地球科学进展 ›› 2021, Vol. 36 ›› Issue (3): 307 -316. doi: 10.11867/j.issn.1001-8166.2021.026

综述与评述 上一篇    下一篇

青藏高原冰川底部滑动估算方法研究: 进展、问题与展望
顾菊 1( ), 张勇 1( ), 刘时银 2, 王欣 1   
  1. 1.湖南科技大学资源环境与安全工程学院,湖南 湘潭 411201
    2.云南大学国际河流 与生态安全研究院,云南 昆明 650091
  • 收稿日期:2021-01-04 修回日期:2021-03-01 出版日期:2021-04-30
  • 通讯作者: 张勇 E-mail:guju_1117@163.com;yong.zhang@hnust.edu.cn
  • 基金资助:
    国家自然科学基金项目“基于能量—动力响应物理过程的冰川径流模拟研究”(41671057);湖南省研究生教育创新工程和专业能力提升工程项目“典型冰川区底部滑动参数化研究”(CX20200989)

Research on Estimation Methods of Glacier Basal Sliding on the Tibetan Plateau Progresses Problems and Prospects

Ju GU 1( ), Yong ZHANG 1( ), Shiyin LIU 2, Xin WANG 1   

  1. 1.School of Resource,Environment and Safety Engineering,Hunan University of Science and Technology,Xiangtan Hunan 411201,China
    2.Institute of International Rivers and Eco-Security,Yunnan University,Kunming 650091,China
  • Received:2021-01-04 Revised:2021-03-01 Online:2021-04-30 Published:2021-04-30
  • Contact: Yong ZHANG E-mail:guju_1117@163.com;yong.zhang@hnust.edu.cn
  • About author:GU Ju (1995-), female, Yangzhou City, Jiangsu Province, Master student. Research areas include cryospheric environment. E-mail: guju_1117@163.com
  • Supported by:
    the National Natural Science Foundation of China “Glacier runoff modelling coupled with the physical processes of glacial energy and dynamic response”(41671057);The Educational Innovation Project and Professional Ability Improvement Project of Graduate Students of Hunan Province “Parameterization of basal sliding in a typical glacial region”(CX20200989)

冰川底部滑动是冰川运动重要的组成部分,是冰川动力过程的底部边界条件。底部滑动速度的估算,对于研究青藏高原及周边地区冰川运动规律、冰川内部应力分布和冰川异常变化机制等具有重要意义。系统总结了冰川底部滑动速度的影响因素及其估算模型的发展现状,其模型从单纯考虑底部剪切应力与冰床特性的关系逐渐扩展到考虑底部有效压力和冰下水文过程等综合影响,剖析了现有模型的结构和功能。进而分析了现有模型存在的主要问题和挑战,为进一步完善模型提供参考。未来冰川底部滑动研究需基于遥感大数据、新技术等进一步强化观测,着重耦合冰下水文过程的影响,进而促进气候变化—冰川物质平衡—冰川动力学响应过程的集成研究。

Glacier motion is composed of plastic deformation of the ice, sliding of ice over its bed and deformation of the bed itself. Among these three components, basal sliding is a significant factor. And its law, which represents the relationship between the sliding speed, the shear stress at the base of the glacier and the characteristics of the ice bed, is the basal boundary condition of the glacier dynamic process. The estimation of basal sliding plays an important role in the study of glacier motion, internal stress distribution and mechanism of glacier anomaly. This study systematically reviews the development of glacier sliding and its existing estimation methods, which gradually expand from only considering the relationship between shear stress and ice bed roughness to taking into account the comprehensive influences of effective pressure and hydrologic process under the ice. We dissect the structures and functions of existing models, and then analyze the main problems and challenges of these methods, in order to provide references for further improvements of this model. Future studies on glacier basal sliding should be based on big remote sensing data and new technique, and focused on coupling the influence of subglacial hydrological processes, so as to promote the integrated study of climate change-glacier material balance-glacier dynamic response process.

中图分类号: 

表1 冰川底部滑动速度与表面速度的比率 [ 11 , 19 , 21 ]
Table 1 Ratio of basal sliding velocity to surface velocity of the glacier [ 11 , 19 , 21 ]
冰川名称 位置 末端海拔/m 冰厚/m u b / u s 参考文献
阿莱奇 (Aletsch) 46°26′32″ N, 8°04′38″ E 1 650 137 0.50 [ 28 ]
阿罗拉 (Arolla) 45°59′31″ N, 7°29′41″ E 2 550 130 0.60 [ 29 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 322 0.75 [ 30 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 209 0.10 [ 30 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 316 0.87 [ 31 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 265 0.67 [ 31 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 26 0.90 [ 32 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 65 0.88 [ 33 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 65 0.03 [ 33 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 120 0.07 [ 34 ]
布莱克拉皮兹 (Black Rapids) 63°28′15″ N, 146°11′49″ W 700 600 0.60 [ 35 ]
邦胡斯布林 (Bondhusbreen) 60°03′24″ N, 6°18′50″ E 450 160 0.26 [ 11 ]
哥伦比亚 (Columbia) 61°13′11″ N, 146°53′43″ W 944 约950 0.80~1.00 [ 36 , 37 ]
恩加布林 (Engabreen) 66°39′ N, 13°51′ E 111 210 0.15 [ 38 , 39 ]
萨尔蒙 (Salmon) 56°07′ N, 130°04′ W 950 495 0.45 [ 40 ]
斯托尔格拉奇 (Storglaciären) 67°54′10″ N, 18°34′00″ E 1 120 100 0.70~0.90 [ 41 ]
特拉普里奇 (Trapridge) 61°14′ N, 140°20′ W 2 050 65 0.90~1.00 [ 42 ]
图尤克苏 (Tuyuksu) 43° N, 77°06′ E 3 500 52 0.65 [ 43 ]
奥斯特塔赛森 (Фsterdalsisen) 66°31′ N, 14°07′ E 1 100 40 0.65 [ 44 ]
瓦力加特 (Variegated)(跃动) 59°59′54″ N, 139°19′54″ W 250 385 0.95 [ 17 ]
瓦力加特 (Variegated)(未跃动) 59°59′54″ N, 139°19′54″ W 250 356 0.53 [ 45 ]
韦斯尔—斯卡特布伦(Vesl-Skautbreen) 61°37′30″ N, 2°16′18″ E - 50 0.90 [ 46 ]
惠兰斯冰流 (Whillans Ice Stream) 84°40′ S, 145°00′ W - 1 030 1.00 [ 47 ]
乌-1冰川 (1号冰洞) 43°05′N, 86°48′ E

