地球科学进展 ›› 2016, Vol. 31 ›› Issue (4): 409 -421. doi: 10.11867/j.issn.1001-8166.2016.04.0409.

上一篇    下一篇

台风变性过程中下游环流发展的个例对比研究
陈华 1( ), 霍也 2   
  1. 1.南京信息工程大学大气科学学院,江苏 南京 210044
    2.长春市气象局,吉林 长春 130051
  • 收稿日期:2015-12-30 修回日期:2016-03-10 出版日期:2016-04-20
  • 基金资助:
    国家自然科学基金项目“台风的变性过程对中纬度急流的作用及其下游影响”(编号:41175061)资助

Case Comparing Study of Downstream Circulation Development during Typhoon Extratropical Transition

Hua Chen 1( ), Ye Huo 2   

  1. 1.College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.Changchun Meteorological Bureau, Changchun 130051, China
  • Received:2015-12-30 Revised:2016-03-10 Online:2016-04-20 Published:2016-04-10
  • About author:

    First author:Chen Hua(1971-), male, Jianshi County,Hubei Province, Associate Professor. Research areas include mesoscale atmospheric dynamics.E-mail:huach@nuist.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The effects of transforming typhoons on midlatitude jet and its downstream inpacts”(No.41175061)

台风在温带变性过程(Extratropical Transition,ET)中与中纬度系统的相互作用会引起下游环流的发展,选取3个台风个例,通过分析涡动动能收支和理想化模拟实验对其下游发展机制进行研究。3个台风的变性过程所引起的下游发展都具有共同的机制,即首先在上层下游有脊和槽先后发展,随后激发低层涡旋生成,并与之耦合,形成一个贯穿整个对流层的深厚气旋系统。促使下游脊生成和发展的非地转位势通量源于台风,高层系统向下输送的垂直非地转位势通量在低层辐合,使得涡旋在低层发展。模拟实验表明,台风出流向中纬度急流区域输送低位涡(Potential Vorticity,PV)空气,使得其PV梯度增大和斜压性增强,从而激发了Rossby波在急流中生成并沿之向下游传播,而下游槽脊对引起更下游波型的发展也是通过Rossby波的频散而达成。

The interaction between extratropical transition process and the mid-latitude jet system stimulates the downstream development. In this paper, three typhoon cases were selected to study their downstream development mechanism through the analysis of the eddy kinetic energy budget and the idealized simulations. The results of Chen’s work to the Pacific region were examined. The results were consistent with the results of Chen’s Atlantic hurricane Case. ET downstream at the upper levels generated first eddies, and the disturbances triggered the low level eddy development. Then the upper and the lower coupled and formed a deep cyclone system throughout the whole troposphere. The ageostrophic geopotential flux promoted the formation and development of the downstream ridge from the typhoon. Vertical ageostrophic geopotential flux transferred energy from upper downward that convergence happened in lower, which stimulated the lower-level cyclone development. Simulation results showed that, in the process of ET, TC outflow transported low potential vorticity to mid-latitude jet, which enhanced the PV gradient and the baroclinic. Then, it is inspired the Rossby wave in the jet and propagated downstream. The formation of downstream ridge-trough couple and development of the further wave was the spread to the downstream through the Rossby wave.

中图分类号: 

