Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (5): 542-551    DOI: 10.11867/j.issn.1001-8166.2013.05.0542
海底科学观测     
物理海洋观测研究的进展与挑战
吴立新,陈朝晖
中国海洋大学物理海洋教育部重点实验室,山东 青岛 266003
Progresses and Challenges in Observational Studies of Physical Oceanography
Wu Lixin, Chen Zhaohui
Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266003, China
 全文: PDF(14871 KB)  
摘要:

从当今物理海洋所面临的若干前沿科学问题出发,重点探讨了物理海洋观测研究所面临的任务与挑战,包括大洋边界流系统、海洋湍流及跨等密度面混合以及海洋热含量和淡水平衡等。在已有的基础上,对我国在深海研究领域特别是物理海洋观测方面提出了几点针对性的建议。

关键词: 边界流湍流跨等密度面混合海洋热含量淡水平衡    
Abstract:

From the frontier scientific problems that the physical oceanography is currently confronting, the progresses and challenges in observational studies of physical oceanography are discussed with special focus on the boundary current systems, turbulence, diapycnal mixing, ocean heat content and fresh water balance. The targeted development scenarios are proposed with regard to the deep ocean research, especially to the observational physical oceanography of our country.

Key words: Boundary current    Turbulence    Diapycnal mixing    Ocean heat content    Fresh water balance
收稿日期: 2013-04-07 出版日期: 2013-05-10
:  P71  
基金资助:

国家重大科学研究计划项目“西北太平洋海洋多尺度变化过程、机理及可预测性”(编号:2013CB956200)资助.

作者简介: 吴立新(1966-),男,安徽桐城人,教授,主要从事海洋环流与气候方面的研究.E-mail:lxwu@ouc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈朝晖
吴立新

引用本文:

吴立新,陈朝晖. 物理海洋观测研究的进展与挑战[J]. 地球科学进展, 2013, 28(5): 542-551.

Wu Lixin, Chen Zhaohui. Progresses and Challenges in Observational Studies of Physical Oceanography. Advances in Earth Science, 2013, 28(5): 542-551.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.05.0542        http://www.adearth.ac.cn/CN/Y2013/V28/I5/542

[1]Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34: L15 606,doi:10.1029/2007GL030812.

[2]McPhaden M J, Antonio J. The Tropical Ocean-Global Atmosphere observing system: A decade of progress[J]. Journal of Geophysical Research, 1998, 103(C7): 14 169-14 240.

[3]Roemmich D, Johnson G C, Riser S, et al. The argo program: Observing the global ocean with profiling floats[J]. Oceanography, 2009, 22(2): 34-43.

[4]Chelton D B. Report of the High-Resolution Ocean Topography Science Working Group Meeting[R/OL]. Oregon State University Technical Report, 2001. http:∥www.coas.oregonstate.edu/research/po/research/hotswg/index.html.

[5]Send U, Davis R, Fischer J, et al. A global boundary current circulation  observing network[M]∥Hall J, Harrison D E, Stammer D, eds. Community White Paper Title, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference. ESA Publication, 2010.

[6]Wu L,Cai Wenju, Zhang Liping, et al. Enhanced warming over the global subtropical western boundary currents[J]. Nature Climate Change, 2012, 2: 161-166,  doi:10.1038/nclimate 1353.

[7]Kwon Y, Deser C. North Pacific decadal variability in the community climate system model version 2[J]. Journal of Climate, 2007, 20: 2 416-2 433.

[8]Thresher R E, Proctor C, Gregory M R, et al. Invasion dynamics of the European green crab, Carcinus maenas, in Australia[J]. Marine Biology, 2003, 142: 867-876.

[9]Phrampus B, Hornbach M. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization[J]. Nature, 2012, 490: 527-530.

[10]Liu Q, Kaneko A, Su J. Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2009, 64: 753-762.

[11]Yang H, Wu L. Trends of upper-layer circulation in the South China Sea during 1959-2008[J]. Journal of Geophysical Research, 2012, 117: C08037, doi:10.1029/2012JC008068.

[12]Sheremet V. Hysteresis of a western boundary current leaping across a gap[J]. Journal of Physical Oceanography, 2001, 31: 1 247-1 259.

[13]McCreary J P, Lu P. On the interaction between the subtropical and the equatorial oceans: The subtropical cell[J]. Journal of Physical Oceanography, 1994, 24:466-497.

[14]Gu D, Philander S. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 1997, 275: 805-807.

[15]McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean[J]. Nature, 2002, 415: 603-608.

[16]Hu D X, Wang F, Wu L X, et al. NPOCE Science/Implementation Plan[M]. Beijing: China Ocean Press, 2011.

[17]Hu D S, Hu L, Wu L, et al. Direct  measurements of the Luzon undercurrent[J]. Journal of Physical Oceanography, 2013, doi:10.1175/JPO-D-12-0165.1.

