[1] Yongjian. Response of cryosphere to climatic warming since 1980 over the Northern Hemisphere[J]. Journal of Glaciology and Geocryology, 1996, 18(2): 132-138.[丁永建. 1980年以来冰冻圈对气候变暖响应的若干证据[J]. 冰川冻土, 1996, 18(2): 132-138.]
[2] Shiyin, Ding Yongjian, Li Jing, et al. Glaciers in response to recent climate warming in western China[J]. Quaternary Sciences, 2006, 26(5): 762-771.[刘时银, 丁永建, 李晶, 等. 中国西部冰川对近期气候变暖的响应[J]. 第四纪研究, 2006, 26(5): 762-771.]
[3] Anxin, Yao Tandong, Wang Lihong, et al. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 783-792.[鲁安新, 姚檀栋, 王丽红, 等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土,2005, 27(6): 783-792.]
[4] Ninglian, He Jianqiao, Pu Jianchen, et al. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years[J]. Chinese Science Bulletin, 2010, 55(32): 3 107-3 115.[王宁练, 贺建桥, 蒲健辰, 等. 近50年来祁连山七一冰川平衡线高度变化研究[J]. 科学通报, 2010, 55(32): 3 107-3 115.]
[5] Liping, Xie Manping, Wu Yanhong. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(13):1 294-1 303.
[6] Jiawen, Ye Baisheng, Ding Yongjian, et al. Initial estimate of the contribution of cryospheric change in China to sea level rise[J]. Chinese Science Bulletin, 2011, 56(14):1 084-1 087.[任贾文, 叶柏生, 丁永建, 等. 中国冰冻圈变化对海平面上升潜在贡献的初步估计[J]. 科学通报, 2011, 56(14):1 084-1 087.]
[7] Tandong, Wang Youqing, Liu Shiyin, et al. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J]. Science in China (Series D), 2004, 47(12): 1 065-1 075.
[8] Xin, Cheng Guodong, Kang Ersi, et al. Digital Heihe River Basin. 3: Model integration[J]. Advances in Earth Science, 2010, 25(8):851-865.[李新, 程国栋, 康尔泗, 等. 数字黑河的思考与实践3:模型集成[J].地球科学进展,2010, 25(8):851-865.]
[9] Rensheng, Liu Shiyin, Kang Ersi, et al. Daily glacier runoff estimation methods—A case study of Koxkar Glacier[J]. Advances in Earth Science, 2008, 23(9):942-951.[陈仁升, 刘时银, 康尔泗, 等. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9):942-951.]
[10] Qian, Sun Shufen. Deveolopment of the universal and simplified soil model coupling heat and water transport[J]. Science in China (Series D), 2008, 51(1): 88-102.
[11] M, Wang L, Koike T, et al. Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites[J]. Hydrology and Earth System Sciences, 2010, 14:2 577-2 594, doi:
10.5194/hess-14-2577-2010.
[12] D M,Slater A G. Incorporating organic soil into a global climate model[J]. Climate Dynamics, 2008, 30(2/3): 145-160, doi:
10.1007/s00382-007-0278-1.
[13] Dawen, Li Chong, Ni Guangheng, et al. Application of a distributed hydrological model to the Yellow River Basin[J]. Acta Geographica Sinica, 2004, 59(1):143-154.[杨大文, 李翀, 倪广恒, 等. 分布式水文模型在黄河流域的应用[J]. 地理学报, 2004, 59(1):143-154.]
[14] Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of earth surface processes: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建, 周成虎, 邵明安, 等. 地表过程研究进展与趋势[J].地球科学进展,2013, 28(4): 407-419.]
[15] Jiemin. Land surface process experiments and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294.[王介民.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3):280-294.]
[16] N, Linsley R. Digital simulation in hydrology: Stanford watershed model IV[M]∥Technical Report No. 39, Department of Civil Engineering. Califormia: Stanford University, 1966.
[17] M. Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River and Nam Mune[M]. Tokyo: National Research Center for Disaster Prevention, 1974.
[18] R J, Zhang Y L, Fang L R, et al. The Xinanjiang model[C]∥Hydrological Forecasting Proceedings Oxford Symposium.Wallingford: IAHS, 1980.
