地球科学进展 ›› 2011, Vol. 26 ›› Issue (5): 528 -537. doi: 10.11867/j.issn.1001-8166.2011.05.0528

研究论文 上一篇    下一篇

0608号超强台风“桑美”强度变化位涡诊断分析
赵兵科,鲁小琴,万日金,张维   
  1. 中国气象局上海台风研究所,中国气象局台风预报技术重点开放实验室,上海200030
  • 收稿日期:2009-10-15 修回日期:2010-12-01 出版日期:2011-05-10
  • 通讯作者: 赵兵科 E-mail:zhaobk@mail.typhoon.gov.cn
  • 基金资助:

    国家自然科学基金项目“华东登陆台风强度变化机理的研究及其预报技术探索”(编号:40645025)资助.

A Potential Vorticity Diagnosis Analysis on the Intensity Evolution of 0608 Super Strong Typhoon "Saomai" 

Zhao Bingke,  Lu Xiaoqin,  Wan Rijin,  Zhang Wei   

  1. Laboratory of Typhoon Forecast Technique, Shanghai Typhoon Institute of CMA, Shanghai200030, China
  • Received:2009-10-15 Revised:2010-12-01 Online:2011-05-10 Published:2011-05-10

利用位涡(PV)收支诊断和质点轨迹追踪等方法对2006年影响中国最严重的超强台风“桑美”强度变化的成因进行了分析和研究。结果表明:台风中心四周的垂直风切变、涡度、散度变化对台风强度变化有重要影响;通过位涡诊断揭示出在台风增强和减弱时,凝结潜热、垂直平流和水平平流起着不同的作用。在台风迅速发展之前和迅速发展初期,凝结潜热在对流层低层起主要作用;在台风迅速发展阶段,水平平流在整个对流层都起主要作用;在台风迅速减弱阶段,垂直平流在底层发挥着重要作用,促使台风底层的位涡迅速减小。拉格朗日回推轨迹追踪分析表明在台风强度变化过程中,高层东南侧气流的介入和低层南侧气流的流入对桑美台风的发展有重要贡献。

Based on Potential Vorticity (PV) budget diagnosis and particle track and so on, the causes of intensity evolution of super strong typhoon “Saomai” which impacted China most severely in 2006 is analyzed and studied. The results show that the variations in the vertical wind shear, vorticity and divergence around the center of the typhoon significantly effected the variation in its intensity. The PV dignosis shows the functions of latent heat of condensation, vertical advection and horizonal advection were different while the typhoon intensified and abated. Condensation latent heat plays a dominant role in the lower troposphere at early rapid development stage and before development, so does horizontal advection in the whole troposphere at the rapidly developing stage, and verticl advection in the bottom layer of typhoon at rapidly weakening stage which reduces the potential vorticity, respectively. Lagrangian backward trajectories revealed that the instrusions of air from the southeast at upper level and from the south at lower level contributed a lot to the development of Saomai while the typhoon′s intensity was changing.

中图分类号: 

