地球科学进展 ›› 2009, Vol. 24 ›› Issue (7): 705 -714. doi: 10.11867/j.issn.1001-8166.2009.07.0705

能水平衡观测与模拟 上一篇    下一篇

近地层能量平衡闭合问题—综述及个例分析
王介民 1,2, 王维真 1, 刘绍民 2, 马明国 1, 李新 1   
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;
    2.北京师范大学遥感科学国家重点实验室,地理学与遥感科学学院,北京 100875
  • 收稿日期:2009-05-11 修回日期:2009-06-05 出版日期:2009-06-10
  • 通讯作者: 王介民 E-mail:jmwang@lzb.ac.cn
  • 基金资助:

    中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09-03);国家自然科学基金项目“复杂条件下湍流通量的观测与分析研究”(编号:40875006);国家重点基础研究发展计划项目“陆表生态环境要素主被动遥感协同反演理论与方法”(编号:2007CB714401)资助.

The Problems of Surface Energy Balance Closure—An Overview and Case Study

Wang Jiemin 1,2, Wang Weizhen 1, Liu Shaomin 2, Ma Mingguo 1, Li Xin 1   

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou  730000, China;
    2.State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China
  • Received:2009-05-11 Revised:2009-06-05 Online:2009-06-10 Published:2009-07-10
  • Contact: Wang Jiemin E-mail:jmwang@lzb.ac.cn

  近地层能量闭合问题,即测量到的感热和潜热通量之和一般总小于近地层可利用能量(净辐射与土壤热通量之差),是近20年来困扰地气相互作用实验研究的主要难点之一。对国内外有关研究现状做了综述,与解决此问题日益迫切的要求相适应,问题的实质及解决途径近年来已逐渐明朗。“涡动相关方法”应用在复杂的大气湍流通量观测中的局限,特别是对低频较大尺度湍流通量的低估,仍是关键所在。在理论分析的基础上,结合2008年部分“黑河综合实验”资料对有关计算结果做了具体介绍。以阿柔站6天连续资料为例,仔细计算土壤浅层热储存,在涡动相关资料再处理中加上高低频损失修正等,再参考该站大口径闪烁仪(LAS)观测对感热通量的提高,能量闭合率可达到99%,当然这只是个例。许多复杂情况下,较大尺度的涡旋或湍流有组织结构(TOS)会有更明显影响。近地层能量闭合问题的根本解决必须考虑后者的贡献,提高通量观测的时空代表性。

 The surface energy balance closure has been one of the major difficulties in the study of surface exchange processes in the last 20 years. Findings from experiments and modeling in recent years have given a much clear understanding of the substantial causes and solving strategies of this issue. Some inabilities of the eddy covariance system in measuring turbulent fluxes, especially in the underestimation of the contribution from larger eddies in difficult conditions such as inhomogeneous surface and complex terrain, are still the essence. After a brief review of recent progress, as a case study, data from two stations of the comprehensive observation in the Heihe River basin (Project WATER) have been analyzed. One of the unique results for station Arou (on highland pasture), for observations from 1~6, August 2008, showed that the surface energy balance could be closed almost perfectly. Surely this is only one case. Major efforts still need to be made for a better understanding of the contribution of turbulence organized structures (TOS), and for a better way to obtain an area averaged fluxes.

中图分类号: 

