地球科学进展 ›› 2021, Vol. 36 ›› Issue (6): 564 -578. doi: 10.11867/j.issn.1001-8166.2021.069

综述与评述 上一篇    下一篇

台风目标观测研究进展回顾
刘德强 1, 2, 3, 4( ),冯杰 5,丁瑞强 6,李建平 7, 8( )   
  1. 1.福建省气象台,福建 福州 350001
    2.中国气象科学研究院灾害天气国家重点实验室,北京 100081
    3.福建省灾害天气重点实验室,福建 福州 350001
    4.武夷山国家气候观象台,福建 武夷山 354306
    5.复旦大学大气与海洋科学系,上海 200438
    6.北京师范大学地表过程与资源生态国家重点实验室,北京 100875
    7.中国海洋大学深海圈层与地球系统前沿科学中心/物理海洋教育部重点实验室/ 海洋高等研究院 山东 青岛 266100
    8.青岛海洋科学与技术国家实验室 海洋动力过程与气候功能实验室 山东 青岛 266237
  • 收稿日期:2021-03-25 修回日期:2021-05-21 出版日期:2021-06-10
  • 通讯作者: 李建平 E-mail:deqiang_1987@163.com;ljp@ouc.edu.cn
  • 基金资助:
    福建省自然科学基金面上项目“台湾海峡地区台风强度可预报性全局特征研究”(2020J01100);灾害天气国家重点实验室开放课题“台湾海峡台风局部气候态敏感区研究”(2020LASW-B10)

Review of the Research Progress in Targeted Observing for Typhoons

Deqiang LIU 1, 2, 3, 4( ),Jie FENG 5,Ruiqiang DING 6,Jianping LI 7, 8( )   

  1. 1.Fujian Meteorological Observatory,Fuzhou 350001,China
    2.State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China
    3.Fujian Key Laboratory of Severe Weather,Fuzhou 350001,China
    4.Wuyishan National Climatological Observatory,Wuyishan Fujian 354306,China
    5.Department of Atmospheric and Oceanic Sciences,Fudan University,Shanghai 200438,China
    6.State Key Laboratory of Earth Surface Progress and Resource Ecology,Beijing Normal University,Beijing 100875,China
    7.Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies,Ocean University of China,Qingdao 266100,China
    8.Laboratory for Ocean Dynamics and Climate,Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China
  • Received:2021-03-25 Revised:2021-05-21 Online:2021-06-10 Published:2021-07-22
  • Contact: Jianping LI E-mail:deqiang_1987@163.com;ljp@ouc.edu.cn
  • About author:LIU Deqiang (1987-), male, Hailun City, Heilongjiang Province, Senior engineer. Research areas include numerical simulations, predictability study. E-mail: deqiang_1987@163.com
  • Supported by:
    the Natural Science Foundation of Fujian Province "Study on the global predictability characteristics of typhoon intensity that affecting the Taiwan strait"(2020J01100);The Open Project of State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences "A study of the local climatological sensitivity area for typhoons affecting the Taiwan Strait"(2020LASW-B10)

台风目标观测对于弥补常规观测资料不足和提升台风数值预报技巧等具有重要意义。总结了2类理论方法的发展过程和优缺点:基于伴随的非线性方法能够较好地刻画非线性项的影响,而基于集合的方法在计算速度上更具有优势。同时回顾了一些能够代表当前气象观测水平的新装备和新技术在中国近海登陆台风外场观测试验中的应用,并从个例分析和统计分析两个角度总结了开展台风目标观测的有效性。通过总结发现,切线性近似、模式误差、度量范数和集合成员个数等都是影响台风目标观测的主要因素,它们可能会导致识别得到的台风敏感区之间存在一定差异,因此不能被忽略。未来应该更加关注台风强度目标观测的研究,在此基础上进一步推动非线性方法和数值模式的发展,并探索能够适合我国业务实际情况的台风目标观测实施方案。

Targeted observing for typhoons would be helpful in both the scientific endeavor and practical significance to making up the lack of conventional observations and improving numerical prediction skills. Relevant developments of two clusters of theoretical methods were summarized, and the advantages as well as the disadvantages were compared. The methods involving adjoint model can better describe the influence of nonlinear errors, while the methods based on ensembles save more computing resources. The applications of some new observation instruments and platforms which represent the current most advanced observation technology to the field campaigns for typhoons landing in China were overviewed. Then the feasibility of targeted observing for typhoon was summarized from two perspectives of individual case and multiple individual cases. Moreover, it is found that factors including tangent linearity hypothesis, model defects, selected metrics, and ensemble numbers may lead to significant differences in locating the sensitivity areas of typhoons, which should not be neglected. Future research directions should highlight the applications of targeted observing to typhoon intensity, the further developments of nonlinear methods and numerical models, and the implement schemes of typhoon targeted observing that is suitable for the meteorological operations in China.

