao, MU Mu. A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction [J]. Monthly Weather Review, 2011, 139(7): 2 218-2 232.
|
125 |
WANG Hongli, MU Mu, HUANG Xiangyu. Application of conditional non-linear optimal perturbations to tropical cyclone adaptive observation using the Weather Research Forecasting (WRF) model [J]. Tellus Series A—Dynamic Meteorology & Oceanography, 2011, 63(5): 939-957.
|
126 |
MA Xulin. Study on the ensemble transformation Kalman filter-based adaptive observation and applications [D]. Nanjing: Nanjing University of Information Science & Technology, 2008.
|
|
马旭林. 基于集合卡尔曼变换(ETKF)理论的适应性观测研究与应用[D]. 南京:南京信息工程大学, 2008.
|
127 |
HUO Zhenhua, DUAN Wansuo, ZHOU Feifan. Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations [J]. Advances in Atmospheric Sciences, 2019, 36(2): 231-247.
|
128 |
BARKMEIJER J, BUIZZA R, PALMER T N, et al. Tropical singular vectors computed with linearized diabatic physics [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(572): 685-708.
|
129 |
PENG M S, REYNOLDS C A. Sensitivity of tropical cyclone forecasts as revealed by singular vectors[J]. Journal of Atmospheric Sciences, 2006, 63(10): 2 508-2 528.
|
130 |
MORSS R E. Adaptive observations: idealized sampling strategies for improving numerical weather prediction [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1998.
|
131 |
PURI K, BARKMEIJER J, PALMER T N. Ensemble prediction of tropical cyclones using targeted diabatic singular vectors [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(572): 709-731.
|
132 |
LEUTBECHER M, LOCK S J, OLLINAHO P, et al. Stochastic representations of model uncertainties at ECMWF: state of the art and future vision [J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(707): 2 315-2 339.
|
133 |
DUAN W S, ZHOU F F. Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model[J]. Tellus A, 2013, 65(1): 1-19.
|
134 |
LI Jianping, DING Ruiqiang, CHEN Baohua. Review and prospect on the predictability study of the atmosphere [C]//Review and prospect of the developments of atmosphere sciences in early 21st century. Beijing: China Meteorology Press, 2006. [
|
|
李建平, 丁瑞强, 陈宝花. 大气可预报性研究的回顾与展望[C]//21世纪初大气科学前沿与展望. 北京: 气象出版社, 2006.]
|