地球科学进展 ›› 2020, Vol. 35 ›› Issue (1): 101 -108. doi: 10.11867/j.issn.1001-8166.2020.007

研究论文 上一篇    

影响中国双台风活动气候特征研究
谢彦君 1, 2, 3( ),任福民 1, 2( ),李国平 1,王铭杨 1, 2,杨慧 2   
  1. 1.成都信息工程大学大气科学学院,四川 成都 610225
    2.中国气象科学研究院灾害天气国家 重点实验室,北京 100081
    3.株洲市气象局,湖南 株洲 412003
  • 收稿日期:2019-04-25 修回日期:2019-10-20 出版日期:2020-01-20
  • 通讯作者: 任福民 E-mail:xyj-111@163.com;fmren@163.com
  • 基金资助:
    国家自然科学基金项目“双台风相互作用对中国极端降水的影响”(41675042);国家重点基础研究发展计划项目第三课题“中国区域持续性强降水事件检测归因”(2018YFC1507703)

Climatic Characteristics of Influencing China Binary Tropical Cyclones

Yanjun Xie 1, 2, 3( ),Fumin Ren 1, 2( ),Guoping Li 1,Mingyang Wang 1, 2,Hui Yang 2   

  1. 1.School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
    2.State Key Laboratory of Severe Weather/Chinese Academy of Meteorological Sciences,Beijing 100081,China
    3.Zhuzhou Meteorological Office,Hu'nan Zhuzhou 412003, China
  • Received:2019-04-25 Revised:2019-10-20 Online:2020-01-20 Published:2020-02-27
  • Contact: Fumin Ren E-mail:xyj-111@163.com;fmren@163.com
  • About author:Xie Yanjun (1987-), male, Lengshuijiang City,Hunan Province, Master student. Research areas include activities of binary cyclones. E-mail: xyj-111@163.com
  • Supported by:
    the National Natural Scientific Foundation of China "Impacts of binary tropical cyclones on extreme precipitations over mainland of China"(41675042);The National Key R&D Program of China "Detection attribution of persistent heavy precipitation events in China"(2018YFC1507703)

在双台风判定客观标准的基础上提出影响中国双台风的定义:在双台风活动期间,双台风中至少有一个台风对中国大陆或2个大岛——海南岛和台湾岛之一造成降水的双台风,称为影响中国双台风。然后利用台站逐日降水资料和台风最佳路径资料,采用热带气旋(TC)降水天气图客观识别法(OSAT)和上述定义,对1960—2017年的影响中国双台风进行研究。结果表明:1960—2017年影响中国双台风共有255对,年均4.4对,占西北太平洋双台风总数的60.6%。影响中国双台风年频数表现为显著下降趋势。影响中国双台风的影响期最长可达10天,主要集中在1天、2天和3天,分别占18.8%,29.4%和24.3%。在地理分布上,影响中国双台风主要分布在112°~138°E、12°~30°N范围,频发区在菲律宾北部附近洋面;受双台风影响的年均频次和年均降水均表现为由东南沿海向西北内陆阶梯递减,主要影响区为中国的台湾岛、东南沿海和华南沿海,其中台湾岛受影响最大。进一步分析发现,影响中国双台风影响期内出现单站最大日降水当日两TC平均位置主要表现为东—西向分布,西台风和东台风正好分别位于东亚夏季风的西南风水汽通道和副热带高压西南侧东南风暖湿气流中,不仅有利于西台风从西南风水汽通道中获得水汽,而且有利于东台风向西台风的水汽输送,从而有利于西台风对中国台湾岛、东南沿海和华南沿海造成的强降水。