中图分类号: 

图1 目标观测流程示意图 14
titi +1ti +2ti+n等代表观测时刻,其中 t dt obst vf分别是决策时刻、目标观测时刻和验证时刻; t ana是分析时刻, t 0t 1是对应 t obst vf的预报时刻
Fig. 1 Illustration of the typical procedure for the deployment of targeted observations 14
titi +1ti +2 and ti+nrepresent the observation time,and t dt obst vf is the decision time, the targeted observation time and the verification time, respectively. t ana is the analysis time, t 0 and t 1 indicate the forecast time corresponding to t obs and t vf
1 LORENZ E N. Deterministic nonperiodic flow [J]. Journal of Atmospheric Sciences, 1963, 20(2): 130-141.
2 LORENZ E N. A study of the predictability of a 28-variable atmospheric model [J]. Tellus, 1965, 17(3): 321-333.
3 LORENZ E N. Effects of analysis and model errors on routine weather forecasts [C]//Annual seminar on 10 years of medium-range weather forecasting. Reading, UK: European Centre for Medium-Range Weather Forecasts (ECMWF), 1989: 115-128.
4 THOMOPSON P. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns [J]. Tellus, 1957, 9(3): 275-295.
5 MORSS R E, EMANUEL K A. Influence of added observations on analysis and forecast errors: results from idealized systems [J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(579): 285-321.
6 LANGLAND R H. Issues in targeted observing [J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3 409-3 425.
7 MORSS R E, EMANUEL K A, SNYDER C, et al. Idealized adaptive observation strategies for improving numerical weather prediction [J]. Journal of Atmospheric Sciences, 2001, 58(2): 210-232.
8 ZHOU Feifan, MU Mu. The impact of horizontal resolution on the CNOP and on its identified sensitive areas for tropical cyclone predictions [J]. Advances in Atmospheric Sciences, 2012, 29(1): 36-46.
9 MAJUMDAR S J, BISHOP C H, BUIZZA R, et al. A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance [J]. Quarterly Journal of the Royal Meteorological Society, 2010, 128(585): 2 527-2 549.
10 HUANG Ling, MENG Zhiyong. Quality of the target area for metrics with different nonlinearities in a mesoscale convective system[J]. Monthly Weather Review, 2014, 142(7): 2 379-2 397.
11 MU Mu, WANG Hongli, ZHOU Feifan. A preliminary application of conditional nonlinear optimal perturbation to adaptive observation [J]. Chinese Journal of Atmospheric Sciences, 2007, 31(6): 1 102-1 112.
穆穆, 王洪利, 周菲凡. 条件非线性最优扰动方法在适应性观测研究中的初步应用[J]. 大气科学, 2007, 31(6): 1 102-1 112.
12 MA Xulin, YU Yueming, CHEN Dehui. The present situation and prospects of the adaptive observation [J]. Acta Meteorologica Sinica, 2015, 73(2):221-235.
马旭林, 于月明, 陈德辉. 适应性观测研究现状和展望[J]. 气象学报, 2015, 73(2):221-235.
13 LIU Deqiang, DING Ruiqiang, LI Jianping, et al. Preliminary application of the nonlinear local Lyapunov exponent to target observation [J]. Chinese Journal of Atmospheric Sciences, 2015, 39(2): 329-337.
刘德强, 丁瑞强, 李建平,等. 非线性局部Lyapunov指数方法在目标观测中的应用初探[J]. 大气科学, 2015, 39(2): 329-337.
14 MAJUMDAR S J, ABERSON S, BISHOP C H, et al. Targeted observations for improving numerical weather prediction: an overview [R]. Geneva, Switzerland: World Meteorological Organization (WMO), WWRP/THORPEX No. 15, 2011.
15 LIMPERT G L, HOUSTON A L. Ensemble sensitivity analysis for targeted observations of supercell thunderstorms [J]. Monthly Weather Review, 2018, 146(6): 1 705-1 721.