东3 743

西3 845

- 0.60~0.80 [ 19 ]
乌-1冰川 (2号冰洞) 43°05′N, 86°48′ E

东3 743

西3 845

- 0.78 [ 48 ]
海螺沟冰川 29°36′ N, 101°57′ E 3 000 125 0.86 [ 21 ]
表1 冰川底部滑动速度与表面速度的比率 [ 11 , 19 , 21 ]
Table 1 Ratio of basal sliding velocity to surface velocity of the glacier [ 11 , 19 , 21 ]
冰川名称 位置 末端海拔/m 冰厚/m u b / u s 参考文献
阿莱奇 (Aletsch) 46°26′32″ N, 8°04′38″ E 1 650 137 0.50 [ 28 ]
阿罗拉 (Arolla) 45°59′31″ N, 7°29′41″ E 2 550 130 0.60 [ 29 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 322 0.75 [ 30 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 209 0.10 [ 30 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 316 0.87 [ 31 ]
阿塔巴斯卡 (Athabasca) 52°11′55″ N, 117°14′37″ W 920 265 0.67 [ 31 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 26 0.90 [ 32 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 65 0.88 [ 33 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 65 0.03 [ 33 ]
蓝冰川 (Blue) 47°48′09″ N, 123°41′12″ W 1 130 120 0.07 [ 34 ]
布莱克拉皮兹 (Black Rapids) 63°28′15″ N, 146°11′49″ W 700 600 0.60 [ 35 ]
邦胡斯布林 (Bondhusbreen) 60°03′24″ N, 6°18′50″ E 450 160 0.26 [ 11 ]
哥伦比亚 (Columbia) 61°13′11″ N, 146°53′43″ W 944 约950 0.80~1.00 [ 36 , 37 ]
恩加布林 (Engabreen) 66°39′ N, 13°51′ E 111 210 0.15 [ 38 , 39 ]
萨尔蒙 (Salmon) 56°07′ N, 130°04′ W 950 495 0.45 [ 40 ]
斯托尔格拉奇 (Storglaci?ren) 67°54′10″ N, 18°34′00″ E 1 120 100 0.70~0.90 [ 41 ]
特拉普里奇 (Trapridge) 61°14′ N, 140°20′ W 2 050 65 0.90~1.00 [ 42 ]
图尤克苏 (Tuyuksu) 43° N, 77°06′ E 3 500 52 0.65 [ 43 ]
奥斯特塔赛森 (Фsterdalsisen) 66°31′ N, 14°07′ E 1 100 40 0.65 [ 44 ]
瓦力加特 (Variegated)(跃动) 59°59′54″ N, 139°19′54″ W 250 385 0.95 [ 17 ]
瓦力加特 (Variegated)(未跃动) 59°59′54″ N, 139°19′54″ W 250 356 0.53 [ 45 ]
韦斯尔—斯卡特布伦(Vesl-Skautbreen) 61°37′30″ N, 2°16′18″ E - 50 0.90 [ 46 ]
惠兰斯冰流 (Whillans Ice Stream) 84°40′ S, 145°00′ W - 1 030 1.00 [ 47 ]
乌-1冰川 (1号冰洞) 43°05′N, 86°48′ E

东3 743

西3 845

- 0.60~0.80 [ 19 ]
乌-1冰川 (2号冰洞) 43°05′N, 86°48′ E

东3 743

西3 845

- 0.78 [ 48 ]
海螺沟冰川 29°36′ N, 101°57′ E 3 000 125 0.86 [ 21 ]
图1 冰川底部滑动主要物理过程[ 11 ]
Fig.1 Main physical processes of glacier basal sliding[ 11 ]
图1 冰川底部滑动主要物理过程[ 11 ]
Fig.1 Main physical processes of glacier basal sliding[ 11 ]
表2 冰川底部滑动速度估算模型列表
Table 2 Summary of existing formulations for modelling basal sliding
序号 模型 参数描述 模型特征 优缺点 参考文献
1 u b = C · τ b n + 1 2 · R -   n - 1 τ b 为底部剪切应力, R 为冰床粗糙度, n 一般取3,C为常数 考虑复冰作用和蠕变增强两种机制,滑动速度取决于底部剪切应力和冰床粗糙度

优点:结构简单,易于理解,适用性强

缺点:未能考虑冰下水文因素的影响

[ 49 ]
2 u b = k τ b p N -   q k 取决于冰的热性能和力学性能, τ b 为底部剪切应力, N 为有效压力, p q 是常数 考虑水压力变化对底部滑动的影响,滑动速度取决于底部剪切应力和有效压力

优点:考虑冰下水文的影响,假设条件相对较少

缺点:有效压力确定较为困难;当N=0时,滑动速度是无限的,与实际情况不符

[ 17 56 ]
3 u b = k τ b 1 P i - P w p - 1 P i - P c p 0 , P w < P c   , P w > P c τ b 为底部剪切应力, P w 为冰下水压力, P i 为上覆冰压力, P c 为临界压力, k p 为常数 水压力超过临界压力值时,底部滑动加速;水压力低于临界压力值时,底部滑动趋于稳定且速度缓慢

优点:考虑水压的临界值

缺点:公式较为复杂;仅适用于斜率恒定的基岩

[ 72 ]
4 u b = B τ b 2 1 P i - P w - 1 P i - P c 0 , P w P c , P w > P c τ b 为底部剪切应力, P w 为冰下水压力, P i 为上覆冰压力, P c 为临界压力, B 为滑动系数 假定冰川底部冰的运动是块体滑动,其他机制对水文因素的波动不敏感,较为稳定

优点:考虑水压的临界值,相比上式进行了简化

缺点:对水文因素波动不敏感

[ 73 ]
5 u b = ρ g H s i n θ R N q 1 p ρ g H s i n θ 为驱动应力, R 为冰床粗糙度, N 为有效压力, p q 为常数 通过底部剪切应力等于驱动应力、冰面坡度等于冰床斜率的方法来确定滑动速度

优点:只考虑滑动速度、剪切应力和有效压力的关系,模型结构简单

缺点:未考虑冰下水文因素的影响

[ 74 ]
6 u b = C 0 P w P i τ b P w 为冰下水压力, P i 为上覆冰压力, τ b 为底部剪切应力, C 0 为常数 通过水压力与冰压力的比值考虑冰下水文因素,滑动速度与剪切应力呈线性关系