[19] Changming, Zheng Hongxing, Wang Zhonggen. Distributed Simulation of Water Cycle[M]. Zhengzhou: Yellow River Water Conservancy Press, 2006.[刘昌明,郑红星,王中根. 流域水循环分布式模拟[M]. 郑州:黄河水利出版社, 2006.]
[20] Yangwen, Wang Hao, Ni Guangheng, et al. Principles and Practice of Distributed Hydrological Model[M]. Beijing:China Water & Power Press, 2005.[贾仰文, 王浩, 倪广恒, 等. 分布式流域水文模型原理与实践[M]. 北京:中国水利水电出版社, 2005.]
[21] R A, Harlan R L. Blueprint for a physically based digitally simulated hydrological response model[J]. Journal of Hydrology, 1969, 9(3): 237-258, doi:
10.1016/0022-1694(69)90020-1.
[22] K, Kirkby M J. A physically based variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin, 1979, 24(1): 43-69.
[23] M B, Bathurst J C, Cunge J A, et al. An introduction to the European hydrological system—Systeme Hydrologique Europeen, SHE, 2. Structure of a physically based distributed modeling system[J]. Journal of Hydrology, 1986, 87(1/2): 61-77, doi:
10.1016/0022-1694(86)90115-0.
[24] J C, Wicks J M, O’Connell P E. The SHE/SHESED basin scale water flow and sediment transport modeling system[M]∥Singh V P, ed. Computer Models of Watershed Hydrology. Colo, Littleton: Water Resource Publication, 1995: 563-594.
[25] Xu, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research, 1994, 99(D7):14 415-14 428, doi:
10.1029/94JD00483.
[26] M S, Vail L, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. Water Resources Research, 1994, 30(6):1 663-1 679.
[27] V Y, Vivoni E R, Bras R L, et al. Catchment hydrologic response with a fully distributed triangulated irregular network model[J]. Water Resources Research, 2004, 40(11): W11102, doi:
10.1029/2004WR003218.
[28] D W. Distributed Hydrological Model Using Hillslope Discretization Based on Catchment Area Function: Development and Applications[D]. Tokyo: University of Tokyo, 1998.
[29] D W, Koike T, Tanizawa H. Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan[J]. Hydrological Processes, 2004, 18(16): 3 119-3 132, doi:
10.1002/hyp.5752.
[30] Zongxue. Hydrological Models[M]. Beijing: Science Press, 2009.[徐宗学. 水文模型[M]. 北京:科学出版社, 2009.]
[31] Siyi, Liu Guowei, Xia Jun, et al. Hydrology and Water Resources[M]∥Frontier in Water Science and Technology.Beijing:China Water & Power Press, 2005.[胡四一,刘国纬,夏军,等. 水文学及水资源[M]∥当代水利科技前沿. 北京:中国水利水电出版社,2005.]
[32] Q H, Oki T, Kanae S. A distributed biosphere hydrological model (DBHM) for large river basin[J]. Annual Journal of Hydraulic Engineering, 2006, 50: 37-42.
[33] L, Koike T, Yang Kun, et al. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains experiments (SGP97 and SGP99)[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D08107, doi:
10.1029/2008JD010800.
[34] L, Koike T, Yang Kun, et al. Assessment of a distributed biosphere hydrological model against streamflows and MODIS land surface temperature in the upper Tone River Basin[J]. Journal of Hydrology, 2009, 377(1/2): 21-34.
[35] L, Koike T, Yang D W, et al. Improving the hydrology of the Simple Biosphere Model 2 and its evaluation within the framework of a distributed hydrological model[J]. Hydrological Sciences Journal, 2009, 54(6): 989-1 006.
[36] Hongkai, He Xiaobo, Ye Baisheng, et al. The simulation of HBV hydrology model in the Dongkemadi Rriver Basin, headwater of the Yangtze River[J]. Journal of Glaciology and Geocryology, 2011, 33(1):171-181.[高红凯, 何晓波, 叶柏生, 等. 1955—2008年冬克玛底河流冰川径流模拟研究[J]. 冰川冻土, 2011, 33(1):171-181.]