16 KERR C A, WANG Xuguang. Ensemble-based targeted observation method applied to radar radial velocity observations on idealized supercell low-level rotation forecasts: a proof of concept [J]. Monthly Weather Review, 2019, 148(3): 877-890.
17 CHOU K H, WU C C, LIN P H, et al. The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC [J]. Monthly Weather Review, 2011, 139(6): 1 728-1 743.
18 MU Mu, ZHOU Feifan, WANG Hongli. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation [J]. Monthly Weather Review, 2009, 137(5): 1 623-1 639.
19 KIM H M, KIM S M, JUNG B J. Real-time adaptive observation guidance using singular vectors for typhoon Jangmi (200815) in T-PARC 2008 [J]. Weather & Forecasting, 2011, 26(5): 634-649.
20 BUIZZA R, MONTANI A. Targeting observations using singular vectors [J]. Journal of Atmospheric Sciences, 1999, 56(17): 2 965-2 985.
21 YAMAGUCHI M, IRIGUCHI T, NAKAZAWA T, et al. An observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data [J]. Monthly Weather Review, 2009, 137(9): 2 801-2 816.
22 WEISSMANN M, HAMISCH F, WU C C, et al. The influence of assimilating dropsonde data on typhoon track and midlatiyude forecasts [J]. Monthly Weather Review, 2011, 139(3): 908-920.
23 KIM H M, JUNG B J. Singular vector structure and evolution of a recurving tropical cyclone [J]. Monthly Weather Review, 2009, 137(2): 505-524.
24 CHEN Boyu, MU Mu, QIN Xiaohao. The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts [J]. Monthly Weather Review, 2013, 141(8): 2 669-2 682.
25 WU C C, CHEN J H, LIN P H, et al. Targeted observations of tropical cyclones based on the adjoint derived sensitivity steering vector [J]. Journal of Atmospheric Sciences, 2007, 64(7): 2 611-2 626.
26 ZHOU Qian, DUAN Wansuo, HU Junya. Exploring sensitive area in the tropical Indian Ocean for El Ni?o prediction: implication for targeted observation [J]. Journal of Oceanology and Limnology, 2020, 38(16): 1 602-1 615.
27 HU Yajun, DUAN Wansuo. Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: implications to target observations for ENSO prediction [J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 2 901-2 917.
28 DUAN Wansuo, HU Yajun. The initial errors that induce a significant "spring predictability barrier" for El Ni?o events and their implications for target observation: results from an Earth system model [J]. Climate Dynamics, 2015, 46(11/12): 3 599-3 615.
29 FENG R, DUAN W, MU M. Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions [J]. Climate Dynamics, 2016, 48(3): 1 173-1 185.
30 DAI G, MU M, JIANG Z. Targeted observations for improving prediction of the NAO Onset [J]. Journal of Meteorological Research, 2019, 33(6): 1 044-1 059.
31 ZHANG Xing, MU Mu, WANG Qiang, et al. Application of the conditional nonlinear optimal perturbation method in targeted observation studies of Kuroshio [J]. Journal of Marine Meteorology, 2018, 38(1): 1-9.
张星, 穆穆, 王强, 等. 条件非线性最优扰动方法在黑潮目标观测中的应用 [J]. 海洋气象学报, 2018, 2018, 38(1): 1-9.
32 WANG Qiang, MU Mu, DIJKSTRA H A. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation [J]. Journal of Geophysical Research: Oceans, 2013, 118(2): 869-884.
33 HU Shu, LI Ying, WEI Na. Diagnostic analysis on Nari(0116) structure and intensity changes during its landfall process on Taiwan Island [J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1): 81-90.
胡姝, 李英, 魏娜. 台风Nari (0116)登陆台湾过程中结构强度变化的诊断分析[J]. 大气科学, 2013, 37(1): 81-90.
34 LANG S T K, LEUTBECHER M, JONES S C. Impact of perturbation methods in the ECMWF ensemble prediction system on tropical cyclone forecasts [J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(669): 2 030-2 046.
35 WU C C, CHEN S G, LIN S C, et al. Uncertainty and predictability of tropical cyclone rainfall based on ensemble simulations of Typhoon Sinlaku (2008) [J]. Monthly Weather Review, 2013, 141(10): 3 517-3 538.
36 CHAN S T, DAVIDSON J, CAROFF P, et al. Track, intensity, and structure changes at landfall-forecasting challenges [C]//The third international workshop on tropical cyclone landfall processes, Jeju, republic of Korea: World Meteorological Organization (WMO), 2014.