优点:考虑冰下水文的影响;模型结构较为简单

缺点:仅考虑线性变化关系

[ 75 ]
7 u b = u c e 1 - τ c τ b τ b 为重力驱动应力, u c 为典型滑动速度(20 m/a), τ c 为其对应的驱动应力(105 Pa) 通过典型的滑动速度与对应的重力驱动应力确定滑动速度

优点:未知数较少;重力驱动应力较大时,滑动速度贴近真实情况

缺点:未涉及底部滑动的内部机制

[ 76 ]
表2 冰川底部滑动速度估算模型列表
Table 2 Summary of existing formulations for modelling basal sliding
序号 模型 参数描述 模型特征 优缺点 参考文献
1 u b = C · τ b n + 1 2 · R - ? n - 1 τ b 为底部剪切应力, R 为冰床粗糙度, n 一般取3,C为常数 考虑复冰作用和蠕变增强两种机制,滑动速度取决于底部剪切应力和冰床粗糙度

优点:结构简单,易于理解,适用性强

缺点:未能考虑冰下水文因素的影响

[ 49 ]
2 u b = k τ b p N - ? q k 取决于冰的热性能和力学性能, τ b 为底部剪切应力, N 为有效压力, p q 是常数 考虑水压力变化对底部滑动的影响,滑动速度取决于底部剪切应力和有效压力

优点:考虑冰下水文的影响,假设条件相对较少

缺点:有效压力确定较为困难;当N=0时,滑动速度是无限的,与实际情况不符

[ 17 56 ]
3 u b = k τ b 1 P i - P w p - 1 P i - P c p 0 , P w < P c ? , P w > P c τ b 为底部剪切应力, P w 为冰下水压力, P i 为上覆冰压力, P c 为临界压力, k p 为常数 水压力超过临界压力值时,底部滑动加速;水压力低于临界压力值时,底部滑动趋于稳定且速度缓慢

优点:考虑水压的临界值

缺点:公式较为复杂;仅适用于斜率恒定的基岩

[ 72 ]
4 u b = B τ b 2 1 P i - P w - 1 P i - P c 0 , P w P c , P w > P c τ b 为底部剪切应力, P w 为冰下水压力, P i 为上覆冰压力, P c 为临界压力, B 为滑动系数 假定冰川底部冰的运动是块体滑动,其他机制对水文因素的波动不敏感,较为稳定

优点:考虑水压的临界值,相比上式进行了简化

缺点:对水文因素波动不敏感

[ 73 ]
5 u b = ρ g H s i n θ R N q 1 p ρ g H s i n θ 为驱动应力, R 为冰床粗糙度, N 为有效压力, p q 为常数 通过底部剪切应力等于驱动应力、冰面坡度等于冰床斜率的方法来确定滑动速度

优点:只考虑滑动速度、剪切应力和有效压力的关系,模型结构简单

缺点:未考虑冰下水文因素的影响

[ 74 ]
6 u b = C 0 P w P i τ b P w 为冰下水压力, P i 为上覆冰压力, τ b 为底部剪切应力, C 0 为常数 通过水压力与冰压力的比值考虑冰下水文因素,滑动速度与剪切应力呈线性关系

优点:考虑冰下水文的影响;模型结构较为简单

缺点:仅考虑线性变化关系

[ 75 ]
7 u b = u c e 1 - τ c τ b τ b 为重力驱动应力, u c 为典型滑动速度(20 m/a), τ c 为其对应的驱动应力(105 Pa) 通过典型的滑动速度与对应的重力驱动应力确定滑动速度

