地球科学进展 ›› 2014, Vol. 29 ›› Issue (6): 662 -673. doi: 10.11867/j.issn.1001-8166.2014.06.0662

综述与评述 上一篇    下一篇

雪冰中生物质燃烧记录研究进展
游超 1, 2, 姚檀栋 1, 邬光剑 1   
  1. 1.中国科学院青藏高原研究所, 青藏高原环境变化与地表过程重点实验室, 北京 100101; 2.中国科学院大学, 北京 100049
  • 出版日期:2014-06-10
  • 基金资助:

    国家自然科学基金项目“第三极地区冰川物质—能量平衡与消融过程”(编号:41190081); 中国科学院/SAFEA国际创新团队伙伴计划项目“第三极环境计划”(编号:KZCX2-YW-T11)资助

Research Progress on Biomass Burning Records in Snow and Ice

You Chao 1, 2, Yao Tandong 1, Wu Guangjian 1   

  1. 1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101,China; 2. University of Chinese Academy of Science, Beijing 100049, China
  • Online:2014-06-10 Published:2014-06-10

生物质燃烧释放的大量温室气体和烟尘气溶胶能够显著改变大气化学组成、扰动大气环流和水文过程、影响地表辐射平衡,是地球气候和环境过程的主要影响因素之一。生物质燃烧产生的烟尘颗粒等能够随大气环流过程进行迁移输送,在重力作用下或随降水过程沉降到地球表面,成为沉积物地球化学的重要组成部分。雪冰中诸如黑碳、钾离子、左旋葡聚糖等特征标志物记录能够较好地反映区域乃全球尺度的生物质燃烧信息。利用雪冰开展生物质燃烧现代过程和历史记录的研究对系统认识地球气候环境演变过程具有重要意义。从雪冰中可用于开展生物质燃烧记录研究的特征指标、不同地区的研究现状以及生物质燃烧的影响因素等方面综述了近20年来国内外的主要研究成果。并对当前在青藏高原地区利用雪冰开展生物质燃烧记录研究存在的主要问题以及未来研究工作的重点进行了探讨。

Biomass burning releases large amount of greenhouse gases and smoke particles. Biomass burning emissions can change atmospheric chemicals, perturb atmospheric circulations and hydrological cycle, and impact radiation balance of earth system. Biomass burning is one of the main factors for earth climate and environmental process. Biomass burning emissions can be transported long-distance by atmospheric circulations, and finally be deposited on earth surface by gravity or by wet deposition. Biomass burning aerosols can be important compositions in sediment geochemistry. Biomarkers such as Black carbon, Potassium and Levoglucosan in snow and ice can be used to study biomass burning records on regional and global scale. Study on the modern process and historical records of biomass burning records in snow and ice can help us understand about global climate and environmental change process systematically. A review about the study progress on biomass burning in snow and ice for past 20 years was reported. This review mainly concerns about aspects of available proxies, main achievements in different regions and influences factors of biomass burning. The shortage of current studies for biomass burning history in Tibetan Plateau snow and ice records are summarized and main prospects for future studies are put for word.

中图分类号: 