[37] Junfeng, Yang Jianping, Chen Rensheng, et al. The simulation of snowmelt runoff model in the Dongkemadi River Basin[J]. Acta Geographica Sinica, 2006, 61(11):1 149-1 159.[刘俊峰, 杨建平, 陈仁升, 等. SRM融雪径流模型在长江源区冬克玛底河流域的应用[J]. 地理学报, 2006, 61(11):1 149-1 159.]
[38] Fangfang, Xu Zongxue. Hydrological response to climate change in headwater catchment of the Yellow River Basin[J]. Resources Science, 2009, 31(5):722-730.[赵芳芳, 徐宗学. 黄河源区未来气候变化的水文响应[J]. 资源科学, 2009, 31(5):722-730.]
[39] Yongyong, Zhang Shifeng, Zhai Xiaoyan, et al. Runoff variation in the three rivers source region and its response to climate change[J]. Acta Geographica Sinica, 2012, 67(1): 71-82.[张永勇, 张士锋, 翟晓燕, 等. 三江源区径流演变及其对气候变化的响应[J]. 地理学报, 2012, 67(1): 71-82.]
[40] Zhigang, Liu Xiaodong, Fan Guangzhou, et al. Trends in runoff of the source region of the Yangtze River and the Yellow River for 21st century[J]. Resources and Environment in the Yangtze Basin, 2010, 19(11):1 333-1 339.[程志刚, 刘晓东, 范广洲, 等. 21世纪长江黄河源区径流量变化情势分析[J]. 长江流域资源与环境, 2010, 19(11):1 333-1 339.]
[41] Cuo, Zhang Yongxin, Gao Yanhong, et al. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China[J]. Journal of Hydrology, 2013, 502:37-52.
[42] Bin, Zhang Wanchang, Liu Chuansheng. Advances in the coupling study of hydrological models and land-surface models[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 961-970.[雍斌, 张万昌, 刘传胜. 水文模型与陆面模式耦合研究进展[J]. 冰川冻土, 2006, 28(6): 961-970.]
[43] P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs, Part I: Model formulation[J]. Journal of Climate, 1996, 9(4): 676-705.
[44] R E, Shaikh M, Bryant R, et al. Interactive canopies for a climate model[J]. Journal of Climate, 1998, 11(11): 2 823-2 836.
[45] M, Wang L, Koike T, et al. Modeling the spatial distribution of snow cover in the Dudhkoshi region of the Nepal Himalayas[J]. Journal of Hydrometeorology, 2012, 13(1):204-222.
[46] L, Koike T, Yang K, et al. Frozen soil parameterization in a distributed biosphere hydrological model[J]. Hydrology and Earth System Sciences, 2010, 14(6):557-571.
[47] B L, Wang L, Yang K, et al. Modeling the land surface water and energy cycle of a mesoscale watershed in the central Tibetan Plateau with a distributed hydrological model[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 8 857-8 868, doi:
10.1002/jgrd.50696.
[48] Yongjian, Xiao Cunde. Challenges in the study of cryospheric changes and their impacts[J]. Advances in Earth Science, 2013, 28(10): 1 067-1 076.[丁永建, 效存德. 冰冻圈变化及其影响研究的主要科学问题概论[J].地球科学进展,2013, 28(10): 1 067-1 076.]
[49] R. Temperature index melt modeling in mountain areas[J]. Journal of Hydrology, 2003, 282(1/4):104-115.
[50] S Q, Kang S C, Gao T G, et al. Response of Zhadang glacier runoff in Nam Co Basin, Tibet, to changes in air temperature and precipitation form[J]. Chinese Science Bulletin, 2010, 55(20): 2 103-2 110.
[51] J, Farinotti D, Jonas T, et al. Quantitative evaluation of different hydrological modeling approaches in a partly glacierized Swiss watershed[J]. Hydrological Processes, 2011, 25(13):2 071-2 084.
[52] W, Guo X F, Yao T D, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysics Research, 2011, 116 (D14),doi:
10.1029/2010JD015183.