优点:未知数较少;重力驱动应力较大时,滑动速度贴近真实情况

缺点:未涉及底部滑动的内部机制

[ 76 ]
图2 不同模型滑动速率与重力驱动应力的归一化关系
橙色线表示模型1,蓝色线表示模型2,绿色线代表模型6,红色线代表模型7
Fig.2 Normalized sliding law of the relationship between sliding rate and gravitational driving stress
The orange line is the formula of model 1, the blue line is the formula of model 2, the green line is the formula of model 6, and the red line is the formula of model 7
图2 不同模型滑动速率与重力驱动应力的归一化关系
橙色线表示模型1,蓝色线表示模型2,绿色线代表模型6,红色线代表模型7
Fig.2 Normalized sliding law of the relationship between sliding rate and gravitational driving stress
The orange line is the formula of model 1, the blue line is the formula of model 2, the green line is the formula of model 6, and the red line is the formula of model 7
1 YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
2 IMMERZEEL W W, BEEK L P H V, BIERKENS M P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5 984): 1 382-1 385.
IMMERZEEL W W, BEEK L P H V, BIERKENS M P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5 984): 1 382-1 385.
3 LIU Shiyin, YAO Xiaojun, GUO Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70: 3-16.
LIU Shiyin, YAO Xiaojun, GUO Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70: 3-16.
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70: 3-16.
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70: 3-16.
4 KANG Shichang, GUO Wanqin, ZHONG Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16(2): 143-152.
KANG Shichang, GUO Wanqin, ZHONG Xinyue, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16(2): 143-152.
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152.
康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152.
5 HEWITT K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin[J]. Mountain Research and Development, 2011, 31(3): 188-200.
HEWITT K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin[J]. Mountain Research and Development, 2011, 31(3): 188-200.
6 COPLAND L, SYLVESTRE T, BISHOP M P, et al. Expanded and recently increased glacier surging in the Karakoram[J]. Arctic, Antarctic, and Alpine Research, 2011, 43(4): 503-516.
COPLAND L, SYLVESTRE T, BISHOP M P, et al. Expanded and recently increased glacier surging in the Karakoram[J]. Arctic, Antarctic, and Alpine Research, 2011, 43(4): 503-516.
7 BHAMBRI R, BOLCH T, CHAUJAR R K, et al. Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing[J]. Journal of Glaciology, 2017, 57(203): 543-556.
BHAMBRI R, BOLCH T, CHAUJAR R K, et al. Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing[J]. Journal of Glaciology, 2017, 57(203): 543-556.
8 PRITCHARD H D. Asia's shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7 758): 649-654.
PRITCHARD H D. Asia's shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569(7 758): 649-654.
9 YAO Tandong, YU Wusheng, WU Guangjian, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27): 2 770-2 782.
YAO Tandong, YU Wusheng, WU Guangjian, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27): 2 770-2 782.
姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2 770-2 782.
姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2 770-2 782.
10 DING Yongjian, ZHAO Qiudong, WU Jinkui, et al. The future changes of chinese cryospheric hydrology and their impacts on water security in arid areas[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 23-32.
DING Yongjian, ZHAO Qiudong, WU Jinkui, et al. The future changes of chinese cryospheric hydrology and their impacts on water security in arid areas[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 23-32.
丁永建, 赵求东, 吴锦奎, 等. 中国冰冻圈水文未来变化及其对干旱区水安全的影响[J]. 冰川冻土, 2020, 42(1): 23-32.
丁永建, 赵求东, 吴锦奎, 等. 中国冰冻圈水文未来变化及其对干旱区水安全的影响[J]. 冰川冻土, 2020, 42(1): 23-32.
11 CUFFEY K M, PATERSON W S B. The physics of glaciers[M]. 4th ed. Amsterdam: Elsevier, 2010.
CUFFEY K M, PATERSON W S B. The physics of glaciers[M]. 4th ed. Amsterdam: Elsevier, 2010.
12 GREVE R, BLATTER H. Dynamics of ice sheets and glaciers[M]. 1st ed. Berlin Heidelbery: Springer-Verlag, 2009.
GREVE R, BLATTER H. Dynamics of ice sheets and glaciers[M]. 1st ed. Berlin Heidelbery: Springer-Verlag, 2009.
13 LÜTHI M, FUNK M, IKEN A, et al. Mechanisms of fast flow in Jakobshavn Isbræ, west Greenland: Part III. Measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock[J]. Journal of Glaciology, 2002, 48(162): 369-385.
LüTHI M, FUNK M, IKEN A, et al. Mechanisms of fast flow in Jakobshavn Isbr?, west Greenland: Part III. Measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock[J]. Journal of Glaciology, 2002, 48(162): 369-385.
14 ZWALLY H J. Surface melt-induced acceleration of greenland ice-sheet flow[J]. Science, 2002, 297(5 579): 218-222.
ZWALLY H J. Surface melt-induced acceleration of greenland ice-sheet flow[J]. Science, 2002, 297(5 579): 218-222.
15 SCHOOF C. Ice-sheet acceleration driven by melt supply variability[J]. Nature, 2010, 468(7 325): 803-806.
SCHOOF C. Ice-sheet acceleration driven by melt supply variability[J]. Nature, 2010, 468(7 325): 803-806.
16 FARINOTTI D, IMMERZEEL W W, DE KOK R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
FARINOTTI D, IMMERZEEL W W, DE KOK R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
17 KAMB B, RAYMOND C F, HARRISON W D, et al. Glacier surge mechanism: 1982-1983 surge of variegated glacier, Alaska[J]. Science, 1985, 227(4 686): 469-479.
KAMB B, RAYMOND C F, HARRISON W D, et al. Glacier surge mechanism: 1982-1983 surge of variegated glacier, Alaska[J]. Science, 1985, 227(4 686): 469-479.
18 ROUND V, LEINS S, HUSS M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram[J]. The Cryosphere, 2017, 11(2): 723-739.
ROUND V, LEINS S, HUSS M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram[J]. The Cryosphere, 2017, 11(2): 723-739.
19 ECHELMEYER K, WANG Z X. Direct observation of basal sliding and deformation of basal drift at subfreezing temperatures[J]. Journal of Glaciology, 1987, 33(113): 83-98.