37 CHEN T C, WU C C. The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan [J]. Monthly Weather Review, 2016, 144(9): 3 109-3 131.
38 LEI Xiaotu, ZHANG Xuefen, DUAN Wansuo, et al. Experiment on coordinated observation of offshore typhoon in China [J]. Advances in Earth Science, 2019, 34(7): 671-678.
雷小途, 张雪芬, 段晚锁,等. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
39 LIU Deqiang, ZHANG Xubin, FENG Yerong, et al. Analysis of uncertainties in forecasts of Typhoon Soudelor (2015) from ensemble prediction models [J]. SOLA, 2018, 14(0): 203-209.
40 SHAPIRO M A, THORPE A J. THORPEX international science plan version 3 [R]. Geneva, Switzerland: World Meteorological Organization (WMO), WWRP/THORPEX No.2, 2004.
41 DUAN Wansuo, DING Ruiqiang, ZHOU Feifan. Several dynamical methods used in predictability studies for numerical weather forecasts and climate prediction [J]. Climatic and Environmental Research, 2013, 18(4): 524-538.
段晚锁, 丁瑞强, 周菲凡. 数值天气预报和气候预测可预报性研究的若干动力学方法 [J]. 气候与环境研究, 2013, 18(4): 524-538.
42 ZHANG Z, KRISHNAMURTI T N. Adaptive observations for hurricane prediction [J]. Meteorology and Atmospheric Physics, 2000, 74(1/4): 19-35.
43 BERGOT T. Adaptive observations during FASTEX: a systematic survey of upstream flights [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 271-3 298.
44 SZUNYOGH I, TOTH Z, EMANUEL K A, et al. Ensemble-based targeting experiments during FASTEX: the effect of dropsonde data from the lear jet [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 189-3 217.
45 REYNOLDS C A, WEBSTER P J, KALNAY E. Random error growth in NMC's global forecasts [J]. Monthly Weather Review, 1994, 122(6): 1 281-1 305.
46 GELARO R, LANGLAND R H, ROHALY G D, et al. As assessment of the singular vector approach to targeted observing using the FASTEX dataset [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 299-3 327.
47 EMANUEL K, ZHANG F. On the predictability and error sources of tropical cyclone intensity forecasts [J]. Journal of Atmospheric Sciences, 2016, 73(9): 3 739-374.
48 EMANUEL K, ZHANG F. The role of inner-core moisture in tropical cyclone predictability and practical forecast skill [J]. Journal of Atmospheric Sciences, 2017, 74(7): 2 315-2 324.
49 ZHANG F, TAO D. Effects of vertical wind shear on the predictability of tropical cyclones [J]. Journal of Atmospheric Sciences, 2013, 70(3): 975-983.
50 TAO D, ZHANG F. Effects of vertical wind shear on the predictability of tropical cyclones: practical versus intrinsic limit [J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1 534-1 553.
51 QIN Xiaohao, DUAN Wansuo, XU Hui. Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF [J]. Advances in Atmospheric Sciences, 2020, 37(3): 291-306.
52 MUNSELL E B, ZHANG F. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations [J]. Journal of Advances in Modeling Earth Systems, 2014, 6(1): 38-58.
53 YAMAGUCHI M, MAJUMDAR S J. Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts [J]. Monthly Weather Review, 2010, 138(9): 3 634-3 655.
54 EMANUEL K A, DESAUTELS C, HOLLOWAY C, et al. Environmental control of tropical cyclone intensity [J]. Journal of Atmospheric Sciences, 2004, 61(7): 843-858.
55 TANG B, EMANUEL K A. Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model [J]. Journal of Atmospheric Sciences, 2012, 69(8): 2 394-2 413.
56 BUIZZA R, HOUTEKAMER P L, PELLERIN G, et al. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems [J]. Monthly Weather Review, 2005, 133(5): 1 076-1 097.
57 KUNII M, MIYOSHI T. Including uncertainties of sea surface temperature in an ensemble Kalman filter: a case study of Typhoon Sinlaku (2008) [J]. Weather Forecasting, 2012, 27(6): 1 586-1 597.
58 CHEN S S, ZHAO W, DONELAN M A, et al. Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: results from CBLAST-Hurricane [J]. Journal of Atmospheric Sciences, 2013, 70(10): 3 198-3 215.
59 LIN I I, BLACK P, PRICE J F, et al. An ocean coupling potential intensity index for tropical cyclones [J]. Geophysical Research Letters, 2013, 40(9): 1 878-1 882.
