[1] W M, Liu M H.Spatial and temporal distribution of tropical biomass burning[J]. Global Biogeochemical Cycles,1994, 8: 495-503.
[2] J S, Cofer W R, Cahoon D R, et al.Biomass burning: A driver for global change[J]. Environmental Science & Technology,1995, 29: A120-A125.
[3] M O, Merlet P.Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles,2001, 15: 955-966.
[4] J H, Pankow J F.Organic atmospheric particulate material[J]. Annual Review of Physical Chemistry,2003, 54: 121-140.
[5] B R T.Biomass burning—A review of organic tracers for smoke from incomplete combustion[J]. Applied Geochemistry,2002, 17: 129-162.
[6] A, Chuvieco E, Parra A, et al.Biomass burning emissions: A review of models using remote-sensing data[J]. Environmental Monitoring and Assessment,2005, 104: 189-209.
[7] Y J, Tucker C J, Fung I.Remote sensing of biomass burning in the tropics[J]. Journal of Geophysical Research: Atmospheres,1990, 95: 9 927-9 939.
[8] J R, Bartlein P J, Carcaillet C, et al.Climate and human influences on global biomass burning over the past two millennia[J]. Nature Geoscience,2008, 1: 697-702.
[9] M J, Marlon J, Ortiz N, et al.Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data[J]. Climate Dynamics,2008, 30: 887-907.
[10] Wenjie, Zhang Hua, Sun Yongge, et al.Evidence for the Permian-Trassic wildfire event: Review and appraisal[J]. Advances in Earth Science,2012, 27(6): 613-623.[沈文杰,张华,孙永革,等.二叠纪—三叠纪界线大火燃烧的地层记录: 研究进展回顾与评述[J].地球科学进展,2012,27(6):613-623.]
[11] C P S.Spatial and temporal variations in boreal forest fire frequency in northern Alberta[J]. Journal of Biogeography,1997, 24: 663-673.
[12] A E, Ariya U, Brown P, et al.Reconstructing fire history in central Mongolia from tree-rings[J]. International Journal of Wildland Fire,2012, 21: 86-92.
[13] W, Conedera M, Ammann B, et al.Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920[J]. Holocene,1998, 8: 31-42.
[14] A L, Gershunov A, Brown T J, et al.Climate and wildfire in the western United States[J]. Bulletin of the American Meteorological Society,2003, 84: 595-604.
[15] J S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling[J]. Quaternary Research,1988, 30: 67-80.
[16] C, Larsen C.Charcoal as a fire proxy[C]∥John P S, John B B, William M L, et al, eds. Tracking Environmental Change Using Lake Sediments. Netherlands: Springer, 2002:75-97.
[17] C J, Whitlock C, Bartlein P J, et al.A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere,1998, 28: 774-787.
[18] N, Zangrando R, Gambaro A, et al.Fire and climate: Biomass burning recorded in ice and lake cores[J]. EPJ Web of Conferences,2010, 9: 105-114.
[19] R J. Environmental information from ice cores[J]. Reviews of Geophysics,1992, 30: 1-21.
[20] M, Mayewski P.Glaciochemistry of polar ice cores: A review[J]. Reviews of Geophysics,1997, 35: 219-243.
[21] K. Ice Core Methods: Glaciochemistry[C]. Amsterdam: Elsevier Science,2007: 1 192-1 199.
[22] K C, Alley R B, Lamorey G W, et al.Electrical measurements on the Greenland Ice Sheet Project 2 Core[J]. Journal of Geophysical Research: Atmospheres,1997, 102: 26 511.
[23] K C, Hammer C U, Alley R B, et al.Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores[J]. Nature,1993, 366: 549-552.
[24] J E, Talbot R W, Whitlow S I, et al.Biomass burning signatures in the atmosphere and snow at Summit, Greenland: An event on 5 August 1994[J]. Atmospheric Environment,1996, 30: 553-561.
[25] K, Neftel A, Anklin M, et al.High-resolution ammonium ice core record covering a complete glacial-interglacial cycle[J]. Journal of Geophysical Research: Atmospheres,1996, 101: 4 147-4 164.
[26] K C, Alley R B, Lamorey G W, et al.Electrical measurements on the Greenland Ice Sheet Project 2 core[J]. Journal of Geophysical Research: Oceans,1997, 102: 26 511-26 517.
[27] V, Carmichael G.Global and regional climate changes due to black carbon[J]. Nature Geoscience,2008, 1: 221-227.
[28] J. Black carbon and brown clouds[J]. Nature Geoscience,2008, 1: 15-16.