ECHELMEYER K, WANG Z X. Direct observation of basal sliding and deformation of basal drift at subfreezing temperatures[J]. Journal of Glaciology, 1987, 33(113): 83-98.
20 HUANG Maohuan, ZHOU Tao, JING Xiaoping, et al. Glaciological studies in tunnel 2 of Glacier No.1 at the headwaters of the Urumqi River[J]. Journal of Glaciology and Geocryology, 1994, 16(4): 289-300.
HUANG Maohuan, ZHOU Tao, JING Xiaoping, et al. Glaciological studies in tunnel 2 of Glacier No.1 at the headwaters of the Urumqi River[J]. Journal of Glaciology and Geocryology, 1994, 16(4): 289-300.
黄茂桓, 周韬, 井晓平, 等. 乌鲁木齐河源1号冰川2号冰洞的冰川学研究[J]. 冰川冻土, 1994, 16(4): 289-300.
黄茂桓, 周韬, 井晓平, 等. 乌鲁木齐河源1号冰川2号冰洞的冰川学研究[J]. 冰川冻土, 1994, 16(4): 289-300.
21 HUANG Maohuan, WANG Maohai, SONG Guoping, et al. Hydraulic effects in the ablation area of the Hailuogou Glacier[J]. Journal of Glaciology and Geocryology, 1996, S1: 46-50.
HUANG Maohuan, WANG Maohai, SONG Guoping, et al. Hydraulic effects in the ablation area of the Hailuogou Glacier[J]. Journal of Glaciology and Geocryology, 1996, S1: 46-50.
黄茂桓, 王茂海, 宋国平, 等. 海螺沟冰川消融区的水力状况[J]. 冰川冻土, 1996, S1: 46-50.
黄茂桓, 王茂海, 宋国平, 等. 海螺沟冰川消融区的水力状况[J]. 冰川冻土, 1996, S1: 46-50.
22 ZHANG T, XIAO C D, COLGAN W, et al. Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya[J]. Journal of Glaciology, 2013, 59(215): 438-448.
ZHANG T, XIAO C D, COLGAN W, et al. Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya[J]. Journal of Glaciology, 2013, 59(215): 438-448.
23 ZHAO L Y, TIAN L D, ZWINGER T, et al. Numerical simulations of Gurenhekou glacier on the Tibetan Plateau[J]. Journal of Glaciology, 2014, 60(219): 71-82.
ZHAO L Y, TIAN L D, ZWINGER T, et al. Numerical simulations of Gurenhekou glacier on the Tibetan Plateau[J]. Journal of Glaciology, 2014, 60(219): 71-82.
24 CHEN Wanbao, LIU Shiyin, LI Weide, et al. An analysis of the ice temperature and velocity along the main flowline of Guliya Ice Cap of western Kunlun Mountains based on glacier dynamical model[J]. Chinese Science Bulletin, 2017, 62(33): 3 910-3 920.
CHEN Wanbao, LIU Shiyin, LI Weide, et al. An analysis of the ice temperature and velocity along the main flowline of Guliya Ice Cap of western Kunlun Mountains based on glacier dynamical model[J]. Chinese Science Bulletin, 2017, 62(33): 3 910-3 920.
陈万宝, 刘时银, 李维德, 等. 基于冰川动力学的古里雅冰帽稳定态建模分析[J]. 科学通报, 2017, 62(33): 3 910-3 920.
陈万宝, 刘时银, 李维德, 等. 基于冰川动力学的古里雅冰帽稳定态建模分析[J]. 科学通报, 2017, 62(33): 3 910-3 920.
25 WANG Y Z, ZHANG T, REN J W, et al. An investigation of the thermomechanical features of Laohugou Glacier No. 12 on Qilian Shan, western China, using a two-dimensional first-order flow-band ice flow model[J]. Cryosphere, 2018, 12(3): 1-21.
WANG Y Z, ZHANG T, REN J W, et al. An investigation of the thermomechanical features of Laohugou Glacier No. 12 on Qilian Shan, western China, using a two-dimensional first-order flow-band ice flow model[J]. Cryosphere, 2018, 12(3): 1-21.
26 LI Huilin, LI Zhongqin, SHEN Yongping, et al. Glacier dynamic models and their applicability for the glaciers in China[J]. Journal of Glaciology & Geocryology, 2007, 29(2): 201-208.
LI Huilin, LI Zhongqin, SHEN Yongping, et al. Glacier dynamic models and their applicability for the glaciers in China[J]. Journal of Glaciology & Geocryology, 2007, 29(2): 201-208.
李慧林, 李忠勤, 沈永平, 等. 冰川动力学模式及其对中国冰川变化预测的适应性[J]. 冰川冻土, 2007, 29(2): 201-208.
李慧林, 李忠勤, 沈永平, 等. 冰川动力学模式及其对中国冰川变化预测的适应性[J]. 冰川冻土, 2007, 29(2): 201-208.
27 WANG Chenghai, CHENG Rong, ZHAO Wen, et al. Research progress on the glacial dynamics models[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 1-9.
WANG Chenghai, CHENG Rong, ZHAO Wen, et al. Research progress on the glacial dynamics models[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 1-9.
王澄海, 程蓉, 赵文, 等. 冰川动力学模式模型进展及研究[J]. 冰川冻土, 2019, 41(4): 1-9.
王澄海, 程蓉, 赵文, 等. 冰川动力学模式模型进展及研究[J]. 冰川冻土, 2019, 41(4): 1-9.
28 GERRARD J A F, PERUTZ M F, ROCH A. Measurement of the velocity distribution along a vertical line through a glacier[J]. Proceedings of the Royal Society of London, 1952, 213(1 115): 546-558.
GERRARD J A F, PERUTZ M F, ROCH A. Measurement of the velocity distribution along a vertical line through a glacier[J]. Proceedings of the Royal Society of London, 1952, 213(1 115): 546-558.
29 HARBOR J, SHARP M, COPLAND L, et al. Influence of subglacial drainage conditions on the velocity distribution within a glacier cross section[J]. Geology, 1997, 25(8): 739.
HARBOR J, SHARP M, COPLAND L, et al. Influence of subglacial drainage conditions on the velocity distribution within a glacier cross section[J]. Geology, 1997, 25(8): 739.
30 PATERSON W S B, SAVAGE J C. Measurements on Athabasca Glacier relating to the flow law of ice[J]. Journal of Geophysical Research, 1963, 68(15): 4 537-4 543.
PATERSON W S B, SAVAGE J C. Measurements on Athabasca Glacier relating to the flow law of ice[J]. Journal of Geophysical Research, 1963, 68(15): 4 537-4 543.
31 RAYMOND C F. Flow in a transverse section of Athabasca Glacier, Alberta, Canada[J]. Journal of Glaciology, 1971, 10(58): 55-84.
RAYMOND C F. Flow in a transverse section of Athabasca Glacier, Alberta, Canada[J]. Journal of Glaciology, 1971, 10(58): 55-84.
32 KAMB B, LACHAPELLE E. Direct observation of the mechanism of glacier sliding over bedrock[J]. Journal of Glaciology, 1964, 5(38): 159-172.
KAMB B, LACHAPELLE E. Direct observation of the mechanism of glacier sliding over bedrock[J]. Journal of Glaciology, 1964, 5(38): 159-172.
33 KAMB B, LACHAPELLE E. Flow dynamics and structure in a fast-moving icefall[J]. Transactions of the American Geophysical Union, 1968, 49(1): 312.
KAMB B, LACHAPELLE E. Flow dynamics and structure in a fast-moving icefall[J]. Transactions of the American Geophysical Union, 1968, 49(1): 312.
34 ENGELHARDT H F, HARRISON W D, KAMB B. Basal sliding and conditions at the glacier bed as revealed by bore-hole photography[J]. Journal of Glaciology, 1978, 20(84): 469-508.