[1] W M, Liu M H.Spatial and temporal distribution of tropical biomass burning[J]. Global Biogeochemical Cycles,1994, 8: 495-503.
[2] J S, Cofer W R, Cahoon D R, et al.Biomass burning: A driver for global change[J]. Environmental Science & Technology,1995, 29: A120-A125.
[3] M O, Merlet P.Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles,2001, 15: 955-966.
[4] J H, Pankow J F.Organic atmospheric particulate material[J]. Annual Review of Physical Chemistry,2003, 54: 121-140.
[5] B R T.Biomass burning—A review of organic tracers for smoke from incomplete combustion[J]. Applied Geochemistry,2002, 17: 129-162.
[6] A, Chuvieco E, Parra A, et al.Biomass burning emissions: A review of models using remote-sensing data[J]. Environmental Monitoring and Assessment,2005, 104: 189-209.
[7] Y J, Tucker C J, Fung I.Remote sensing of biomass burning in the tropics[J]. Journal of Geophysical Research: Atmospheres,1990, 95: 9 927-9 939.
[8] J R, Bartlein P J, Carcaillet C, et al.Climate and human influences on global biomass burning over the past two millennia[J]. Nature Geoscience,2008, 1: 697-702.
[9] M J, Marlon J, Ortiz N, et al.Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data[J]. Climate Dynamics,2008, 30: 887-907.
[10] Wenjie, Zhang Hua, Sun Yongge, et al.Evidence for the Permian-Trassic wildfire event: Review and appraisal[J]. Advances in Earth Science,2012, 27(6): 613-623.[沈文杰,张华,孙永革,等.二叠纪—三叠纪界线大火燃烧的地层记录: 研究进展回顾与评述[J].地球科学进展,2012,27(6):613-623.]
[11] C P S.Spatial and temporal variations in boreal forest fire frequency in northern Alberta[J]. Journal of Biogeography,1997, 24: 663-673.
[12] A E, Ariya U, Brown P, et al.Reconstructing fire history in central Mongolia from tree-rings[J]. International Journal of Wildland Fire,2012, 21: 86-92.
[13] W, Conedera M, Ammann B, et al.Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920[J]. Holocene,1998, 8: 31-42.
[14] A L, Gershunov A, Brown T J, et al.Climate and wildfire in the western United States[J]. Bulletin of the American Meteorological Society,2003, 84: 595-604.
[15] J S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling[J]. Quaternary Research,1988, 30: 67-80.
[16] C, Larsen C.Charcoal as a fire proxy[C]∥John P S, John B B, William M L, et al, eds. Tracking Environmental Change Using Lake Sediments. Netherlands: Springer, 2002:75-97.
[17] C J, Whitlock C, Bartlein P J, et al.A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere,1998, 28: 774-787.
[18] N, Zangrando R, Gambaro A, et al.Fire and climate: Biomass burning recorded in ice and lake cores[J]. EPJ Web of Conferences,2010, 9: 105-114.
[19] R J. Environmental information from ice cores[J]. Reviews of Geophysics,1992, 30: 1-21.
[20] M, Mayewski P.Glaciochemistry of polar ice cores: A review[J]. Reviews of Geophysics,1997, 35: 219-243.
[21] K. Ice Core Methods: Glaciochemistry[C]. Amsterdam: Elsevier Science,2007: 1 192-1 199.
[22] K C, Alley R B, Lamorey G W, et al.Electrical measurements on the Greenland Ice Sheet Project 2 Core[J]. Journal of Geophysical Research: Atmospheres,1997, 102: 26 511.
[23] K C, Hammer C U, Alley R B, et al.Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores[J]. Nature,1993, 366: 549-552.
[24] J E, Talbot R W, Whitlow S I, et al.Biomass burning signatures in the atmosphere and snow at Summit, Greenland: An event on 5 August 1994[J]. Atmospheric Environment,1996, 30: 553-561.
[25] K, Neftel A, Anklin M, et al.High-resolution ammonium ice core record covering a complete glacial-interglacial cycle[J]. Journal of Geophysical Research: Atmospheres,1996, 101: 4 147-4 164.
[26] K C, Alley R B, Lamorey G W, et al.Electrical measurements on the Greenland Ice Sheet Project 2 core[J]. Journal of Geophysical Research: Oceans,1997, 102: 26 511-26 517.
[27] V, Carmichael G.Global and regional climate changes due to black carbon[J]. Nature Geoscience,2008, 1: 221-227.
[28] J. Black carbon and brown clouds[J]. Nature Geoscience,2008, 1: 15-16.
[29] J, Cachier H, Xiao C, et al.Black carbon record based on a shallow Himalayan ice core and its climatic implications[J]. Atmospheric Chemistry and Physics,2008, 8: 1 343-1 352.
[30] B, Cao J, Hansen J, et al.Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America,2009, 106: 22 114-22 118.
[31] J, Nazarenko L.Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101: 423-428.