Based on the definition of Binary Tropical Cyclones (BTCs), the definition of influencing china binary tropical cyclones (ICBTCs) was proposed. During the BTCs period, if at least one of the two tropical cyclones causes precipitation over the mainland or one of the two largest islands-Hainan and Taiwan of China, the BTC is called ICBTC. Then, based on daily precipitation data and the tropical cyclone best track data during 1960-2017, this study analyzed the climatic characteristics of ICBTCs using the Objective Synoptic Analysis Technique (OSAT) and the above definitions. First, a total of 255 pairs of ICBTCs, which accounted for 60.6% of the total number of BTCs over the Western North Pacific, occurred with an annual average of 4.4. Annual frequency of ICBTCs showed a significant decreasing trend during 1960-2017. The longest duration of ICBTCs was 10 days, while durations concentrated in 1 day, 2 days and 3 days, accounting for 18.8%, 29.4% and 24.3%, respectively. In terms of geographical distribution, the ICBTCs mainly occurred over the range of 112°~138°E, 12°~30°N, with frequent zones in the oceans around the northern Philippines. In addition, both annual mean frequency and precipitation of the ICBTCs decrease from the southeast coast areas to the northwest inland regions, with severely-affected areas being the Taiwan Island, the Southeast Coast and the South Coast, and the most-severely-affected area being the Taiwan Island. Further analyses reveal that the average position of the two TCs on the maximum daily precipitation day during the ICBTCs period show an east-west distribution pattern, with the western TCs and the eastern TCs locating in the southwest wind water vapor channel of the East Asian Summer Monsoon and the warm-wet air flow of the southeast-wind on the southwest side of the subtropical high. This situation is beneficial to the western TCs obtaining water vapor from the southwest wind water vapor channel, and to the eastern TCs conveying water vapor to the western TCs, and then as a result, to the heavy rainfall over the Taiwan Island, the Southeast and the South Coasts of China caused by the western TCs.

中图分类号: 