ENGELHARDT H F, HARRISON W D, KAMB B. Basal sliding and conditions at the glacier bed as revealed by bore-hole photography[J]. Journal of Glaciology, 1978, 20(84): 469-508.
35 TRUFFER M, HARRISON W D. In situ measurements of till deformation and water pressure[J]. Journal of Glaciology, 2006, 52(177): 175-182.
TRUFFER M, HARRISON W D. In situ measurements of till deformation and water pressure[J]. Journal of Glaciology, 2006, 52(177): 175-182.
36 HUMPHREY N F, RAYMOND C F. Hydrology, erosion and sediment production in a surging glacier: Variegated glacier, Alaska, 1982-83[J]. Journal of Glaciology, 1994, 40(136): 539-552.
HUMPHREY N F, RAYMOND C F. Hydrology, erosion and sediment production in a surging glacier: Variegated glacier, Alaska, 1982-83[J]. Journal of Glaciology, 1994, 40(136): 539-552.
37 MEIER M, LUNDSTROM S, STONE D, et al. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations[J]. Journal of Geophysical Research Solid Earth, 1994, 99(B8): 15 219-15 229.
MEIER M, LUNDSTROM S, STONE D, et al. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations[J]. Journal of Geophysical Research Solid Earth, 1994, 99(B8): 15 219-15 229.
38 COHEN D. Rheology of ice at the bed of Engabreen, Norway[J]. Journal of Glaciology, 2000, 46(155): 611-621.
COHEN D. Rheology of ice at the bed of Engabreen, Norway[J]. Journal of Glaciology, 2000, 46(155): 611-621.
39 COHEN D, IVERSON N R, HOOYER T S, et al. Debris-bed friction of hard-bedded glaciers[J]. Journal of Geophysical Research Earth Surface, 2005, 110(F2). DOI:10.1029/2004JF000228.
COHEN D, IVERSON N R, HOOYER T S, et al. Debris-bed friction of hard-bedded glaciers[J]. Journal of Geophysical Research Earth Surface, 2005, 110(F2). DOI:10.1029/2004JF000228.
doi: 10.1029/2004JF000228    
40 MATHEWS W H. Vertical distribution of velocity in Salmon Glacier, British Columbia[J]. Journal of Glaciology, 1959, 3(26): 448-454.
MATHEWS W H. Vertical distribution of velocity in Salmon Glacier, British Columbia[J]. Journal of Glaciology, 1959, 3(26): 448-454.
41 HOOKE R L, HANSON B, IVERSON N R, et al. Rheology of till beneath Storglaciären, Sweden[J]. Journal of Glaciology, 1997, 43(143): 172-179.
HOOKE R L, HANSON B, IVERSON N R, et al. Rheology of till beneath Storglaci?ren, Sweden[J]. Journal of Glaciology, 1997, 43(143): 172-179.
42 BLAKE E W, FISHER U H, CLARKE G K C. Direct measurement of sliding at the glacier bed[J]. Journal of Glaciology, 1994, 40(136): 595-599.
BLAKE E W, FISHER U H, CLARKE G K C. Direct measurement of sliding at the glacier bed[J]. Journal of Glaciology, 1994, 40(136): 595-599.
43 VILESOV E N. Temperature of ice in the lower parts of the Tuyuksu glaciers [J]. International Association of Hydrological Sciences Publication, 1961, 54: 313-324.
VILESOV E N. Temperature of ice in the lower parts of the Tuyuksu glaciers [J]. International Association of Hydrological Sciences Publication, 1961, 54: 313-324.
44 THEAKSTONE W H. Basal sliding and movement near the margin of the glacier sterdalsisen, Norway[J]. Journal of Glaciology, 1967, 6(48): 805-816.
THEAKSTONE W H. Basal sliding and movement near the margin of the glacier sterdalsisen, Norway[J]. Journal of Glaciology, 1967, 6(48): 805-816.
45 ENGELHARDT H, KAMB B, RAYMOND C F, et al. Observation of basal sliding of Variegated Glacier, Alaska[J]. Journal of Glaciology, 1979, 23(89): 406-407.
ENGELHARDT H, KAMB B, RAYMOND C F, et al. Observation of basal sliding of Variegated Glacier, Alaska[J]. Journal of Glaciology, 1979, 23(89): 406-407.
46 MCCALL J G. The internal structure of a cirque glacier: Report on studies of the englacial movements and temperatures[J]. Journal of Glaciology, 1952, 2(12): 122-131.
MCCALL J G. The internal structure of a cirque glacier: Report on studies of the englacial movements and temperatures[J]. Journal of Glaciology, 1952, 2(12): 122-131.
47 ENGELHARDT H F, KAMB B. Sliding velocity of Ice Stream B[J]. Journal of Glaciology, 1998, 43: 207-230.
ENGELHARDT H F, KAMB B. Sliding velocity of Ice Stream B[J]. Journal of Glaciology, 1998, 43: 207-230.
48 WANG Zhongxiang, SONG Genhai, LI Gang. Observation and experiment on inner flow characteristics of Glacier No. 1in the Urumqi River headwaters, Tianshan—Investigation on Artificial Tunnel, Part 1[J]. Journal of Glaciology & Geocryology, 1985, 7(2): 123-132.
WANG Zhongxiang, SONG Genhai, LI Gang. Observation and experiment on inner flow characteristics of Glacier No. 1in the Urumqi River headwaters, Tianshan—Investigation on Artificial Tunnel, Part 1[J]. Journal of Glaciology & Geocryology, 1985, 7(2): 123-132.
王仲祥, 宋根海, 李纲. 天山乌鲁木齐河源1号冰川冰体流变的现场观测与试验研究——人工冰洞研究之一[J]. 冰川冻土, 1985, 7(2): 123-132.
王仲祥, 宋根海, 李纲. 天山乌鲁木齐河源1号冰川冰体流变的现场观测与试验研究——人工冰洞研究之一[J]. 冰川冻土, 1985, 7(2): 123-132.
49 WEERTMAN J. On the sliding of glaciers[J]. Journal of Glaciology, 1957, 3(21): 33-38.
WEERTMAN J. On the sliding of glaciers[J]. Journal of Glaciology, 1957, 3(21): 33-38.
50 NYE J F. Glacier sliding without cavitation in a linear viscous approximation[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 315(1 522): 381-403.
NYE J F. Glacier sliding without cavitation in a linear viscous approximation[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 315(1 522): 381-403.
51 KAMB B. Sliding motion of glaciers: Theory and observation[J]. Reviews of Geophysics & Space Physics, 1970, 8(4): 673-728.
KAMB B. Sliding motion of glaciers: Theory and observation[J]. Reviews of Geophysics & Space Physics, 1970, 8(4): 673-728.
52 LLIBOUTRY L. General theory of subglacial cavitation and sliding of temperate glaciers[J]. Journal of Glaciology, 1968, 7(49): 21-58.
LLIBOUTRY L. General theory of subglacial cavitation and sliding of temperate glaciers[J]. Journal of Glaciology, 1968, 7(49): 21-58.
53 BINDSCHADLER R. Importance of pressurized subglacial water in separation and sliding at the glacier bed[J]. Journal of Glaciology, 1983, 29(101): 3-19.