[18]Sprintall J, Wijffels S, Gordon A L, et al. INSTANT: A new international array to measure the indonesian throughflow[J]. Eos, Transactions American Geophysical Union, 2004, 85: 369, doi:10.1029/2004EO390002.

[19]Gordon A L, Sprintall J, Wijffels S,et al. Interocean exchange of thermocline water: Indonesian throughflow; "Tassie" leakage; agulhas leakage[M]∥Hall J, Harrison D E, Stammer D, eds. Community White Paper Title, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference. ESA Publication, 2010.

[20]Cunningham S, Baringer M, Johns B, et al. The present and future system for meansuring the Atlantic meridional overturning circulation and heat transport[M]∥Hall J, Harrison D E, Stammer D, eds. Community White Paper Title, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference. ESA Publication, 2010.

[21]Garzoli S L, Boebel O, Brydene H,et al. Progressing towards global sustained deep ocean observations[M]∥Hall J, Harrison D E, Stammer D, eds. “Community White Paper Title”, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference. ESA Publication, 2010.

[22]Polzin K L, Toole J M, Ledwell J R, et al. Spatial variability of turbulent mixing in the abyssal ocean[J]. Science, 1997, 276: 93-96.

[23]Naveira Garabato A C, Oliver K I C, Watson A J, et al. Turbulent diapycnal mixing in the Nordic seas[J]. Journal of Geophysical Research, 2004, 109: C12010.

[24]Sloyan B M. Spatial variability of mixing in the Southern Ocean[J]. Geophysical Research Letters, 2005, 32, L18603, doi:10.1029/2005GL023568.

[25]Wu L, Jing Z, Rise S, et al. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats[J]. Nature Geoscience, 2011, 4: 363-366.

[26]Whalen C B, Talley L D, MacKinnon J A. Spatial and temporal variability of global ocean mixing inferred from Argo profiles[J]. Geophysical Research Letters, 2012, 39: L18612,doi:10.1029/2012GL053196.

[27]Jing Z, Wu L, Li L, et al. Turbulent diapycnal mixing in the subtropical northwestern Pacific: Spatial-seasonal variations and role of eddies[J]. Journal of Geophysical Research, 2011, 116(C10): C10028.

[28]Zhao Jing, Wu Lixin. Seasonal variation of turbulent diapycnal mixing in the northwestern Pacific stirred by wind stress[J]. Geophysical Research Letters, 2010, 37(23): L23604,doi:10.1029/2010GL045418.

[29]MacKinnon J, Matthew A, Pascale B A,et al. Using global arrays to investigate internal-waves and mixing[M]∥Hall J, Harrison D E , Stammer D, eds. “Community White Paper Title”, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference. ESA Publication, 2010.

[30]Scott R B, Bourassa M, Chelton D, et al. Satellie altimetry and key observation: What we’ve learned, and what’s possible with technologies[M]∥Hall J, Harrison D E, Stammer D, eds. Community White Paper Title, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference. ESA Publication, 2010.

[31]Dickson B, Yashayaev I, Meincke J, et al. Rapid freshening of the deep North Atlantic Ocean over the past four decades[J]. Nature, 2002, 416: 832-837.

[1] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[2] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[3] 赵中阔,廖菲,刘春霞,毕雪岩,王介民,万齐林,黄建. 近岸海洋气象平台涡动相关数据处理与质量控制[J]. 地球科学进展, 2011, 26(9): 954-964.
[4] 王介民, 王维真, 刘绍民, 马明国, 李新. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-714.
[5] 徐自为,刘绍民,宫丽娟,王介民,李小文. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.
[6] 王介民,王维真,奥银焕,孙方林,王树果. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8): 791-797.
[7] 程雪玲,胡非,赵松年,姜金华. 格子玻尔兹曼方法及其在大气湍流研究中的应用[J]. 地球科学进展, 2007, 22(3): 249-260.
[8] 仲雷,马耀明,苏中波,刘新,李茂善,马伟强,王永杰. 珠峰北坡地区近地层大气湍流与地气能量交换特征[J]. 地球科学进展, 2006, 21(12): 1293-1303.
[9] 魏皓,赵亮,刘广山,江文胜. 浅海底边界动力过程与物质交换研究[J]. 地球科学进展, 2006, 21(11): 1180-1184.
[10] 涂传诒. 太阳风中磁流体湍流的特征和本质[J]. 地球科学进展, 2002, 17(6): 806-810.
[11] 李 昕. 混沌理论与大气边界层湍流研究[J]. 地球科学进展, 2000, 15(2): 178-183.
[12] 胡隐樵,张强. 大气边界层相似性理论及其应用[J]. 地球科学进展, 1996, 11(6): 550-554.
[13] 雷孝恩. 污染气象学[J]. 地球科学进展, 1994, 9(1): 71-72.
[14] 方欣华. 海洋内波动力学[J]. 地球科学进展, 1993, 8(5): 97-98.
[15] 方欣华. 海洋小尺度过程[J]. 地球科学进展, 1993, 8(5): 99-100.