[29] J, Cachier H, Xiao C, et al.Black carbon record based on a shallow Himalayan ice core and its climatic implications[J]. Atmospheric Chemistry and Physics,2008, 8: 1 343-1 352.
[30] B, Cao J, Hansen J, et al.Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America,2009, 106: 22 114-22 118.
[31] J, Nazarenko L.Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101: 423-428.
[32] Shichun, Wang Yiyong, Tong Quansong.The use of carbon isotope analysis in source apportionment of carbonaceous aerosols: A review[J]. Advances in Earth Science,2013, 28(1): 62-70.[张世春,王毅勇,童全松.碳同位素技术在碳质气溶胶源解析中应用的研究进展[J].地球科学进展,2013,28(1):62-70.]
[33] D C, Macko S A, Turekian V C.Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: Implications for biomass burning[J]. Chemical Geology, 1998, 152: 151-161.
[34] K, Ozaki Y, Nakagawa F, et al.Hydrogen and carbon isotopic measurements of methane from agricultural combustion: Implications for isotopic signatures of global biomass burning sources[J]. Journal of Geophysical Research: Atmospheres,2006, 111(D16),doi:
10.1029/2005JD006750.
[35] D F, Miller J B, White J W C, et al.Unexpected changes to the global methane budget over the past 2000 years[J]. Science,2005, 309: 1 714-1 717.
[36] J A, Sowers T A, Alley R B, et al.Carbon and hydrogen isotopic composition of methane over the last 1000 years[J]. Global Biogeochemical Cycles,2009, 23(4),doi:
10.1029/2009GB003460.
[37] Z, Chappellaz J, Park K, et al.Large variations in southern hemisphere biomass burning during the last 650 years[J]. Science,2010, 330: 1 663-1 666.
[38] S S, Brenninkmeijer C A M, Ockel P J, et al.Evidence for a CO increase in the SH during the 20th century based on firn air samples from Berkner Island, Antarctica[J]. Atmospheric Chemistry and Physics,2007, 7: 295-308.
[39] C, Penner J E, Chuang C, et al.A global three-dimensional model study of carbonaceous aerosols[J]. Journal of Geophysical Research:Atmospheres,1996, 101: 19 411-19 432.
[40] M C, Hansson H C, Noone K J, et al.Organic atmospheric aerosols: Review and state of the science[J]. Reviews of Geophysics,2000, 38: 267-294.
[41] U. Atmospheric aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie-International Edition,2005, 44: 7 520-7 540.
[42] N, Ward D S, Kloster S, et al.Aerosol impacts on climate and biogeochemistry[J]. Annual Review of Environment and Resources,2011, 36: 45-74.
[43] M, Angelis M D.Light carboxylic acids in Greenland ice: A record of past forest fires and vegetation emissions from the boreal zone[J]. Journal of Geophysical Research: Atmospheres,1996, 101: 4 129-4 145.
[44] R, Becagli S, Traversi R, et al.Preliminary evidence of a biomass-burning event from a 60 year-old firn core from Antarctica by ion chromatographic determination of carboxylic acids[J]. Annals of Glaciology,1998, 27: 391-397.
[45] X Q, Qin D H, Jiang G B, et al.Determination of light carboxylic acids in snow and ice from mountain glaciers[J]. Cold Regions Science and Technology,2002, 34: 127-134.
[46] B R T, Schauer J J, Nolte C G, et al.Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmospheric Environment,1999, 33: 173-182.
[47] T B, Seen A J, Jacobsen G E.Levoglucosan as an atmospheric tracer for woodsmoke[J]. Atmospheric Environment,2006, 40: 5 316-5 321.
[48] D, Torri C, Simonei B R T, et al.Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites[J]. Atmospheric Environment,2009, 43: 2 286-2 295.
[49] K, Suzuki I, Fujii Y, et al.Ice record of polycyclic aromatic hydrocarbons over the past 400 years[J]. Naturwissenschaften,1994, 81: 502-505.
[50] K, Suzuki I, Fujii Y, et al.Ice core record of fatty acids over the past 450 years in Greenland[J]. Geophysical Research Letters,1996, 23: 2 665-2 668.
[51] S C, Yao T D, Kang S C, et al.Geochemical analyses of a Himalayan snowpit profile: Implications for atmospheric pollution and climate[J]. Organic Geochemistry,2000, 31: 15-23.
[52] P, Hoyau V, Jaffrezo J L, et al.Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland. Part I: Superficial snow[J]. Atmospheric Environment,2000, 34: 3 195-3 207.
[53] X, Yao T, Wang P, et al.The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas[J]. Science of the Total Environment,2008, 394: 134-143.