BINDSCHADLER R. Importance of pressurized subglacial water in separation and sliding at the glacier bed[J]. Journal of Glaciology, 1983, 29(101): 3-19.
54 CLARKE G K. Subglacial processes[J]. Annuual Review of Earth and Planetary Sciences, 2005, 33: 247-276.
CLARKE G K. Subglacial processes[J]. Annuual Review of Earth and Planetary Sciences, 2005, 33: 247-276.
55 HOFFMAN M, PRICE S. Feedbacks between coupled subglacial hydrology and glacier dynamics[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(3):414-436.
HOFFMAN M, PRICE S. Feedbacks between coupled subglacial hydrology and glacier dynamics[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(3):414-436.
56 IKEN A, BINDSCHADLER R A. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: Conclusions about drainage system and sliding mechanism[J]. Journal of Glaciology, 1986, 32(110): 101-119.
IKEN A, BINDSCHADLER R A. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: Conclusions about drainage system and sliding mechanism[J]. Journal of Glaciology, 1986, 32(110): 101-119.
57 WILLIS I C. Intra-annual variations in glacier motion: A review[J]. Progress in Physical Geography, 1995, 19(1):61-106.
WILLIS I C. Intra-annual variations in glacier motion: A review[J]. Progress in Physical Geography, 1995, 19(1):61-106.
58 BARTHOLOMAUS T C, ANDERSON R S, ANDERSON S P. Response of glacier basal motion to transient water storage[J]. Nature Geoscience, 2008, 1(1): 33-37.
BARTHOLOMAUS T C, ANDERSON R S, ANDERSON S P. Response of glacier basal motion to transient water storage[J]. Nature Geoscience, 2008, 1(1): 33-37.
59 MAGNÚSSON E, BJÖRNSSON H, ROTT H, et al. Reduced glacier sliding caused by persistent drainage from a subglacial lake[J]. The Cryosphere, 2010, 4(1): 13-20.
MAGNúSSON E, BJ?RNSSON H, ROTT H, et al. Reduced glacier sliding caused by persistent drainage from a subglacial lake[J]. The Cryosphere, 2010, 4(1): 13-20.
60 BARTHOLOMEW I, NIENOW P, MAIR D, et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet Glacier[J]. Nature Geoscience, 2010, 3(6): 408-411.
BARTHOLOMEW I, NIENOW P, MAIR D, et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet Glacier[J]. Nature Geoscience, 2010, 3(6): 408-411.
61 WALDER J S. Hydraulics of subglacial cavities[J]. Journal of Glaciology, 1986, 32(112): 439-445.
WALDER J S. Hydraulics of subglacial cavities[J]. Journal of Glaciology, 1986, 32(112): 439-445.
62 RÖTHLISBERGER H. Water pressure in intra- and subglacial channels[J]. Journal of Glaciology, 1972, 11(62): 177-203.
R?THLISBERGER H. Water pressure in intra- and subglacial channels[J]. Journal of Glaciology, 1972, 11(62): 177-203.
63 KAMB W B, ENGELHARDT H F. Waves of accelerated motion in a glacier approaching surge: The mini-surges of variegated glacier, Alaska, U.S.A. [J]. Journal of Glaciology, 1987, 33(113): 27-46.
KAMB W B, ENGELHARDT H F. Waves of accelerated motion in a glacier approaching surge: The mini-surges of variegated glacier, Alaska, U.S.A. [J]. Journal of Glaciology, 1987, 33(113): 27-46.
64 RAYMOND C F, BENEDICT R J, HARRISON W D, et al. Hydrological discharges and motion of Fels and Black Rapids Glaciers, Alaska, U.S.A.: Implications for the structure of their drainage systems[J]. Journal of Glaciology, 1995, 41(138): 290-304.
RAYMOND C F, BENEDICT R J, HARRISON W D, et al. Hydrological discharges and motion of Fels and Black Rapids Glaciers, Alaska, U.S.A.: Implications for the structure of their drainage systems[J]. Journal of Glaciology, 1995, 41(138): 290-304.
65 SUNDAL A V, SHEPHERD A, NIENOW P, et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage[J]. Nature, 2011, 469(7 331): 521-524.
SUNDAL A V, SHEPHERD A, NIENOW P, et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage[J]. Nature, 2011, 469(7 331): 521-524.
66 PIMENTEL S, FLOWERS G E. A numerical study of hydrologically driven glacier dynamics and subglacial flooding[J]. Proceedings Mathematical Physical & Engineering Sciences, 2011, 467(2 126): 537-558.
PIMENTEL S, FLOWERS G E. A numerical study of hydrologically driven glacier dynamics and subglacial flooding[J]. Proceedings Mathematical Physical & Engineering Sciences, 2011, 467(2 126): 537-558.
67 HEWITT I J. Seasonal changes in ice sheet motion due to melt water lubrication[J]. Earth and Planetary Science Letters, 2013, 371: 16-25.
HEWITT I J. Seasonal changes in ice sheet motion due to melt water lubrication[J]. Earth and Planetary Science Letters, 2013, 371: 16-25.
68 WERDER M A, HEWITT I J, SCHOOF C G, et al. Modeling channelized and distributed subglacial drainage in two dimensions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2 140-2 158.
WERDER M A, HEWITT I J, SCHOOF C G, et al. Modeling channelized and distributed subglacial drainage in two dimensions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2 140-2 158.
69 HALLET B. Subglacial regelation water film[J]. Journal of Glaciology, 1979, 23(89): 321-334.
HALLET B. Subglacial regelation water film[J]. Journal of Glaciology, 1979, 23(89): 321-334.
70 SCHWEIZER J, IKEN A. The role of bed separation and friction in sliding over an undeformable bed[J]. Journal of Glaciology, 1992, 38(128): 77-92.
SCHWEIZER J, IKEN A. The role of bed separation and friction in sliding over an undeformable bed[J]. Journal of Glaciology, 1992, 38(128): 77-92.
71 GUAN Weijin, CAO Bo, PAN Baotian. Research of glacier flow velocity: Current situation and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1 101-1 114.
GUAN Weijin, CAO Bo, PAN Baotian. Research of glacier flow velocity: Current situation and prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1 101-1 114.
管伟瑾, 曹泊, 潘保田. 冰川运动速度研究: 方法、变化、问题与展望[J]. 冰川冻土, 2020, 42(4): 1 101-1 114.
管伟瑾, 曹泊, 潘保田. 冰川运动速度研究: 方法、变化、问题与展望[J]. 冰川冻土, 2020, 42(4): 1 101-1 114.
72 IKEN A, TRUFFER M. Relationship between subglacial water pressure and velocity of findelengletscher switzerland during its advance and retreat[J]. Journal of Glaciology, 1997, 43(144): 328-338.