[53] J A, McKendry I G. A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality[J]. Progress in Physical Geography, 2005, 29(2):171-188.
[54] W S B. The Physics of Glaciers[M]. Amsterdam: Butterworth Heinemann, 1994:480.
[55] Tandong. Dynamic Characteristics of the Cryosphere on the Central Tibetan Plateau[M]. Beijing: Geological Publishing House, 2002.[姚檀栋. 青藏高原中部冰冻圈动态特征[M]. 北京:地质出版社, 2002.]
[56] Liang, Duan Keqin, Wang Ninglian, et al. Characteristics of the surface energy balance of the Qiyi Glacier in Qilian Mountains in melting season[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 882-888.[陈亮, 段克勤, 王宁练, 等. 祁连山七一冰川消融期间的能量平衡特征[J]. 冰川冻土, 2007, 29(6):882-888.]
[57] P S, Neff W D. Boundary layer physics over snow and ice[J]. Atmospheric Chemistry and Physics, 2008, 8: 3 563-3 582.
[58] C, Kilian R, Glaser M. Energy balance in the ablation zone during the summer season at the Gran Campo Nevado Ice Cap in the Southern Andes[J]. Global and Planetary Change, 2007, 59(1/4): 175-188.
[59] F S, Hostetler S, Bidlake W R, et al. Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty[J]. Journal of Geophysical Research, 2008, 113: F02019, doi:
10.1029/2007JF000850.
[60] M J,Fountain A G, Liston G E. Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica[J]. Journal Geophysical Research, 2008, 113: F04014, doi:
10.1029/2008JF001029.
[61] R H, van den Broeke M R, Oerlemans J, et al. Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: Interannual variability and the effect of clouds[J]. Journal of Geophysical Research, 2008, 113: D21111, doi:
10.1029/2008JD010390.
[62] A M, Willis I C, Arnold N S. Modification and testing of a one-dimensional energy and mass balance model for supraglacial snowpacks[J]. Hydrological Processes, 2008, 22(16):3 194-3 209.
[63] X, Wang N L, He J Q, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55(20):2 079-2 087, doi:
10.1007/s11434-010-3068-9.
[64] A H, Flowers G E. Spatial and temporal transferability of a distributed energy-balance glacier melt model[J]. Journal of Climate, 2011, 24(5):1 480-1 498.
[65] K, Sharp M, Arnold N, et al. An Integrated approach to modeling hydrology and water quality in glacierized catchments[J]. Hydrological Processes, 1996, 10(4):479-508.
[66] J E, Hock R, Ribstein P, et al. Analysis of seasonal variation in mass balance and meltwater discharge of the tropical Zongo glacier by application of a distributed energy balance model[J]. Journal of Geophysical Research, 2011, 116: D13105, doi:
10.1029/2010JD015105.
[67] B, Yang K, Qin J, et al. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization[J]. Journal of Hydrology, 2014,513:154-163.
[68] Y, Sellers P J, Kinter J L, et al. A simplified biosphere model for global climate studies[J]. Journal of Climate, 1991, 4(3): 345-364.
[69] B, Graf H. Modeling the snow cover in climate studies 1.Long-term integrations under different climatic conditions using a multilayered snow-cover model[J]. Journal of Geophysical Research, 1998, 103(D10):11 313-11 327.
[70] Shufen, Jin Jiming, Wu Guoxiong. A snow model design for coupling with GCM[J]. Acta Meteorologica Sinica, 1999, 57(3):293-300.[孙菽芬, 金继明, 吴国雄. 用于GCM耦合的积雪模型的设计[J]. 气象学报, 1999, 57(3):293-300.]
[71] S F, Jin J M, Xue Y K. A simple snow-atmosphere-soil transfer model[J]. Journal of Geophysical Research, 1999, 104(D16): 19 587-19 597.
[72] M J, Pryor M, Clark D B, et al. The Joint UK Land Environment Simulator (JULES), Model description-Part 1: Energy and water fluxes[J]. Geoscientific Model Development, 2011, 4:595-640, doi:
10.5194/gmd-4-677-2011.