60 ROGERS R. Convective-scale structure and evolution during a highresolution simulation of tropical cyclone rapid intensification [J]. Journal of Atmospheric Sciences, 2010, 67(1): 44-70.
61 ROZOFF C M, KOSSIN J P, SCHUBERT W H, et al. Internal control of hurricane intensity variability: the dual nature of potential vorticity mixing [J]. Journal of Atmospheric Sciences, 2009, 66(1): 133-147.
62 JUDT F, CHEN S S, BERNER J. Predictability of tropical cyclone intensity: scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles [J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(694): 43-57.
63 LANGLAND R H, TOTH Z, GELARO R, et al. The North Pacific Experiment (NORPEX-98): targeted observations for improved North American weather forecasts [J]. Bulletin of the American Meteorological Society, 1999, 80(7): 1 363-1 384.
64 LANGLAND R H, GELARO R, ROHALY G D, et al. Targeted observations in FASTEX: adjoint-based targeting procedures and data impact experiments in IOP17 and IOP18 [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 241-3 270.
65 LORD S J. The impact on synoptic-scale forecasts over the United States of dropwindsonde observations taken in the northeast Pacific [C]//11th conference on numerical weather prediction. Norfolk: American Meteorology Society, 1996: 70-71.
66 BURPEE R W, FRANKLIN J L, LORD S J, et al. The impact of omega dropwindsondes on operational hurricane track forecast models [J]. Bulletin of the American Meteorological Society, 1996, 77(5): 925-933.
67 ABERSON S D, FRANKLIN J L. Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft [J]. Bulletin of the American Meteorological Society, 1999, 80(3): 421-427.
68 PALMER T N, GELARO R, BARKMEIJER J, et al. Singular vectors, metrics, and adaptive observations [J]. Journal of Atmospheric Sciences, 1998, 55(4): 633-653.
69 MU Mu, ZHOU Feifan. The research progress of the typhoon targeted observations based on CNOP method [J]. Advances in Meteorological Science and Technology, 2015, 5(3): 6-17.
穆穆, 周菲凡. 基于CNOP方法的台风目标观测研究进展[J]. 气象科技进展, 2015, 5(3): 6-17.
70 BAKER N L, DALEY R. Observation and background adjoint sensitivity in the adaptive observation‐targeting problem [J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(565): 1 431-1 454.
71 LANGLAND R H, ROHALY G D. Adjoint-based targeting of observations for FASTEX cyclones[C]//Proceedings of the 7th Mesoscale Processes Conference. American Meteorological Society, 1996: 369-371.
72 PU Zhaoxia, LORD S J, KALNAY E. Forecast sensitivity with dropwindsonde data and targeted observations [J]. Tellus A, 1998, 50(4): 391-410.
73 PU Zhaoxia, KALNAY E. Targeting observations with the quasi-inverse linear and adjoint NCEP global models: performance during FASTEX [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(561): 3 329-3 337.
74 REYNOLDS C A, GELARO R, Palmer T N. Examination of targeting methods in a simplified setting [J]. Tellus A, 2000, 52(4): 391-411.
75 WU C C, CHOU K H, LIN P H, et al. The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR [J]. Weather & Forecasting, 2007, 22(6): 1 157-1 176.
76 WU C C, CHEN J H, MAJUMDAR S J, et al. Intercomparison of targeted observation guidance for tropical cyclones in the northwestern Pacific [J]. Monthly Weather Review, 2015, 137(8): 2 471-2 492.
77 LORENZ E N, EMANUEL K A. Optimal sites for supplementary weather observations: simulation with a small model [J]. Journal of Atmospheric Sciences, 1998, 55(3): 399-414.
78 BISHOP C H, TOTH Z. Ensemble transformation and adaptive observations [J]. Journal of Atmospheric Sciences, 1999, 56(11): 1 748-1 765.
79 BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects [J]. Monthly Weather Review, 2001, 129(3): 420-436.
80 WANG Bin, TAN Xiaowei. A fast algorithm for solving CNOP and associated target observation tests [J]. Acta Meteorologica Sinica, 2009, 67(2): 175-188.
王斌, 谭晓伟. 一种求解条件非线性最优扰动的快速算法及其在台风目标观测中的初步检验[J]. 气象学报, 2009, 67(2): 175-188.
81 WANG Bin, TAN Xiaowei. Conditional nonlinear optimal perturbations: adjoint-free calculation method and preliminary test [J]. Monthly Weather Review, 2010, 138(4): 1 043-1 049.