IKEN A, TRUFFER M. Relationship between subglacial water pressure and velocity of findelengletscher switzerland during its advance and retreat[J]. Journal of Glaciology, 1997, 43(144): 328-338.
73 KESSLER A, ANDERSON R. Testing a numerical glacial hydrological model using spring speed-up events and outburst floods[J]. Geophysical Research Letters, 2004, 31(18): 355-366.
KESSLER A, ANDERSON R. Testing a numerical glacial hydrological model using spring speed-up events and outburst floods[J]. Geophysical Research Letters, 2004, 31(18): 355-366.
74 BENN D I, FOWLER A C, HEWITT I, et al. A general theory of glacier surges[J]. Journal of Glaciology, 2019, 65(253): 701-716.
BENN D I, FOWLER A C, HEWITT I, et al. A general theory of glacier surges[J]. Journal of Glaciology, 2019, 65(253): 701-716.
75 MARSHALL S J. Simulation of Vatnajökull ice cap dynamics[J]. Journal of Geophysical Research, 2005, 110(F3). DOI:10.1029/2004JF000262.
MARSHALL S J. Simulation of Vatnaj?kull ice cap dynamics[J]. Journal of Geophysical Research, 2005, 110(F3). DOI:10.1029/2004JF000262.
doi: 10.1029/2004JF000262    
76 KESSLER M A, ANDERSON R S, STOCK G M. Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum[J]. Journal of Geophysical Research, 2006, 111(F2). DOI:10.1029/2005JF000365.
KESSLER M A, ANDERSON R S, STOCK G M. Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum[J]. Journal of Geophysical Research, 2006, 111(F2). DOI:10.1029/2005JF000365.
doi: 10.1029/2005JF000365    
77 LLIBOUTRY L. Law of sliding for glacier without cavitation[C]//Annales de Geophysique. 20/22 rue st. amand, 75015 Paris, France: Editions cnrs, 1975, 31(2): 207-225.
LLIBOUTRY L. Law of sliding for glacier without cavitation[C]//Annales de Geophysique. 20/22 rue st. amand, 75015 Paris, France: Editions cnrs, 1975, 31(2): 207-225.
78 HALLET B. The effect of subglacial chemical processes on glacier sliding[J]. Journal of Glaciology, 1976, 17(76): 209-221.
HALLET B. The effect of subglacial chemical processes on glacier sliding[J]. Journal of Glaciology, 1976, 17(76): 209-221.
79 IKEN A. Variations of surface velocities of some Alpine glaciers measured at intervals of a few hours. Comparison with Arctic glaciers[J]. Zeitschrift für Gletscherkunde und Glazialgeologie, 1978, 13(1/2): 23-25.
IKEN A. Variations of surface velocities of some Alpine glaciers measured at intervals of a few hours. Comparison with Arctic glaciers[J]. Zeitschrift für Gletscherkunde und Glazialgeologie, 1978, 13(1/2): 23-25.
80 LLIBOUTRY L. Local friction laws for glaciers: A critical review and new openings[J]. Journal of Glaciology, 1979, 23(89): 67-95.
LLIBOUTRY L. Local friction laws for glaciers: A critical review and new openings[J]. Journal of Glaciology, 1979, 23(89): 67-95.
81 LAROUR E, SEROUSSI H, MORLIGHEM M, et al. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) [J]. Journal of Geophysical Research Earth Surface, 2012, 117(F1). DOI:10.1029/2011JF002140.
LAROUR E, SEROUSSI H, MORLIGHEM M, et al. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) [J]. Journal of Geophysical Research Earth Surface, 2012, 117(F1). DOI:10.1029/2011JF002140.
doi: 10.1029/2011JF002140    
82 MINCHEW B, SIMONS M, BJÖRNSSON H, et al. Plastic bed beneath Hofsjökull Ice Cap, central Iceland, and the sensitivity of ice flow to surface meltwater flux[J]. Journal of Glaciology, 2016, 62(231): 147-158.
MINCHEW B, SIMONS M, BJ?RNSSON H, et al. Plastic bed beneath Hofsj?kull Ice Cap, central Iceland, and the sensitivity of ice flow to surface meltwater flux[J]. Journal of Glaciology, 2016, 62(231): 147-158.
83 LIU Qiao, LIU Shiyin. Progress in the study of englacial and subglacial drainage system of glaciers[J]. Advances in Earth Science, 2012, 27(6): 660-669.
LIU Qiao, LIU Shiyin. Progress in the study of englacial and subglacial drainage system of glaciers[J]. Advances in Earth Science, 2012, 27(6): 660-669.
刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669.
刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669.
84 SUGIYAMA S, GUDMUNDSSON G H. Short-term variations in glacier flow controlled by subglacial water pressure at Lauteraargletscher, Bernese Alps, Switzerland[J]. Journal of Glaciology, 2004, 50(170): 353-362.
SUGIYAMA S, GUDMUNDSSON G H. Short-term variations in glacier flow controlled by subglacial water pressure at Lauteraargletscher, Bernese Alps, Switzerland[J]. Journal of Glaciology, 2004, 50(170): 353-362.
85 ANDERSON R S, WALDER J S, Anderson S P, et al. The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood[J]. Annals of Glaciology, 2005, 40(1): 237-242.
ANDERSON R S, WALDER J S, Anderson S P, et al. The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood[J]. Annals of Glaciology, 2005, 40(1): 237-242.
[1] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[2] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[3] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[4] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[5] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[6] 黄磊, 李震, 周建民, 田帮森. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9): 985-994.
[7] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[8] 辛惠娟, 何元庆, 张涛, 牛贺文, 杜建括. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展, 2013, 28(11): 1257-1268.
[9] 刘 力,井哲帆,杜建括. 玉龙雪山白水1号冰川运动速度测量与研究[J]. 地球科学进展, 2012, 27(9): 987-992.
[10] 刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669.
[11] 蒋宗立,丁永建,刘时银,林 剑,王 欣,龙四春,魏俊锋. 基于SAR的表碛覆盖型冰川边界定位研究[J]. 地球科学进展, 2012, 27(11): 1245-1251.
[12] 王圣杰, 张明军, 李忠勤, 王飞腾, 张晓宇, 李亚举. 天山乌鲁木齐河源1号冰川雪层中NO - 3的演化过程[J]. 地球科学进展, 2011, 26(8): 897-904.
[13] 武震,张世强,刘时银,杜文涛. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631-641.
[14] 卿文武,陈仁升,刘时银,韩海东,王建. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4): 409-416.
[15] 孙维君,秦翔,徐跃通,吴秀平,刘宇硕,任贾文. 祁连山老虎沟12号冰川辐射各分量年变化特征[J]. 地球科学进展, 2011, 26(3): 347-354.
阅读次数
全文


摘要