[32] Shichun, Wang Yiyong, Tong Quansong.The use of carbon isotope analysis in source apportionment of carbonaceous aerosols: A review[J]. Advances in Earth Science,2013, 28(1): 62-70.[张世春,王毅勇,童全松.碳同位素技术在碳质气溶胶源解析中应用的研究进展[J].地球科学进展,2013,28(1):62-70.]
[33] D C, Macko S A, Turekian V C.Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: Implications for biomass burning[J]. Chemical Geology, 1998, 152: 151-161.
[34] K, Ozaki Y, Nakagawa F, et al.Hydrogen and carbon isotopic measurements of methane from agricultural combustion: Implications for isotopic signatures of global biomass burning sources[J]. Journal of Geophysical Research: Atmospheres,2006, 111(D16),doi: 10.1029/2005JD006750.
[35] D F, Miller J B, White J W C, et al.Unexpected changes to the global methane budget over the past 2000 years[J]. Science,2005, 309: 1 714-1 717.
[36] J A, Sowers T A, Alley R B, et al.Carbon and hydrogen isotopic composition of methane over the last 1000 years[J]. Global Biogeochemical Cycles,2009, 23(4),doi: 10.1029/2009GB003460.
[37] Z, Chappellaz J, Park K, et al.Large variations in southern hemisphere biomass burning during the last 650 years[J]. Science,2010, 330: 1 663-1 666.
[38] S S, Brenninkmeijer C A M, Ockel P J, et al.Evidence for a CO increase in the SH during the 20th century based on firn air samples from Berkner Island, Antarctica[J]. Atmospheric Chemistry and Physics,2007, 7: 295-308.
[39] C, Penner J E, Chuang C, et al.A global three-dimensional model study of carbonaceous aerosols[J]. Journal of Geophysical Research:Atmospheres,1996, 101: 19 411-19 432.
[40] M C, Hansson H C, Noone K J, et al.Organic atmospheric aerosols: Review and state of the science[J]. Reviews of Geophysics,2000, 38: 267-294.
[41] U. Atmospheric aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie-International Edition,2005, 44: 7 520-7 540.
[42] N, Ward D S, Kloster S, et al.Aerosol impacts on climate and biogeochemistry[J]. Annual Review of Environment and Resources,2011, 36: 45-74.
[43] M, Angelis M D.Light carboxylic acids in Greenland ice: A record of past forest fires and vegetation emissions from the boreal zone[J]. Journal of Geophysical Research: Atmospheres,1996, 101: 4 129-4 145.
[44] R, Becagli S, Traversi R, et al.Preliminary evidence of a biomass-burning event from a 60 year-old firn core from Antarctica by ion chromatographic determination of carboxylic acids[J]. Annals of Glaciology,1998, 27: 391-397.
[45] X Q, Qin D H, Jiang G B, et al.Determination of light carboxylic acids in snow and ice from mountain glaciers[J]. Cold Regions Science and Technology,2002, 34: 127-134.
[46] B R T, Schauer J J, Nolte C G, et al.Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmospheric Environment,1999, 33: 173-182.
[47] T B, Seen A J, Jacobsen G E.Levoglucosan as an atmospheric tracer for woodsmoke[J]. Atmospheric Environment,2006, 40: 5 316-5 321.
[48] D, Torri C, Simonei B R T, et al.Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites[J]. Atmospheric Environment,2009, 43: 2 286-2 295.
[49] K, Suzuki I, Fujii Y, et al.Ice record of polycyclic aromatic hydrocarbons over the past 400 years[J]. Naturwissenschaften,1994, 81: 502-505.
[50] K, Suzuki I, Fujii Y, et al.Ice core record of fatty acids over the past 450 years in Greenland[J]. Geophysical Research Letters,1996, 23: 2 665-2 668.
[51] S C, Yao T D, Kang S C, et al.Geochemical analyses of a Himalayan snowpit profile: Implications for atmospheric pollution and climate[J]. Organic Geochemistry,2000, 31: 15-23.
[52] P, Hoyau V, Jaffrezo J L, et al.Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland. Part I: Superficial snow[J]. Atmospheric Environment,2000, 34: 3 195-3 207.
[53] X, Yao T, Wang P, et al.The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas[J]. Science of the Total Environment,2008, 394: 134-143.
[54] D G, Bond T C, Carmichael G R, et al.An inventory of gaseous and primary aerosol emissions in Asia in the year 2000[J]. Journal of Geophysical Research: Atmospheres,2003, 108(D21),doi: 10.1029/2002JD003093.
[55] B J, Petrucci G A.Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols[J]. Environmental Science & Technology,2006, 40: 4 983-4 989.
[56] H, Behrens M, Bock M, et al.Changing boreal methane sources and constant biomass burning during the last termination[J]. Nature,2008, 452: 864-867.
