地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 537 -541. doi: 10.11867/j.issn.1001-8166.2013.05.0537

海底科学观测 上一篇    下一篇

自适应海洋观测
张燕武   
  1. 蒙特瑞湾海洋研究所,莫斯兰丁,加利福尼亚 95039
  • 收稿日期:2013-04-07 修回日期:2013-04-10 出版日期:2013-05-10

Adaptive Ocean Observation

Zhang Yanwu   

  1. Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, U.S.A.
  • Received:2013-04-07 Revised:2013-04-10 Online:2013-05-10 Published:2013-05-10

“自适应海洋观测”指固定或移动的海洋观测平台能够根据海洋环境和信号的变化,自主调节测量和运行参数,获取最关键的海洋信息。自主水下航行器运用自适应检测和采样技术,在研究上升流锋面等实验中显示出前所未有的观测准确度和效率。一个海洋观测系统的综合效能,取决于固定平台和移动平台的功能互补以及自适应观测能力的增强。

“Adaptive ocean observation” refers to fixed or mobile observing platforms being able to autonomously adjust measurement/operational parameters based on the oceanographic environment and signals, aiming at acquiring key information of the observed oceanographic processes.
Adaptive detection and sampling by Autonomous Underwater Vehicles (AUVs) have achieved unprecedented accuracy and efficiency in studies of upwelling fronts and other oceanographic processes.
The synergistic efficacy of an ocean observing system depends on the complementary functionalities of fixed and mobile platforms and their adaptive observation capabilities.

中图分类号: 

[1]Widrow B, Mantey P E, Griffiths L J, et al. Adaptive antenna systems[J].Proceedings of the IEEE, 1967,55(12):2 143-2 159.

[2]Widrow B, Glover J R, McCool J M, et al. Adaptive noise cancelling: Principles and applications[J]. Proceedings of the IEEE, 1975,63(12):1 692-1 716.

[3]Griffiths J W R. Adaptive array processing, a Tutorial[J].IEE Proceedings, 1983,130(1):3-10.

[4]Ma Yuanliang.  Adaptive coherent  integration for detection of single-frequency or frequency-modulated pulse signals[C]∥Proceedings of the 1st Chinese Conference on Signal Processing.1984, 4:971-974.[马远良.检测单频或调频脉冲信号的自适应相干累积[C]∥第一届全国信号处理学术会议论文集.1984,4:971-974.]

[5]Irish J D, Brown W S,  Howell T L. The use of microprocessor technology for the conditional sampling of intermittent ocean processes[J]. Journal of Atmospheric and Oceanic Technology, 1984,1:58-68.

[6]Bellingham J G, Zhang Y, Kerwin J E, et al. Efficient propulsion for the Tethys long-range autonomous underwater Vehicle[C]∥Proceedings of the IEEE AUV’ 2010 Conference, 2010:1-6.

[7]Zhang Yanwu. Adaptive ocean observation using fixed platforms and autonomous underwater vehicles[C]∥Proceedings of the 1st Chinese Conference on Seafloor Observation. 2012:14-15.[张燕武.利用固定平台及自主水下航行器进行自适应海洋观测[C]∥第一届海底观测科学大会摘要集.2012:14-15.]

[8]Zhang Y, Ryan J P, Bellingham J G, et al. Autonomous detection and sampling of water types and fronts in a coastal upwelling system by an autonomous underwater vehicle[J]. Limnology and Oceanography: Methods, 2012,10:934-951, doi: 10.4319/lom.2012.10.934.

[9]Zhang Y, Godin M A, Bellingham J G, et al. Using an Autonomous underwater vehicle to track a coastal upwelling front[J]. IEEE Journal of Oceanic Engineering, 2012,37(3,):338-347, doi: 10.1109/JOE.2012.2197272.

[10]Leonard N E, Paley D A, Davis R E, et al. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay[J]. Journal of Field Robotics,2010,27(6):718-740.

[11]Cowles T, Delaney J, Orcutt J, et al. The ocean observatories initiative: Sustained ocean observing across a range of spatial scales[J].Marine Technology Society Journal, 2010,44(6):54-64.

[12]Shanghai Center of Marine Science & Technology

(Preparatory Office), State Key Laboratory of Marine Geology of Tongji University. Seafloor Observation—Science and Technology[M]. Shanghai: Tongji University Press, 2011.[上海海洋科技研究中心(筹)、海洋地质国家重点实验室(同济大学).海底观测——科学与技术的结合[M].上海:同济大学出版社,2011.]

[13]National Natural Science Foundation of China, Chinese Academy of Sciences. Science Development Strategy of China in the Next Decade·Marine Science[M]. Beijing: Science Press, 2012.[国家自然科学基金委员会,中国科学院.未来10年中国学科发展战略·海洋科学[M]. 北京:科学出版社,2012.]

[1] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[2] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11): 1111-1119.
[3] 胡毅,丁见祥,房旭东,王立明,刘伯然,李海东. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10): 1081-1091.
[4] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[5] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[6] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[7] 马乐天, 冯旭文, 李家彪. 海洋技术国际标准化在中国的起步及其实践意义[J]. 地球科学进展, 2017, 32(6): 660-667.
[8] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[9] 黄文星, 朱本铎, 刘丽强, 张金鹏. 海底地理实体命名对大陆架划界的影响——以日本为例[J]. 地球科学进展, 2016, 31(8): 811-819.
[10] 刘增宏, 吴晓芬, 许建平, 李宏, 卢少磊, 孙朝辉, 曹敏杰. 中国Argo海洋观测十五年[J]. 地球科学进展, 2016, 31(5): 445-460.
[11] 於维樱, 冯志纲, 王琳. 加拿大海洋学研究态势与最新进展分析[J]. 地球科学进展, 2016, 31(5): 542-552.
[12] 张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4): 422-427.
[13] 葛人峰, 侍茂崇. “船时共享航次计划”——国家自然科学基金委员会的重大创建[J]. 地球科学进展, 2016, 31(4): 428-435.
[14] 李艳雯, 邢喆, 李四海, 樊妙. 基于海底地名命名的海底地理实体分类进展[J]. 地球科学进展, 2014, 29(6): 756-764.
[15] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
阅读次数
全文


摘要