82 TAN Xiaowei, WANG Bin, WANG Dongliang. Impact of different guidances on sensitive areas of targeting observations based on the CNOP method [J]. Acta Meteorologica Sinica, 2010, 24(1): 17-30.
83 TOTH Z, KALNAY E. Ensemble forecasting at NCEP and the breeding method[J]. Monthly Weather Review, 1997, 125(12): 3 297-3 319.
84 DING Ruiqiang. Nonlinear error dynamics and predictability study [D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2006.
丁瑞强.非线性误差增长理论与可预报性研究 [D].北京: 中国科学院大气物理研究所, 2006.
85 DING Ruiqiang, LI Jianping. Nonlinear error dynamics and predictability study [J]. Chinese Journal of Atmospheric Sciences, 2007, 31(4): 571-576.
丁瑞强, 李建平.误差非线性的增长理论及可预报性研究[J]. 大气科学, 2007, 31(4): 571-576.
86 DING Ruiqiang, LI Jianping. Application of nonlinear error growth dynamics in studies of atmospheric predictability [J]. Acta Meteorologica Sinica, 2009, 67(2): 241-249.
丁瑞强, 李建平. 非线性误差增长理论在大气可预报性中的应用[J]. 气象学报, 2009, 67(2): 241-249.
87 DING Ruiqiang, LI Jianping. The temporal-spatial distributions of weather predictability of different variables [J]. Acta Meteorologica Sinica, 2009, 67(3): 343-354.
丁瑞强, 李建平. 天气可预报性的时空分布[J]. 气象学报, 2009, 67(3): 343-354.
88 LI Jianping, DING Ruiqiang. Temporal-spatial distributions of predictability limit of short-term climate [J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 975-986.
李建平, 丁瑞强.短期气候可预报期限的时空分布[J]. 大气科学, 2008, 32(4): 975-986.
89 LI Jianping, DING Ruiqiang. Studies of predictability of single variable from multi-dimensional chaotic dynamical system [J]. Chinese Journal of Atmospheric Sciences, 2009, 33(3): 551-556.
李建平, 丁瑞强. 混沌系统单变量可预报性研究[J]. 大气科学, 2009, 33(3): 551-556.
90 DING Ruiqiang, LI Jianping. Nonlinear finite-time Lyapunov exponent and predictability [J]. Physics Letters A, 2007, 364(5): 396-400.
91 DING Ruiqiang, LI Jianping, HA K J. Trends and interdecadal changes of weather predictability during 1950s-1990s [J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D24112.
92 DING Ruiqiang, LI Jianping, SEO K H. Predictability of the Madden-Julian oscillation estimated using observational data [J]. Monthly Weather Review, 2010, 138(3): 1 004-1 013.
93 DING Ruiqiang, LI Jianping, SEO K H. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations [J]. Monthly Weather Review, 2011, 139(8): 2 421-2 438.
94 LI Jianping, DING Ruiqiang. Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogues [J]. Monthly Weather Review, 2011, 139(10): 3 265-3 283.
95 LI Jianping, DING Ruiqiang. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans [J]. International Journal of Climatology, 2013, 33(8): 1 936-1 947.
96 FENG Jie, DING Ruiqiang, LIU Deqiang, et al. The application of nonlinear local lyapunov vectors to ensemble predictions in the lorenz systems [J]. Journal of Atmospheric Sciences, 2014, 71(9): 3 554-3 567.
97 FENG Jie, DING Ruiqiang, LI Jianping, et al. Comparison of nonlinear local Lyapunov vectors and bred vectors in estimating the spatial distribution of error growth [J]. Journal of Atmospheric Sciences, 2018, 75(4): 1 073-1 087.
98 MA Xulin, YU Yueming, JING Sheng, et al. Optimization and influence experiment to identify sensitive areas for target observations on ETKF method [J]. Transactions of Atmospheric Sciences, 2014, 37(6): 749-757.
马旭林, 于月明, 姜胜, 等. 基于集合卡尔曼变换的目标观测敏感区识别系统优化及影响试验[J]. 大气科学快报, 2014, 37(6): 749-757.
99 BERGOT T, HELLO G, JOLY A, et al. Adaptive observations: a feasibility study [J]. Monthly Weather Review, 1999, 127(5): 743-765.
100 MOLTENI F, BUIZZA R, PALMER T N, et al. The ECMWF ensemble prediction system: methodology and validation[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(529): 73-119.