[1] Kanemasu E T, Verma S B, Smith E A, et al. Surface flux measurements in FIFE: An overview[J].Journal Geophysical Research,1992, 97: 18 547-18 555.
[2] Wang J, Kim J, Liou Y, et al. Energy balance analysis and one-dimensional simulation of land surface processes in a short-grass site of central Tibetan Plateau[C]//Proceeding of the 1st international Workshop on GAME-Tibet, Xi′an, China.1999:73-76.
[3] Lee X.On Micrometeorological observations of surface-air exchange over tall vegetation[J].Agricultural and Forest Meteorology,1998,91: 39-49.
[4] Twine T E, Kustas W P, Norman J M, et al. Correcting eddy-covariance flux underestimates over a grassland[J].Agricultural and Forest Meteorology,2000,103:279-300.
[5] Sakai R, Fitzjarrald D, Moore K E. Importance of low-frequency contributions to eddy fluxes observed over rough surfaces[J].Journal Applied Meteorology, 2001, 40:2 178-2 192.
[6] Wilson K B, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology, 2002, 113:223-234.
[7] Culf A D, Foken T, Gash J H C. The energy balance closure problem[M]//Kabat P, Claussen M, Dirmeyer P A,et al,ed. Vegetation, Water Humans and the Climate. A New Perspective on An Interactive System. Berlin: Springer, Heidelberg,2004:159-166.
[8] Goulden M L, Munger J W, Fan S M, et al. Measurements of carbon sequestration by longterm eddy covariance: Methods and a critical evaluation of accuracy[J].Global Change Biology,1996, 2:169-182.
[9] Wang Jiemin, Liu Shaomin, Sun Minzhang, et al. Monitoring ET with remote sensing and the management of water resources on a basin scale[J].Arid Meteorology,2005, 23(2):1-7.[王介民,刘绍民,孙敏章,等. ET的遥感监测与流域尺度水资源管理[J]. 干旱气象,2005,23(2):1-7.]
[10] Kanda M, Inagaki A, Letzel M O, et al. LES study of the energy imbalance problem with eddy covariance fluxes[J].Boundary-Layer Meteorology,2004,110:381-404.
[11] Chen Jiayi, Fan Shaohua, Zhao Chuanfeng, et al. The underestimation in eddy covariance flux measurements[J].Atmospheric Sciences,2006, 30: 423-432.[陈家宜,范邵华,赵传峰,等.涡旋相关法测定湍流通量偏低的研究[J]. 大气科学,2006,30:423-432.]
[12] Oncley S P, Foken T, Vogtet R, et al. The energy balance experiment EBEX-2000, Part I: Overview and energy balance[J].Boundary-Layer Meteorology,2007,123:1-28.
[13] Foken T. Micrometeorology\[M\]. Berlin:Springer, Heidelberg,2008.
[14] Foken T. The energy balance closure problem—An overview[J].Ecological Application,2008, 18(6): 1 351-1 367.
[15] Kohsiek W, Liebethal C, Foken T, et al. The energy balance experiment EBEX-2000. Part III: Behavior and quality of radiation measurements[J].Boundary-Layer Meteorology,2007, 123:55-75.
[16] van Loon W K P, Bastings H M H, Moors E J. Calibration of soil heat flux sensors[J].Agricultural and Forest Meteorology,1998, 92:1-8.
[17] Mauder M, Liebethal C, Gockede M, et al. Processing and quality control of flux data during LITFASS-2003[J].Boundary-Layer Meteorology, 2006,121:67-88.
[18] Lee X, Massman W J, Law B, eds. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis[M]. The Netherlands:Kluwer, Dordrecht, 2004.
[19] Liebethal C, Huwe B, Foken T. Sensitivity analysis for two ground heat flux calculation approaches[J]. Agricultural and Forest Meteorology,2005, 132: 253-262.
[20] Horton R, Wierenga P J, Nielsen D R. Evaluation of methods for determining the apparent thermal diffusivity of soll near the surface[J].Soil Science Society American Journal, 1983, 47: 25-32.
[21] Heusinkveld B G, Jacobs A F G, Holtslag A A M,et al. Surface energy balance closure in an arid region: Role of soil heat flux[J].Agricultural and Forest Meteorology,2004, 122: 21-37.
[22] Yang Kun,Wang Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China (Series D),2008, 38(2):243-250.[阳坤, 王介民. 一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J]. 中国科学:D辑, 2008, 38(2): 243-250.]
[23] Foken T, Wimmer F, Mauder M,et al. Some aspects of the energy balance closure problem[J].Atmospheric Chemistry and Physics,2006, 6: 4 395-4 402.
[24] Finnigan J J, Clement R, Malhi Y, et al. A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation[J].Boundary-Layer Meteorology,2003, 107:1-48.
[25] Steinfeld G, Letzel M O, Raasch S, et al. Inagaki Spatial representativeness of single tower measurements and the imbalance problem with eddy covariance fluxes: Results of a large-eddy simulation study[J].Boundary-Layer Meteorology,2007,123:77-98.
[26] Mauder M, Desjardins R L, Patty E, et al. Measurement of the sensible eddy heat flux based on spatial averaging of continuous ground-based observations[J].Boundary-Layer Meteorology,2008, 128:151-172.
[27] Wang Weizhen, Xu Ziwei, Liu Shaomin,et al. The characteristics of heat and water vapor fluxes over different surfaces in the Heihe river basin[J].Advances in Earth Science,2009,24(7):714-724.[王维真,徐自为,刘绍民,等.黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展,2009,24(7):714-724.]
[28] Desjardins R L, MacPherson J I, Schuepp P H, et al. An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat[J].Boundary-Layer Meteorology,1989,47:55-69.
[29] Moore C J. Frequency response corrections for eddy correlation systems[J].Boundary-Layer Meteorology, 1986, 37:17-35.
[30] Massman W J. A simple method for estimating frequency response corrections for eddy covariance systems[J].Agricultural and Forest Meteorology,2000, 104:185-198.

[1] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[2] 孟春雷. 城市地表特征数值模拟研究进展[J]. 地球科学进展, 2014, 29(4): 464-474.
[3] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[4] 谢永坤, 刘玉芝, 黄建平, 王国印. 雪冰反馈对北半球经向温度梯度的影响[J]. 地球科学进展, 2013, 28(11): 1276-1282.
[5] 赵中阔,廖菲,刘春霞,毕雪岩,王介民,万齐林,黄建. 近岸海洋气象平台涡动相关数据处理与质量控制[J]. 地球科学进展, 2011, 26(9): 954-964.
[6] 蒋维楣,苗世光,张宁,刘红年,胡非,李磊,王咏薇,王成刚. 城市气象环境与边界层数值模拟研究[J]. 地球科学进展, 2010, 25(5): 463-473.
[7] 李宏宇,张强,王胜. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 2010, 25(10): 1070-1081.
[8] 蒋维楣,王咏薇,张宁. 城市陆面过程与边界层结构研究[J]. 地球科学进展, 2009, 24(4): 411-419.
[9] 徐自为,刘绍民,宫丽娟,王介民,李小文. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.
[10] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[11] 王介民,王维真,奥银焕,孙方林,王树果. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8): 791-797.
[12] 苏中波,张廷,马耀明,贾立,文军. 青藏高原地区能量水分循环:地表能量平衡和湍流热通量[J]. 地球科学进展, 2006, 21(12): 1224-1236.
[13] 卢俐;刘绍民;孙敏章;王介民. 大孔径闪烁仪研究区域地表通量的进展[J]. 地球科学进展, 2005, 20(9): 932-939.
[14] 杨启国;杨兴国;马鹏里;王润元;刘宏谊. 陇中黄土高原冬季地表辐射和能量平衡特征[J]. 地球科学进展, 2005, 20(9): 1012-1021.
[15] 胡隐樵,张强. 大气边界层相似性理论及其应用[J]. 地球科学进展, 1996, 11(6): 550-554.
阅读次数
全文


摘要