图1 台风彩蝶变性过程中200 hPa环流场
Fig.1 The circulation at 200 hPa during ET process of Typhoon Nabi
图2 台风彩蝶变性过程中1 000 hPa环流场
Fig.2 The circulation at 1 000 hPa during the ET process of Typhoon Nabi
图3 2005年9月5~10日彩蝶高层下游脊涡动动能各分量增长曲线(单位:m 2/s 3)
Fig.3 Evolution of volume-mean eddy kinetic energy budget terms (m 2/s 3) for the downstream ridge in the Nabi case from 5 through 10 September 2005
图4 2005年9月5~10日彩蝶高层下游脊时间变化曲线
(a)总涡动动能 Ke;(b)总涡动动能时间倾向 ? K e ? t (单位m 2/s 3)
Fig.4 Evolution of the downstream ridge in the Nabi case from 5 through 10 September 2005
(a) Volume-mean eddy kinetic energy; (b) Time tendency of volume-mean eddy kinetic energy(m 2/s 3)
图5 200 hPa上2005年9月6日00时彩蝶的非地转位势通量矢量场
Fig.5 The ageostrophic geopotential flux vectors at 200 hPa at 0000 UTC 06 September 2005
图6 2005年彩蝶中各涡旋的涡动动能各分量增长曲线(单位:m 2/s 3)
(a) 高层下游槽; (b) 中层下游脊; (c) 低层涡旋; (d) 低层非地转位势通量散度分解: 总通量散度(实线),水平分量(虚线), 垂直分量(点线)
Fig.6 Evolution of volume-mean eddy kinetic energy budget terms for individual eddies in the Nabi case in 2005(unit:m 2/s 3)
(a) The upper level downstream trough; (b) The midlevel downstream ridge; (c) The low level vortex; (d) Decomposition for lower-level flux divergence: Total (solid line), horizontal component (dashed line), vertical component (dotted line)
图7 台风彩云变性过程中200 hPa 环流场
Fig.7 The circulation at 200 hPa during ET process of Choi-wan case
图8 2009年9月17~23日彩云高层下游脊涡动动能各分量增长曲线(单位:m 2/s 3)
Fig.8 Evolution of volume-mean eddy kinetic energy budget terms (m 2/s 3) for the downstream ridge in the Choi-wan case from 17 through 23 September 2009
图9 2009年彩云中各涡旋的涡动动能各分量增长曲线(单位:m 2/s 3)
(a) 高层下游槽; (b) 中层下游脊; (c) 低层涡旋; (d) 低层非地转位势通量散度分解: 总通量散度(实线),水平分量(虚线),垂直分量(点线)
Fig.9 Evolution of volume-mean eddy kinetic energy budget terms (m 2/s 3) for individual eddies in the Choi-wan case in 2009(unit:m 2/s 3)
(a) The upper level downstream trough; (b)The midlevel downstream ridge; (c) The low level vortex; (d)Decomposition for lower-level flux divergence: Total (solid line), horizontal component (dashed line), vertical component (dotted line)
图10 台风马勒卡变性过程中200 hPa 环流场
Fig.10 The circulation at 200 hPa during ET process of Malakas
图11 2010年9月22~29日马勒卡高层下游脊涡动动能各分量增长曲线(单位:m 2/s 3)
Fig.11 Evolution of volume-mean eddy kinetic energy budget terms (m 2/s 3) for the downstream ridge in the Malakas from 22 through 29 September 2010
图12 2010年马勒卡中各涡旋的涡动动能各分量增长曲线(单位:m 2/s 3)
(a) 高层下游槽; (b) 中层下游脊; (c) 低层涡旋; (d) 低层非地转位势通量散度分解: 总通量散度(实线),水平分量(虚线),垂直分量(点线)
Fig.12 Evolution of volume-mean eddy kinetic energy budget terms (m 2/s 3) for individual eddies in the Malakas case in 2010(unit:m 2/s 3)
(a) The upper level downstream trough; (b)The midlevel downstream ridge; (c) The low level vortex; (d)Decomposition for lower-level flux divergence: Total (solid line), horizontal component (dashed line), vertical component (dotted line)
图13 理想实验中不同预报时刻的动力对流层顶图(2PVU面上 θ场)
Fig.13 The dynamic tropopause ( θ at 2PVU surface) at different times in the idealized simulation experiment The color shading is the potential temperature interpolated into 2PVU surface
图14 理想实验中在35°~45°N内平均的200 hPa经向风时间—经度Hovmöller图(单位:m/s)
Fig.14 Time-longitude Hovmöller of 200 hPa meridional wind (m/s)averaged at 35°~45°N in the idealized experiment
[1] Pielke C W.Landsea normalized Hurricane damages in the United Sates: 1925-1995[J]. Weather and Forecasting,1998, 13(3): 621-631.
[2] Bishop C H, Thorpe A J.Potential vorticity and the electrostatics analogy: Quasi-geostrophic theory[J].Quarterly Journal of the Royal Meteorological Society,1994, 120(3): 713-731.
[3] Simmons A J, Hoskins B J.The downstream and upstream development of unstable baroclinic waves[J].Journal of the Atmospheric Sciences,1979, 36(7): 1 239-1 254.
[4] Atallah E H, Bosart L F.The extratropical transition and precipitation distribution of hurricane Floyd (1999)[J].Monthly Weather Review,2003, 131(6): 1 063-1 081.