101 BUIZZA R, PALMER T N. The singular-vector structure of the atmospheric global circulation [J]. Journal of Atmospheric Sciences, 1995, 52(9): 1 434-1 456.
102 ANDERSON J L. The impact of dynamical constraints on the selection of initial conditions for ensemble predictions: low-order perfect model results [J]. Monthly Weather Review, 1997, 125(11): 2 969-2 983.
103 BERGOT T, MALARDEL S, JOLY A. Sensitivity and singular vector calculations in the operational context of FASTEX [C]//Proceedings of the 7th Mesoscale Processes Confevence. American Meteorological Society, 1996: 366-368.
104 MU Mu, DUAN Wansuo. Conditional nonlinear optimal perturbation and its applications to the studies of weather and climate predictability [J]. Chinese Science Bulletin, 2005, 50(24): 2 695-2 701.
穆穆, 段晚锁.条件非线性最优扰动及其在天气和气候可预报性研究中的应用[J]. 科学通报, 2005, 50(24): 2 695-2 701.
105 YU Yanshan, MU Mu, DUAN Wansuo, et al. Contribution of the location and spatial pattern of initial error to uncertainties in El Ni?o predictions [J]. Journal of Geophysical Research: Oceans, 2012, 117: C06018.
106 MU Mu, YU Yanshan, XU Hui, et al. Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Ni?o predictions [J]. Theoretical and Applied Climatology, 2014, 115(3/4): 461-469.
107 QIN Xiaohao, DUAN Wansuo, MU Mu. Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations [J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(675): 1 544-1 554.
108 ZHOU Feifan, MU Mu. The impact of verification area design on tropical cyclone targeted observations based on the CNOP method [J]. Advances in Atmospheric Sciences, 2011, 28(5): 997-1 010.
109 YU H, WANG H, MENG Z, et al. A WRF-based tool for forecast sensitivity to the initial perturbation: the conditional nonlinear optimal perturbations versus the first singular vector method and comparison to MM5 [J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(1): 186-206.
110 TIAN Xiangjun, FENG Xiaobing. An adjoint-free CNOP-4DVar hybrid method for identifying sensitive areas in targeted observations: method formulation and preliminary evaluation [J]. Advances in Atmospheric Sciences, 2019, 36(7): 721-732.
111 MU Bin, REN Juhui, YUAN Shijin, et al. Identifying typhoon targeted observations sensitive areas using the gradient definition based method [J]. Asia-Pacific Journal of Atmospheric Sciences, 2018, 55(6): 1-13.
112 EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics [J]. Journal of Geophysical Research: Oceans, 1994, 99(C5). DOI: 10.1029/94JC00572.
doi: 10.1029/94JC00572    
113 MAJUMDAR S J, BISHOP C H, ETHERTON B J, et al. Can an ensemble transform Kalman filter predict the reduction in forecast‐error variance produced by targeted observations [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(578): 2 803-2 820.
114 PETERSEN G N, MAJUMDAR S J, THORPE A J. The properties of sensitive area predictions based on the Ensemble Transform Kalman Filter (ETKF) [J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(624): 697-710.
115 ZHANG Yu, XIE Yuanfu, WANG Hongli, et al. Ensemble transform sensitivity method for adaptive observations [J]. Advances in Atmospheric Sciences, 2016, 33(1): 10-20.
116 ZHANG Guangzhi, XU Xiangde, WANG Jizhi, et al. A study on wind and disturbance characteristics of landing typhoon "Vongfong" by using data of CLATEX [J]. Journal of Applied Meteorological Science, 2004, 15(): 110-115.
张光智, 徐祥德, 王继志,等. 采用外场观测试验资料对登陆台风"黄蜂"的风场及湍流特征的观测研究[J]. 应用气象学报, 2004, 15(): 110-115.
117 GELARO R, LANGLAND R H, PELLERIN S, et al. The THORPEX Observation Impact Intercomparison Experiment [J]. Monthly Weather Review, 2010, 138(11):4 009-4 025.
118 RABIER F, GAUTHIER P, CARDINALI C, et al. An update on THORPEX-related research in data assimilation and observing strategies [J]. Nonlinear Processes in Geophysics, 2008, 15(1): 81-94.
119 SZUNYOGH I, TOTH Z, MORSS R E, et al. The effect of targeted dropsonde observations during the 1999 Winter Storm Reconnaissance Program [J]. Monthly Weather Review, 2000, 128(10): 3 520-3 537.