[1]Browning K A, Vaughan G, Panagi P. Analysis of an extropical cyclone after its reintensification as a warm core extratropical cyclone
[J].Quarterly Journal of the Royal Meteorological Society,1998, 124:2 329-2 356.
[2]Klein P M, Harr P A, Elsberry R L. Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage[J].Weather and Forecasting,2000, 15: 373-395.
[3]Yu Hui, Duan Yihong. A statistical analysis on intensity change of tropical cyclone over Northwestern Pacfic[J].Acta Meteor Sinica,2002, 60(6): 680-687.
[余晖, 端义宏. 西北太平洋热带气旋强度变化的统计特征[J].气象学报, 2002, 60(6): 680-687.] 
[4]Duan Yihong, Yu Hui, Wu Rongsheng. Review of the research in the intensity change of tropical cyclone [J]. Acta Meteor Sinica, 2005, 63(5): 636-645.
[端义宏, 余晖, 伍荣生.热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5): 636-645. ]
[5]Yu Yubin, Yao Xiuping. A statistical analysis on intense change of tropical cyclone over the Northwestern Pacific[J].Journal of Tropical Meteorological,2006, 22 (6): 521-526.[于玉斌, 姚秀萍. 西北太平洋热带气旋强度变化的统计特征[J]. 热带气象学报,2006, 22(6):521-526.] 
[6]Xu Yanfeng, Ye Junwu, Lin wei. The analyses of typhoon "Ramasun" intensity weaken slowly in the northward course[J].Marine Forecasts, 2003, 20(3): 1-6.[徐燕峰, 叶君武, 林伟.0205号台风“威马逊”北上过程中强度减弱缓慢的原因分析[J]. 海洋预报,2003,20(3):1-6.] 
[7]Wang Yuanchao.Study on the rapid change of typhoon 0214 (Vongfong) intensity[J].Marine Forecasts,2006, 23(1): 44-47.[王远超. 0214号热带气旋强度突变的研究[J]. 海洋预报,2006,23(1):44-47.]
[8]Li Chuanxiang. Analysis of rapid increase in typhoon Khanun intensity before landfalling[J].Meterological Science and Technology,2007,35(2): 213-216.
[李传祥.台风“卡努”登陆前强度突增天气成因分析[J].气象科技,2007,35(2):213-216.]
[9]Wang Zhongdong, He Jing, Cheng Ying. An preliminary analysis on the intensity change of super typhoon Saomai (0608) over the sea
[J].Journal of Zhejiang Meteorology,2007, 28(4): 1-6.[王忠东,何婧,程瀛.  0608号超强台风“桑美”强度海上突变成因简析[J]. 浙江气象,2007,28(4): 1-6.]
[10]Yu Yubin, Chen Lianshou, Yang Changxian. The features and mechanism analysis on rapid intensity change of super typhoon Saomai (2006) over the off shore of China[J].Journal of Atmospheric Sciences, 2008, 32(2): 405-416.[于玉斌,陈联寿,杨昌贤. 超强台风“桑美”(2006) 近海急剧增强特征及机理分析[J]. 大气科学, 2008, 32(2):405-416.]
[11]Wernli H,Davies C. A Lagrangianbased analysis of extratropical cyclones. I:The method and some applications[J].Quarterly Journal of the Royal Meteorological Society,1997, 123: 467-489.
[12]Emanuel K A,Fantini M,Thorpe A J. Baroclinic instability in an environment of small stability to slantwise moist convection[J].Journal of the Atmospheric Sciences,1987, 44: 1 559-1 587.
[13]Raymond D J. Nonlinear balance and potential vorticity thinking at large Rossby number[J].Quarterly Journal of the Royal Meteorological Society,1992,118:987-1 015.
[14]Cammas J P, Keyser D, Lackmann G, et al.Diabatic redis tribution of potential vorticity accompanying the development of an outflow jet within a strong extratropical cyclone[C]Preprints,Int. Symp. on the Life Cycles of Extratropical Cyclones,Bergen,Norway,Americ Meteorological Society,1994:403-409.
[15]Lackmann G M. Coldfrontal potential vorticity maxima,the low-level jet,and moisture transport in extratropical cyclones[J].Monthly Weather Review,2002,130:59-74.
[16]Martin J E, Otkin J A. The rapid growth and decay of an extratropical cyclone over the Central Pacific Ocean[J].Weather Forecasting,2004, 19: 358-376.
[17]Yearbook of Tropical Cyclone. Beijing: China Meteorological Press,2006:99.[热带气旋年鉴.北京:气象出版社,2006:99.]
[18]Linda A P, Barry N H, Noel E D, et al. Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region[J].Month Weather Review, 2005, 133:3 644-3 660

[1] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[2] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[3] 王玥,唐朝生,吕超,王鹏,荣德政,王宏胜. 干燥脱水过程中纤维加筋固化淤泥的强度特性[J]. 地球科学进展, 2019, 34(4): 433-438.
[4] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[5] 张永双, 吴瑞安, 郭长宝, 王立朝, 姚鑫, 杨志华. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 2018, 33(7): 728-740.
[6] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[7] 陈华, 霍也. 台风变性过程中下游环流发展的个例对比研究[J]. 地球科学进展, 2016, 31(4): 409-421.
[8] 杨占红, 吕连宏, 曹宝, 王晓, 罗宏. 国际能源消费特征比较分析及中国发展建议[J]. 地球科学进展, 2016, 31(1): 94-102.
[9] 汤连生, 桑海涛, 罗珍贵, 孙银磊. 土体抗拉张力学特性研究进展[J]. 地球科学进展, 2015, 30(3): 297-309.
[10] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.
[11] 石良, 金振奎, 闫伟, 魏凯, 朱小二. 储层压实作用和胶结作用的压力响应特征[J]. 地球科学进展, 2015, 30(2): 259-267.
[12] 王洪浩,李江海,杨静懿,周肖贝,傅臣建,李文山. 塔里木陆块新元古代—早古生代古板块再造及漂移轨迹[J]. 地球科学进展, 2013, 28(6): 637-647.
[13] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[14] 雷宝华. 生长断层活动强度定量研究的主要方法评述[J]. 地球科学进展, 2012, 27(9): 947-956.
[15] 方伟华,石先武. 面向灾害风险评估的热带气旋路径及强度随机模拟综述[J]. 地球科学进展, 2012, 27(8): 866-875.
阅读次数
全文


摘要