[5] Chen H, Pan W Y.Targeting studies for the extratropical transition of Hurricane Fabian: Signal propagation, the interaction between Fabian and Midlatitude flow, and an observation strategy[J].Monthly Weather Review,2010, 138(8): 3 224-3 242.
[6] Hoskins B, Berrisford P.A potential vorticity perspective of the storm of 15-16 October 1987[J].Weather,1988, 43(3): 122-129.
[7] Riemer M, Jones S C.The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet[J].Quarterly Journal of the Royal Meteorological Society,2008, 134(1): 69-91.
[8] Riemer M, Jones S C.The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition[J].Quarterly Journal of the Royal Meteorological Society,2010, 136(2): 617-637.
[9] Langland R H,Toth Z, Gelaro R, et al.The North Pacific Experiment (NORPEX-98): Targeted observations for improved North American weather forecasts[J].Bulletin of the American Meteorological Society,1999, 80(7): 1 363-1 384.
[10] Szunyogh I,Toth Z, Morss R E, et al.The effect of targeted dropsonde observations during the 1999 winter storm reconnaissance program[J].Monthly Weather Review,2000, 128(10): 3 520-3 537.
[11] Mu M, Jiang Z.A method to find perturbations that trigger blocking onset: Conditional nonlinear optimal perturbations[J].Journal of the Atmospheric Sciences,2008, 65(12): 3 935-3 946.
[12] Morss R E, Emanuel K A.Influence of added observations on analysis and forecast errors: Results from idealized systems[J].Quarterly Journal of the Royal Meteorological Society,2002, 128(1): 285-321.
[13] Chen H.Downstream development of baroclinic waves in the Midlatitude Jet induced by extratropical transition: A case study[J].Advances in Atmospheric Sciences,2015, 32(4): 528-540.
[14] Orlanski I, Katzfey J.The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget[J].Journal of the Atmospheric Sciences,1991, 48(9): 1 972-1 998.
[15] Orlanski I, Chang E K M. Ageostrophic geopotential fluxs in downstream and upstream development of baroclinic waves[J].Journal of the Atmospheric Sciences,1993, 50(1): 212-225.
[16] Kurihara Y, Bender M A, Ross R J.An initialization scheme of hurricane models by votex specification[J].Monthly Weather Review,1993, 121(7): 2 030-2 045.
[17] Wang Guomin, Wang Shiwen, Li Jianjun.A bogus typhoon scheme and its application to a movable nested mesh model[J].Journal of Tropical Meteorology,1996, 12(1): 9-17.
[王国民, 王诗文, 李建军.一个人造台风方案及其在移动套网格模式中的应用[J]. 热带气象学报, 1996, 12(1): 9-17.]
[18] Lei Xiaotu.Progress of unmanned aerial vehicles and their application to detection of tropical cyclone[J].Advances in Earth Science,2015, 30(2):276-283.
[雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2):276-283.]
[19] Duan Yihong.Monitoring and forecasting of finescale structure and impact assessment of landfalling typhoons[J].Advances in Earth Science, 2015, 30(8):847-854.
[端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8):847-854.]
[1] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[2] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[3] 雷小途,张雪芬,段晚锁,李泓,高志球,钱传海,赵兵科,汤杰. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
[4] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[5] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[6] 雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.
[7] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[8] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[9] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[10] 赵兵科,鲁小琴,万日金,张维. 0608号超强台风“桑美”强度变化位涡诊断分析[J]. 地球科学进展, 2011, 26(5): 528-537.
[11] 詹奕哲,王振会,官莉, 张蕾. 卫星导风在台风路径预报中的应用进展[J]. 地球科学进展, 2011, 26(4): 386-393.
[12] 赵兵科,邵德民,鲁小琴,徐同,翁永元. 多通道地基微波辐射计在0713号“韦帕”台风登陆前后探测性能及特征分析[J]. 地球科学进展, 2009, 24(9): 1001-1008.
[13] 李杨,马舒庆,王国荣,孙兆滨. 无人机探测“海鸥”台风中心附近的资料初步分析[J]. 地球科学进展, 2009, 24(6): 675-679.
[14] 王东海,钟水新,刘 英,李 俊,胡开喜,杨 帅,张春喜,孙 力,高枞亭. 东北暴雨的研究[J]. 地球科学进展, 2007, 22(6): 549-560.
[15] 刘新,吴国雄,李伟平. 夏季青藏高原加热和环流场的日变化[J]. 地球科学进展, 2006, 21(12): 1273-1282.
阅读次数
全文


摘要