[54] D G, Bond T C, Carmichael G R, et al.An inventory of gaseous and primary aerosol emissions in Asia in the year 2000[J]. Journal of Geophysical Research: Atmospheres,2003, 108(D21),doi:
10.1029/2002JD003093.
[55] B J, Petrucci G A.Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols[J]. Environmental Science & Technology,2006, 40: 4 983-4 989.
[56] H, Behrens M, Bock M, et al.Changing boreal methane sources and constant biomass burning during the last termination[J]. Nature,2008, 452: 864-867.
[57] J F, Currie L A, Dibb J E, et al.Distinguishing the relative contribution of fossil fuel and biomass combustion aerosols deposited at Summit, Greenland through isotopic and molecular characterization of insoluble carbon[J]. Atmospheric Environment,2002, 36: 4 463-4 477.
[58] N, Zangrando R, Gabrielli P, et al.Levoglucosan as a specific marker of fire events in Greenland snow[J]. Tellus Series B-Chemical and Physical Meteorology,2012, 64:18 196.
[59] J L, Davidson C I, Kuhns H D, et al.Biomass burning signatures in the atmosphere of central Greenland[J]. Journal of Geophysical Research: Atmospheres,1998, 103: 31 067-31 078.
[60] G, Higuchi K, Zielinski G A, et al.Historical biomass burning: Late 19th century pioneer agriculture revolution in northern hemisphere ice core data and its atmospheric interpretation[J]. Journal of Geophysical Research: Atmospheres,1996, 101: 23 317-23 334.
[61] K C, Mayewski P A, Twickler M S, et al.Biomass burning recorded in the GISP2 ice core: A record from eastern Canada?[J]. Holocene,1996, 6: 1-6.
[62] J, Legrand M.High northern latitude forest fires and vegetation emissions over the last millennium inferred from the chemistry of a central Greenland ice core[J]. Journal of Geophysical Research: Atmospheres,1998, 103: 8 267-8 279.
[63] E W, Cachier H.Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station[J]. Journal of Geophysical Research: Atmospheres,1998, 103: 11 033-11 041.
[64] K A, vande Wal R S W, de Gouw J A, et al.Seasonal cycles of nonmethane hydrocarbons and methyl chloride, as derived from firn air from Dronning Maud Land, Antarctica[J]. Journal of Geophysical Research,2004, 109(D16),doi:
10.1029/2004JD004629.
[65] M M, Edwards R, McConnell J R, et al.Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD[J]. Atmospheric Chemistry and Physics,2012, 12: 4 107-4 115.
[66] T, Bernard S, Aballain O, et al.Records of the delta C-13 of atmospheric CH4 over the last 2 centuries as recorded in Antarctic snow and ice[J]. Global Biogeochemical Cycles,2005, 19,doi:
10.1029/2004GB002408.
[67] M B, Aydin M, Tatum C, et al.A 2000 year atmospheric history of methyl chloride from a South Pole ice core: Evidence for climate-controlled variability[J]. Geophysical Research Letters,2007, 34 (7),doi:
10.1029/2006GL029142.
[68] A, Zangrando R, Gabrielli P, et al.Direct determination of levoglucosan at the picogram per milliliter level in Antarctic ice by high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry[J]. Analytical Chemistry,2008, 80: 1 649-1 655.
[69] G. A review of the modem fluctuations of tropical glaciers[J]. Global and Planetary Change,1999, 22: 93-103.
[70] G. Glacier-climate interaction at low latitudes[J]. Journal of Glaciology,2001, 47: 195-204.
[71] D, Gedalof Z, Peterson D L, et al.Climatic change, wildfire, and conservation[J]. Conservation Biology,2004, 18: 890-902.
[72] L G, Brecher H H, Mosley-Thompson E, et al.Glacier loss on Kilimanjaro continues unabated[J]. Proceedings of the National Academy of Sciences of the United States of America,2009, 106: 19 770-19 775.
[73] L G, Mosley-Thompson E, Davis M E, et al.Tropical glaciers, recorders and indicators of climate change, are disappearing globally[J]. Annals of Glaciology,2011, 52: 23-34.
[74] N, Zangrando R, Gambaro A, et al.Fire emission reconstruction in Africa during the last 500 years: A pilot study[C]∥Geophysical Research Abstracts.Vienna, Austria: EGU General Assembly,2010.
[75] T D, Wang Y Q, Liu S Y, et al.Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J]. Science in China (Series D),2004, 47: 1 065-1 075.
[76] W W, van Beek L P H, Bierkens M F P.Climate change will affect the Asian water towers[J]. Science,2010, 328: 1 382-1 385.
[77] T, Thompson L, Yang W, et al.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change,2012, 2: 663-667.
[78] B, Yao T, Liu X, et al.Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau[J]. Annals of Glaciology,2006, 43: 257-262.