120 WU C C, CHEN S G, YANG C C, et al. Potential vorticity diagnosis of the factors affecting the track of Typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC[J]. Monthly Weather Review, 2012, 140(8): 2 670-2 688.
121 CHOU K H, WU C C. Development of the typhoon initialization in a mesoscale model—Combination of the bogused vortex with the dropwindsonde data in DOTSTAR [J]. Monthly Weather Review, 2008, 136(3): 865-879.
122 ANCELL B, HAKIM G J. Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting [J]. Monthly Weather Review, 2007, 135(12): 4 117-4 134.
123 QIN Xiaohao, MU Mu. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts [J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(662): 185-197.
124 QIN Xiaohao, MU Mu. A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction [J]. Monthly Weather Review, 2011, 139(7): 2 218-2 232.
125 WANG Hongli, MU Mu, HUANG Xiangyu. Application of conditional non-linear optimal perturbations to tropical cyclone adaptive observation using the Weather Research Forecasting (WRF) model [J]. Tellus Series A—Dynamic Meteorology & Oceanography, 2011, 63(5): 939-957.
126 MA Xulin. Study on the ensemble transformation Kalman filter-based adaptive observation and applications [D]. Nanjing: Nanjing University of Information Science & Technology, 2008.
马旭林. 基于集合卡尔曼变换(ETKF)理论的适应性观测研究与应用[D]. 南京:南京信息工程大学, 2008.
127 HUO Zhenhua, DUAN Wansuo, ZHOU Feifan. Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations [J]. Advances in Atmospheric Sciences, 2019, 36(2): 231-247.
128 BARKMEIJER J, BUIZZA R, PALMER T N, et al. Tropical singular vectors computed with linearized diabatic physics [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(572): 685-708.
129 PENG M S, REYNOLDS C A. Sensitivity of tropical cyclone forecasts as revealed by singular vectors[J]. Journal of Atmospheric Sciences, 2006, 63(10): 2 508-2 528.
130 MORSS R E. Adaptive observations: idealized sampling strategies for improving numerical weather prediction [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1998.
131 PURI K, BARKMEIJER J, PALMER T N. Ensemble prediction of tropical cyclones using targeted diabatic singular vectors [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(572): 709-731.
132 LEUTBECHER M, LOCK S J, OLLINAHO P, et al. Stochastic representations of model uncertainties at ECMWF: state of the art and future vision [J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(707): 2 315-2 339.
133 DUAN W S, ZHOU F F. Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model[J]. Tellus A, 2013, 65(1): 1-19.
134 LI Jianping, DING Ruiqiang, CHEN Baohua. Review and prospect on the predictability study of the atmosphere [C]//Review and prospect of the developments of atmosphere sciences in early 21st century. Beijing: China Meteorology Press, 2006. [
李建平, 丁瑞强, 陈宝花. 大气可预报性研究的回顾与展望[C]//21世纪初大气科学前沿与展望. 北京: 气象出版社, 2006.]
[1] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[2] 雷小途,张雪芬,段晚锁,李泓,高志球,钱传海,赵兵科,汤杰. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
[3] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[4] 陈华, 霍也. 台风变性过程中下游环流发展的个例对比研究[J]. 地球科学进展, 2016, 31(4): 409-421.
[5] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[6] 雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.
[7] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[8] 张燕武. 自适应海洋观测[J]. 地球科学进展, 2013, 28(5): 537-541.
[9] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[10] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[11] 赵兵科,鲁小琴,万日金,张维. 0608号超强台风“桑美”强度变化位涡诊断分析[J]. 地球科学进展, 2011, 26(5): 528-537.
[12] 詹奕哲,王振会,官莉, 张蕾. 卫星导风在台风路径预报中的应用进展[J]. 地球科学进展, 2011, 26(4): 386-393.
[13] 赵兵科,邵德民,鲁小琴,徐同,翁永元. 多通道地基微波辐射计在0713号“韦帕”台风登陆前后探测性能及特征分析[J]. 地球科学进展, 2009, 24(9): 1001-1008.
[14] 李杨,马舒庆,王国荣,孙兆滨. 无人机探测“海鸥”台风中心附近的资料初步分析[J]. 地球科学进展, 2009, 24(6): 675-679.
[15] 王东海,钟水新,刘 英,李 俊,胡开喜,杨 帅,张春喜,孙 力,高枞亭. 东北暴雨的研究[J]. 地球科学进展, 2007, 22(6): 549-560.
阅读次数
全文


摘要