[57] J F, Currie L A, Dibb J E, et al.Distinguishing the relative contribution of fossil fuel and biomass combustion aerosols deposited at Summit, Greenland through isotopic and molecular characterization of insoluble carbon[J]. Atmospheric Environment,2002, 36: 4 463-4 477.
[58] N, Zangrando R, Gabrielli P, et al.Levoglucosan as a specific marker of fire events in Greenland snow[J]. Tellus Series B-Chemical and Physical Meteorology,2012, 64:18 196.
[59] J L, Davidson C I, Kuhns H D, et al.Biomass burning signatures in the atmosphere of central Greenland[J]. Journal of Geophysical Research: Atmospheres,1998, 103: 31 067-31 078.
[60] G, Higuchi K, Zielinski G A, et al.Historical biomass burning: Late 19th century pioneer agriculture revolution in northern hemisphere ice core data and its atmospheric interpretation[J]. Journal of Geophysical Research: Atmospheres,1996, 101: 23 317-23 334.
[61] K C, Mayewski P A, Twickler M S, et al.Biomass burning recorded in the GISP2 ice core: A record from eastern Canada?[J]. Holocene,1996, 6: 1-6.
[62] J, Legrand M.High northern latitude forest fires and vegetation emissions over the last millennium inferred from the chemistry of a central Greenland ice core[J]. Journal of Geophysical Research: Atmospheres,1998, 103: 8 267-8 279.
[63] E W, Cachier H.Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station[J]. Journal of Geophysical Research: Atmospheres,1998, 103: 11 033-11 041.
[64] K A, vande Wal R S W, de Gouw J A, et al.Seasonal cycles of nonmethane hydrocarbons and methyl chloride, as derived from firn air from Dronning Maud Land, Antarctica[J]. Journal of Geophysical Research,2004, 109(D16),doi: 10.1029/2004JD004629.
[65] M M, Edwards R, McConnell J R, et al.Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD[J]. Atmospheric Chemistry and Physics,2012, 12: 4 107-4 115.
[66] T, Bernard S, Aballain O, et al.Records of the delta C-13 of atmospheric CH4 over the last 2 centuries as recorded in Antarctic snow and ice[J]. Global Biogeochemical Cycles,2005, 19,doi: 10.1029/2004GB002408.
[67] M B, Aydin M, Tatum C, et al.A 2000 year atmospheric history of methyl chloride from a South Pole ice core: Evidence for climate-controlled variability[J]. Geophysical Research Letters,2007, 34 (7),doi: 10.1029/2006GL029142.
[68] A, Zangrando R, Gabrielli P, et al.Direct determination of levoglucosan at the picogram per milliliter level in Antarctic ice by high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry[J]. Analytical Chemistry,2008, 80: 1 649-1 655.
[69] G. A review of the modem fluctuations of tropical glaciers[J]. Global and Planetary Change,1999, 22: 93-103.
[70] G. Glacier-climate interaction at low latitudes[J]. Journal of Glaciology,2001, 47: 195-204.
[71] D, Gedalof Z, Peterson D L, et al.Climatic change, wildfire, and conservation[J]. Conservation Biology,2004, 18: 890-902.
[72] L G, Brecher H H, Mosley-Thompson E, et al.Glacier loss on Kilimanjaro continues unabated[J]. Proceedings of the National Academy of Sciences of the United States of America,2009, 106: 19 770-19 775.
[73] L G, Mosley-Thompson E, Davis M E, et al.Tropical glaciers, recorders and indicators of climate change, are disappearing globally[J]. Annals of Glaciology,2011, 52: 23-34.
[74] N, Zangrando R, Gambaro A, et al.Fire emission reconstruction in Africa during the last 500 years: A pilot study[C]∥Geophysical Research Abstracts.Vienna, Austria: EGU General Assembly,2010.
[75] T D, Wang Y Q, Liu S Y, et al.Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J]. Science in China (Series D),2004, 47: 1 065-1 075.
[76] W W, van Beek L P H, Bierkens M F P.Climate change will affect the Asian water towers[J]. Science,2010, 328: 1 382-1 385.
[77] T, Thompson L, Yang W, et al.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change,2012, 2: 663-667.
[78] B, Yao T, Liu X, et al.Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau[J]. Annals of Glaciology,2006, 43: 257-262.
[79] J, Xiao C, Cachier H, et al.Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos[J]. Atmospheric Research,2009, 92: 114-123.
[80] Q, Wang N, Wu X, et al.Compositional characteristics of n-alkanes of the glaciers over the Tibetan Plateau and their environmental and climatic significances[J]. Science in China (Series D),2009, 52: 1 803-1 812.