[79] J, Xiao C, Cachier H, et al.Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos[J]. Atmospheric Research,2009, 92: 114-123.
[80] Q, Wang N, Wu X, et al.Compositional characteristics of n-alkanes of the glaciers over the Tibetan Plateau and their environmental and climatic significances[J]. Science in China (Series D),2009, 52: 1 803-1 812.
[81] B Q, Wang M, Joswiak D R, et al.Deposition of anthropogenic aerosols in a southeastern Tibetan glacier[J]. Journal of Geophysical Research: Atmospheres,2009, 114(d17),doi:
10.1029/2008JD011510.
[82] U C, Moorthy K K, Tripathi S N, et al.Altitude variation of aerosol properties over the Himalayan range inferred from spatial measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2011, 73: 1 747-1 761.
[83] J, Du Z, Xiao C, et al.Darkening of the mid-Himalaya glaciers since 2000 and the potential causes[J]. Environmental Research Letters,2012,7,doi:
10.1088/1748-9326/7/1/014021.
[84] H, Xu B, Yao T, et al.Records of sulfate and nitrate in an ice core from Mount Muztagata, central Asia[J]. Journal of Geophysical Research: Atmospheres,2011, 116(D13),doi:
10.1029/2011JD015735.
[85] S, Blaser C, Brutsch S, et al.Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai[J]. Journal of Geophysical Research: Atmospheres,2006, 111(D5):D05309, doi:
10.1029/2005JD005830.
[86] A, Bruetsch S, Olivier S, et al.A 750 year ice core record of past biogenic emissions from Siberian boreal forests[J]. Geophysical Research Letters,2009, 36(18),doi:
10.1029/2009GL038807.
[87] A, Tinner W, Bruetsch S, et al.An ice-core based history of Siberian forest fires since AD 1250[J]. Quaternary Science Reviews,2011, 30: 1 027-1 034.
[88] M C, Thompson L G, Montlucon D B, et al.High-sensitivity measurement of diverse vascular plant-derived biomarkers in high-altitude ice cores[J]. Geophysical Research Letters,2009, 36(13),doi:
10.1029/2009GL037643.
[89] K, Wake C P, Kreutz K J, et al.A 1000-yr record of forest fire activity from Eclipse ice field, Yukon, Canada[J]. The Holocene,2006, 16: 200-209.
[90] M, Preunkert S, Schock M, et al.Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores[J]. Journal of Geophysical Research: Atmospheres,2007, 112(D23),doi:
10.1029/2006JD008080.
[91] F, Anselmetti F S, Bernasconi S M, et al.Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium[J]. Journal of Geophysical Research: Atmospheres,2009, 114(D17),doi:
10.1029/2008JD011490.
[92] K, Izawa Y, Mochida M, et al.Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia[J]. Geochimica et Cosmochimica Acta,2012,99(15):317-329.
[93] P A, Meeker L D, Twickler M S, et al.Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series[J]. Journal of Geophysical Research: Atmospheres,1997,c102: 26 345-26 366.
[94] X, Peng P, Ding Z.Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 223: 9-19.
[95] M, Cali J.A million-year record of fire in sub-Saharan Africa[J]. Nature,1998, 394: 767-769.
[96] A L, Snchez-Goi M, Beaufort L, et al.Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia[J]. Quaternary Science Reviews,2007, 26: 1 369-1 383.
[97] C, Almquist H, Asnong H, et al.Holocene biomass burning and global dynamics of the carbon cycle[J]. Chemosphere,2002, 49: 845-863.
[98] Y M, Marlon J R, Cao J J, et al.Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China[J]. Global Biogeochemical Cycles,2012, 26(4),doi:
10.1029/2011GB004197.
[99] V M H, Gggeler H W, Schotterer U, et al.Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland)[J]. Journal of Geophysical Research: Atmospheres,1999, 104: 21 227-21 236.
[100] M M, Edwards R, McConnell J R, et al.Variability of black carbon deposition to the East Antarctic Plateau, 1800-2000 AD[J]. Atmospheric Chemistry and Physics,2012, 12: 3 799-3 808.
[101] J, Tian H, Tao B, et al.Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries[J]. Journal of Geophysical Research: Biogeosciences,2014, 119: 249-263.
[102] der Werf G R, Randerson J T, Collatz G J, et al.Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nio/La Nia period[J]. Science,2004, 303: 73-76.
[103] A L, Hidalgo H G, Cayan D R, et al.Warming and earlier spring increase western US forest wildfire activity[J]. Science,2006, 313: 940-943.
[104] J R, Bartlein P J, Gavin D G, et al.Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America,2012, 109: E535-E543. |