图1 19602017年西北太平洋双台风与影响中国双台风频次时间序列
Fig.1 Interannual variations of BTC and ICBTC frequencies in the Western North Pacific during 1960-2017
图2 19602017年西北太平洋双台风与影响中国双台风频次多年平均季节变化
Fig.2 Seasonal variations frequencies of BTC and ICBTC in the Northwest Pacific Ocean during 1960-2017
图3 影响中国双台风影响期时长—频次比率统计分布
Fig.3 The frequency percentage of ICBTCs as a function of the influence duration
图4 影响中国双台风影响期时长—最短距离的频次统计分布
Fig.4 The distribution of frequencies of the minimum distance under the duration of the influence period of ICBTC
图5 影响中国双台风中强、弱TC频数比率统计分布
Fig.5 The distribution of frequencies’ proportions of strong TC and weak TC in ICBTCs
图6 19602017年影响中国双台风影响的空间分布
Fig.6 The spatial distribution of ICBTCs from 1960 to 2017
图7 19602017年影响中国双台风影响期内出现单站最大日降水当日的双TC平均位置(蓝色点)及其连线(灰色线)地理分布
Fig.7 The geographical distribution of average locations (blue dots) and connections (grey line) of two TC’ activity on the day of maximum daily precipitation at single station in ICBTCs from 1960 to 2017
图8 影响中国双台风连线方向的划分示意图
Fig.8 Division of the direction for line between ICBTCs
表1 影响期内出现单站最大日降水日 2TC平均位置的连线位置 6个方向频次占总体比值
Table 1 The rate of average locations and connections of two TC’ activity under the different direction on the day of maximum daily precipitation in the Influence period
图9 影响中国双台风出现单站最大日降水日的位置连线(灰色)和副高位置的地理分布(黑色)
考虑到ICBTC频发期为7~9月,故副高位置采用500 hPa上的588 gpm等高线1960—2017年7~9月的平均值。以及影响中国双台风的平均位置及连线均为红色
Fig.9 The geographical distribution of subtropical high (black line) and connections of ICBTCs (grey lines), which are on the days of maximum daily precipitation at single station
As the frequent period of ICBTC is from July to September, the annual mean 588 gpm contour line at 500 hPa from July to September during 1960-2017 is used for the location of subtropical high. The average locations and connections of ICBTCs are all in red
1 Chen Lianshou. Tropical meteorological calamities and its research evaluation [J].Meteorological Monthly, 2010, 36(7):101-110.
陈联寿.热带气象灾害及其研究进展[J].气象,2010, 36(7):101-110.
2 Fujiwhara S. The natural tendency towards symmetry of motion and its application as a principle in meteorology[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 47(200):287-292.
3 Fujiwhara S. On the growth and decay of vortical systems [J]. Quarterly Journal of the Royal Meteorological Society, 2010, 49(206):75-104.
4 Lander M, Holland G J. On the interaction of tropical-cyclone-scale vortices. I: Observations[J]. The Quarterly Journal of the Royal Meteorological Society, 1993, 119(514):1 347-1 361.
5 Carr L E, Boothe M, Elsberry R L. Observational evidence for alternate modes of track-altering binary tropical cyclone scenarios[J]. Monthly Weather Review, 1997, 125(9):2 094-2 111.
6 Carr L E, Elsberry R L. Objective diagnosis of binary tropical cyclone interactions for the Western North Pacific Basin [J]. Monthly Weather Review, 1998, 126(6):1 734-1 740.
7 Luo Zhexian, Ma Jingxian. Study on the numerical simulation of binary typhoons in the south of the subtropical high[J]. Journal of Meteorology,2001,59(4):450-458.
罗哲贤,马镜娴.副热带高压南侧双台风相互作用的数值研究[J].气象学报,2001,59(4):450-458.
8 Bai Li'na, Ma Leiming, Zeng Zhihua, et al. Numerical analysis on the role of tropical storm Namtheun in the unusual track of three tropical cyclones in 2010[J]. Journal of Tropical Meteorology, 2013, 29(3):421-431.
白莉娜, 马雷鸣, 曾智华, 等. 热带气旋“南川”在2010年三个热带气旋异常路径中作用的数值模拟研究[J]. 热带气象学报, 2013, 29(3):421-431.
9 Xu Xiangde, Lu C, Xu Hongxiong, et al. A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot [J]. Atmospheric Science Letters, 2011,12(3):294-299.
10 Zheng Feng, Zhang Lingjie. A simulation analysis of Typhoon Goni’s impact on the intensity maintenance of typhoon morakot [J]. Meteorological Science and Technology, 2013,41(4):664-669.
郑峰,张灵杰. 2013: 台风“天鹅”对“莫拉克”强度维持影响的模拟分析[J]. 气象科技,2013,41(4):664-669.
11 Xu Hongxiong, Du Bo. The impact of Typhoon Danas (2013) on the Torrential rainfall associated with Typhoon Fitow (2013) in East China [J]. Advances in Meteorology,2015. DOI:10.1155/2015/383712.
doi: 10.1155/2015/383712    
12 Yu Zhenshou, Ji Chunxiao, Xu Jing, et al. Numerical simulation and analysis of the Yangtze River Delta rainstorm on 8 october 2013 caused by binary typhoons[J]. Atmospheric Research, 2015,166:33-48.
13 Xie Huimin, Ren Fumin, Li Guoping, et al. The role of supper typhoon “Danas” in extreme precipitation associated with severe typhoon Fitow [J].Journal of Meteorology,2016,42(2): 156-165.
谢惠敏, 任福民, 李国平,等. 超强台风“丹娜丝”对1323号强台风“菲特”极端降水的作用[J].气象,2016,42(2): 156-165.
14 Yin Biwen, Ren Fumin, Li Guoping. Climatic characteristics of binary tropical cyclones in the Northwest Pacific Ocean [J].Advances in Earth Science, 2017, 32(6):643-650.
尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6):643-650.
15 Ren Fumin, Wang Yongmei, Wang Xiaoling, et al. Estimating tropical cyclone precipitation from station observations [J]. Advances in Atmospheric Sciences,2007,24(4):700-711.
16 Ma Leiming, Bao Xuwei. Research progress on physical parameterization schemes in numerical weather prediction models [J]. Advances in Earth Science, 2017, 32(7): 679-687.
马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[1] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[2] 李宏宇,张强,王胜. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 2010, 25(10): 1070-1081.
[3] 况雪源,刘健,林惠娟,王红丽,提汝媛. 近千年来三个气候特征时期东亚夏季风的模拟对比[J]. 地球科学进展, 2010, 25(10): 1082-1090.
阅读次数
全文


摘要