[81] B Q, Wang M, Joswiak D R, et al.Deposition of anthropogenic aerosols in a southeastern Tibetan glacier[J]. Journal of Geophysical Research: Atmospheres,2009, 114(d17),doi: 10.1029/2008JD011510.
[82] U C, Moorthy K K, Tripathi S N, et al.Altitude variation of aerosol properties over the Himalayan range inferred from spatial measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2011, 73: 1 747-1 761.
[83] J, Du Z, Xiao C, et al.Darkening of the mid-Himalaya glaciers since 2000 and the potential causes[J]. Environmental Research Letters,2012,7,doi: 10.1088/1748-9326/7/1/014021.
[84] H, Xu B, Yao T, et al.Records of sulfate and nitrate in an ice core from Mount Muztagata, central Asia[J]. Journal of Geophysical Research: Atmospheres,2011, 116(D13),doi: 10.1029/2011JD015735.
[85] S, Blaser C, Brutsch S, et al.Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai[J]. Journal of Geophysical Research: Atmospheres,2006, 111(D5):D05309, doi: 10.1029/2005JD005830.
[86] A, Bruetsch S, Olivier S, et al.A 750 year ice core record of past biogenic emissions from Siberian boreal forests[J]. Geophysical Research Letters,2009, 36(18),doi: 10.1029/2009GL038807.
[87] A, Tinner W, Bruetsch S, et al.An ice-core based history of Siberian forest fires since AD 1250[J]. Quaternary Science Reviews,2011, 30: 1 027-1 034.
[88] M C, Thompson L G, Montlucon D B, et al.High-sensitivity measurement of diverse vascular plant-derived biomarkers in high-altitude ice cores[J]. Geophysical Research Letters,2009, 36(13),doi: 10.1029/2009GL037643.
[89] K, Wake C P, Kreutz K J, et al.A 1000-yr record of forest fire activity from Eclipse ice field, Yukon, Canada[J]. The Holocene,2006, 16: 200-209.
[90] M, Preunkert S, Schock M, et al.Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores[J]. Journal of Geophysical Research: Atmospheres,2007, 112(D23),doi: 10.1029/2006JD008080.
[91] F, Anselmetti F S, Bernasconi S M, et al.Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium[J]. Journal of Geophysical Research: Atmospheres,2009, 114(D17),doi: 10.1029/2008JD011490.
[92] K, Izawa Y, Mochida M, et al.Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia[J]. Geochimica et Cosmochimica Acta,2012,99(15):317-329.
[93] P A, Meeker L D, Twickler M S, et al.Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series[J]. Journal of Geophysical Research: Atmospheres,1997,c102: 26 345-26 366.
[94] X, Peng P, Ding Z.Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 223: 9-19.
[95] M, Cali J.A million-year record of fire in sub-Saharan Africa[J]. Nature,1998, 394: 767-769.
[96] A L, Snchez-Goi M, Beaufort L, et al.Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia[J]. Quaternary Science Reviews,2007, 26: 1 369-1 383.
[97] C, Almquist H, Asnong H, et al.Holocene biomass burning and global dynamics of the carbon cycle[J]. Chemosphere,2002, 49: 845-863.
[98] Y M, Marlon J R, Cao J J, et al.Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China[J]. Global Biogeochemical Cycles,2012, 26(4),doi: 10.1029/2011GB004197.
[99] V M H, Gggeler H W, Schotterer U, et al.Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland)[J]. Journal of Geophysical Research: Atmospheres,1999, 104: 21 227-21 236.
[100] M M, Edwards R, McConnell J R, et al.Variability of black carbon deposition to the East Antarctic Plateau, 1800-2000 AD[J]. Atmospheric Chemistry and Physics,2012, 12: 3 799-3 808.
[101] J, Tian H, Tao B, et al.Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries[J]. Journal of Geophysical Research: Biogeosciences,2014, 119: 249-263.
[102] der Werf G R, Randerson J T, Collatz G J, et al.Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nio/La Nia period[J]. Science,2004, 303: 73-76.
[103] A L, Hidalgo H G, Cayan D R, et al.Warming and earlier spring increase western US forest wildfire activity[J]. Science,2006, 313: 940-943.
[104] J R, Bartlein P J, Gavin D G, et al.Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America,2012, 109: E535-E543.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[10] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[11] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[12] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[13] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[14] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[15] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
阅读次数
全文


摘要