[73] R, Bartlett P, MacKay M, et al. Evaluation of snow cover in CLASS for SnowMIP[J]. Atmosphere-Ocean,2006, 44(3): 223-238, doi:
10.3137/ao.440302.
[74] K, Lawrence D, Gordon B, et al. Technical description of version 4.0 of the Community Land Model (CLM)[R]∥NCAR Technical Note NCAR/TN-478+STR,doi:
10.5065/D6FB50WZ.
[75] E A. A Point Energy and Mass Balance Model of A Snow Cover[R]. Marryland: Office of Hydrology-National Weather Service, 1976.
[76] R. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM. 89[R]. Hanaver: Cold Regions Research and Engineering Laboratory, 1991.
[77] E, Martin E, Simon V, et al. An energy and mass model of snow cover suitable for operational avalanche forecasting[J]. Journal of Glaciology, 1989, 35(121): 333-342.
[78] E, David P, Sudul M, et al. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting[J]. Journal of Glaciology, 1992, 38(128):13-22.
[79] P, Lehning M. A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model[J]. Cold Regions Science and Technology, 2002, 35(3):123-145.
[80] R E, Henderson-Sellers A, Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model[R]. Colorado: NCAR Technical Note TN-387 1 STR, 1993,doi:
10.5065/D67W6959.
[81] Z L, Dickinsion R E, Robock A, et al. Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data[J].Journal of Climate, 1997, 10(2): 353-373.
[82] Y L, Cheng G D, Li X, et al. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed[J]. Hydrological Processes, 2013, 27(25):3 762-3 776, doi:
10.1002/hyp.9514.
[83] Q, Sun S F. Development of the universal and simplified soil model coupling heat and water transport[J].Science in China (Series D), 2008, 51(1): 88-102.
[84] K, Koike T, Ye B S, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. Journal of Geophysics Research, 2005, 110: D08101, doi:
10.1029/2004JD005500.
[85] D M, Slater A G. Incorporating organic soil into a global climate model[J]. Climate Dynamics, 2008, 30(2/3): 145-160, doi:
10.1007/s0038200702781.
[86] Y Y, Yang K, Tang W J, et al. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J]. Science in China (Series D), 2012, 55: 1 001-1 011, doi:
10.1007/s11430-012-4433-0.
[87] Sumin, Dou Hongshen. Journal of Chinese Lakes[M]. Beijing: Science Press,1998.[王苏民, 窦鸿身. 中国湖泊志[M].北京:科学出版社, 1998.]
[88] J, Doms G, Schttler U, et al. Meso-gamma scale forecasts using the non-hydrostatic model LM[J]. Meteorology and Atmospheric Physics, 2003, 82(1/4):75-96.[88] [JP3][89]Bowen J D, Hieronymus J W. A CE-QUAL-W2 Model of Neuse Estuary for total maximum daily load development[J]. Journal of Water Resources Planning and Management, 2003, 129(4):283-294.[JP]
[90] J M. A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects[R]∥Special Report 317 in Applied Marine Science and Ocean Engineering. The College of William and Mary, Virginia Institute of Marine Sciences, 1992.
[91] B. New formulation of eddy diffusion thermocline models[J]. Applied Mathematical Modelling, 1985, 9(6):441-446.
[92] S W, Bartlein P J. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake[J]. Water Resources Research,1990, 26(10):2 603-2 612.
[93] S W. Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of lake Lahontan[J]. Climate Dynamics, 1991, 6(1):43-48.
[94] Shufen, Yan Jinfeng, Xia Nan, et al. Study on heat transfer between land surface water and the atmosphere[J]. Science in China (Series G), 2008, 38(6):704-713.[孙菽芬, 颜金凤, 夏南, 等.陆面水体与大气之间的热传输研究[J]. 中国科学:G辑, 2008, 38(6):704-713.]
[95] L C, Lettenmaier D P. Modeling the effects of lakes and wetlands on the water balance of arctic environments[J]. Journal of Hydrometeorology, 2010, 11(2): 76-95.
[96] Leilei, Su Fengge, Yang Daqing, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research, 2013, 118(15):8 500-8 518. |