地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1273 -1282. doi: 10.11867/j.issn.1001-8166.2006.12.1273

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

夏季青藏高原加热和环流场的日变化
刘新 1,2,吴国雄 2,李伟平 3   
  1. 1.中国科学院青藏高原研究所,北京 100085;2.中国科学院大气物理研究所,LASG,北京 100029;3.中国气象局国家气候中心,北京 100082
  • 收稿日期:2006-10-11 修回日期:2006-11-02 出版日期:2006-12-15
  • 通讯作者: 刘新 E-mail:lx@itpcas.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“嘉马拉雅山北坡地区地面大气与对流层大气变化研究”(编号:KZCX3-SW-231);国家重点基础研究发展计划项目“青藏高原环境变化及其对全球变化的响应与适应对策”(编号:2005CB422000);国家自然科学基金项目“青藏高原及亚洲南部海陆分布对亚洲季风爆发进程的影响”(编号:40475027)资助.

The Diurnal Variation of the Atmospheric Circulation and Diabatic Heating over the Tibetan Plateau

Liu Xin 1,2,Wu Guoxiong 2,Li Weiping 3   

  1. 1.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085,China;2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid-Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;3.National Climate Center, Beijing 100081,China
  • Received:2006-10-11 Revised:2006-11-02 Online:2006-12-15 Published:2006-12-15

通过使用NCEP/NCAR再分析资料,分析了夏季青藏高原地区非绝热加热场的日变化特征以及高原上空环流场的日变化特点。分析发现青藏高原及其邻近地区上空环流的日变化在欧亚地区大气环流系统中表现最为显著。环流日变化是被非绝热加热的日变化所驱动的,特别是被太阳辐射日变化所驱动。由于高原上空大气柱质量远小于低海拔的平原地区,故太阳辐射日变化引起的加热日变化可在高原地区产生更为显著的环流日变化。通过位涡方程的诊断证实,白天高原加热增强,可在大气上层制造大量负位涡并向周边地区辐散,使高原地区大气高层成为负涡源。而低层则是加热制造正位涡,并使周边地区向高原的辐合增强,摩擦耗散是低层抑制正位涡增长的主要因素。而夜间加热减弱使高原对局地环流的影响作用大为减弱。故而高原及其周边地区的局地环流也具有明显的日变化特征。

The NCEP/NCAR reanalysis data are employed to analyze the diurnal variation of the diabatic heating and atmospheric circulation over the Tibetan Plateau and it's surrounding areas. The atmosphere over the TP is most sensitive to the diurnal change of heating, and it results in the vivid diurnal change feature over the TP and its surrounding areas. Its diurnal change is consistent with that of the heating field's, especially with diurnal change of the solar heating. Because the mass of the atmospheric column over the TP is much lighter than other regions, the diurnal change of solar radiation heating causes more significant circulation variation over the TP. The equation of the potential vorticity is employed to diagnose the dynamics of diurnal circulation variation in the paper. The result shows while the solar radiation gradually enhanced in the daytime, the positive vorticity of lower level atmosphere and negative vorticity of high level atmosphere over the TP is increase. All these lead to the most significant circulation and weather diurnal changes over the TP and its surrounding areas. The features of the diurnal change of the atmospheric circulation are in accordance with both theory and data analysis results in their phase and circulation patterns.

中图分类号: 

[1] Ye Duzheng, Gao Youxi. Meteorology of the Qinghai-Xizang Plateau[M]. Beijing: Science Press, 1979.[叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979.]

[2] Flohn H. Contributions to a meteorology of the Tibetan Highlands[M]. Atmospheric Science Paper, No.130, Corolado State University, Ft. Collins, 1968.

[3] Shen Zhibao. The temperature over Tibetan plateau and its surrounding areas[C]Ye Duzheng, ed. Meteorology of the Qinghai-Xizang Plateau. Beijing:Science Press, 1979:10-12.[沈志宝.青藏高原及其邻近地区的温度场[C]//叶笃正等编.青藏高原气象学.北京:科学出版社,1979:10-22.]

[4] Tang Maocang. Air pressure and wind[C]Ye Duzheng ed. Meteorology of the Qinghai-Xizang Plateau. Beijing: Science Press, 1979:23-38.[汤懋苍.气压和风[C]叶笃正等编.青藏高原气象学.北京:科学出版社,1979:23-38.]

[5] Shen Zhibao. The humidity over Tibetan Plateau and its surrounding areas[C]Ye Duzheng, ed. Meteorology of the Qinghai-Xizang Plateau. Beijing:Science Press,1979:39-48.[沈志宝.青藏高原及其附近地区的湿度场[C]叶笃正等编.青藏高原气象学.北京:科学出版社,1979:39-48.]

[6] Yin Daosheng. The local diabatic frontogenesis in the central of the Tibetan Plateau[J]. Acta Meteorological Sinica, 1979,37:16-25.[尹道声.论青藏高原中部的非绝热局地锋生[J].气象学报,1979,37:16-25.]

[7] Ma Henian, Liu Zichen, Qin Ying, et al. Study on the transformation process of the thermal low in Qinghai province[C]The collected papers of the meteorological sciences examination over the Qinghai-Xizang Plateau. Beijing:Science Press,1984:262-272.[马鹤年,刘子臣,秦莹,.青海热低压变性过程的研究[C]青藏高原气象科学实验文集.北京:科学出版社,1984:262-272.]

[8] Yang Weiyu. The diagnosis of the heating and circulation over Tibetan Plateau in summer[D]. Beijing:The Institute of Atmospheric Physics, Chinese Academy of Sciences, 1988:163-207.[杨伟愚,夏季青藏高原热力场和环流场的诊断分析[D].北京:中国科学院大气物理研究所,1988:163-207.]

[9] Kuo H L, Qian Y F. Influence of the Tibetan plateau on cumulative and diurnal changes of weather and climate in summer[J]. Monthly Weather Review, 1981, 109:2 337-2 356.

[10] Shuyi S Chen, Houze R A. Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool[J]. Quarterly Jounal of Royal Meteorological Society,1997,123:357-388.

[11] Wu Guoxiong, Liu Yimin. Thermal adaptation, overshooting, dispersion and subtropical anticyclone, I: Thermal adaptation and overshooting[J]. Chinese Journal of Atmospheric,2000,24(4):433-446.[吴国雄,刘屹岷.热力适应、过流、频散和副高 I:热力适应和过流[J].大气科学,2000,24(4):433-446.]

[12] Wu Guoxiong, Liu Yimin, Mao Jiangyu, et al. Adaptation of the Atmospheric Circulation to Thermal Forcing over the Tibetan Plateau[M]. Observation, Theory and Modeling of Atmospheric Variability. Singapore: World Scientific Publishing Company, 2004:92-114.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[14] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[15] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
阅读次数
全文


摘要