Please wait a minute...
img img
高级检索
地球科学进展  2011, Vol. 26 Issue (3): 347-354    DOI: 10.11867/j.issn.1001-8166.2011.03.0347
研究简报     
祁连山老虎沟12号冰川辐射各分量年变化特征
孙维君1,秦翔1,徐跃通2,吴秀平3,刘宇硕1,任贾文1
1.中国科学院寒区旱区环境与工程研究所 冰冻圈科学国家重点实验室/祁连山冰川与生态环境综合观测研究站,甘肃兰州730000;
2. 山东师范大学人口·资源与环境学院,山东济南250014;
3. 兰州大学西部环境气候变化研究院,西部环境教育部重点实验室,甘肃兰州730000
Annual Variations of the Components of Radiation on the Laohugou No.12 Glacier in the Qilian Mountains 
Sun Weijun1, Qin Xiang1, Xu Yuetong2, Wu Xiuping3, Liu Yushuo1, Ren Jiawen1
1.State Key Laboratory of Cryospheric Sciences / Qilian Shan Station of Glaciology and Ecologic Environment, 
Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 
Lanzhou730000, China; 2. College of Population, Resources and Environment, Shandong Normal 
University, Jinan250014, China; 3. Key Laboratory of Western China's Environmental (Ministry of Education), Lanzhou University Research School of Arid Environment ﹠ Climate Change, Lanzhou730000, China
 全文: PDF(1556 KB)  
摘要:

在资料比较稀少的山地冰川进行辐射收支研究对于揭示现代冰川发育的水热条件以及冰川与气候的相互关系具有重要意义。利用祁连山老虎沟12号冰川海拔5 040 m自动气象站资料,分析了2008年10月20日至2009年10月19日的辐射各分量年变化和平均日变化特征,结果表明:整年气温月平均值都高于冰川表面温度,大气是冰川的感热热源。受高海拔、云和地形的共同作用,老虎沟地区的太阳总辐射年总量达6 937.9 MJ/m2;有21天瞬时总辐射超过太阳常数,最大值为1 675 W/m2;总辐射和反射辐射的平均日变化呈单峰型,春夏季节辐射强度相差不大,冬季最小;大气和地面长波辐射的平均日变化呈单峰单谷型,夏季辐射强度最强,冬季最弱,春秋相差不大;秋冬季反照率大于春夏季,年平均值为0.74;净辐射日变化出现明显的季节差异,在4~8月为正值,其他月份为负,冰川表面辐射能量全年收入小于支出。

关键词: 老虎沟12号冰川辐射各分量年变化日变化    
Abstract:

The research of the radiation budget is valuable to reveal the hydrothermal conditions of the modern glacier's development and the interaction between glacier and climate, especially in the regions where the observational data are limit. annual and mean diurnal Variations of the components of radiation are analyzed based on observed meteorological data during October 20, 2008 and October 19, 2009, at an elevation of 5 040 meters of the Laohugou No.12 glacier in the Qilian Mountains. The results are obtained as follows: monthly mean values of air temperature are higher than the surface temperature of glacier, and the atmosphere is the heat source of sensible heat flux on the glacier. The total annual value of the incoming shortwave radiation is 6 937.9 MJ/m2 in the region of Laohugou under the action of its high altitude, cloud and terrain. there are 21 days when the value of incoming shortwave radiation is larger than the Solar Constant, and the maximum is 1 675 W/m2. Mean diurnal variations of the incoming and reflected shortwave radiation have a single peak curve, and the discrepancy of radiation intensity between spring and summer is feeble, and the smallest in winter. Mean diurnal of the incoming and outgoing long wave radiation appear single kurtosis and single vale, and the radiation intensity appears to be the largest(smallest) in summer(winter), and the discrepancy between spring and fall is feeble. The albedo of autumn and winter are higher than the spring and summer, and the annual average value is 0.74. Diurnal variations of the net radiation have an apparent seasonal change in the daytime. Except the period of from April to August, the net radiation is negative. The output of the radiation on the surface of the glacier exceeds the input during the year.

Key words: Laohugou No.12 glacier    Components of the radiation    Annual variation    Diurnal variation
收稿日期: 2010-04-21 出版日期: 2011-03-10
:  P422.4  
基金资助:

国家自然科学基金面上项目“祁连山老虎沟12号冰川地表特征参数与蒸发/升华量观测研究”(编号:41071046);科技部科技基础性专项项目“中国冰川资源及其变化调查”(编号:2006FY110200);冰冻圈科学国家重点实验室资助课题“老虎沟12号冰川能量—物质平衡观测试验研究”(编号:SKLCS-zz-2009-04)资助.

通讯作者: 孙维君     E-mail: sun1982wj@163.com
作者简介: 孙维君(1982-),男,山东邹城人,博士研究生,主要从事冰川气象研究. E-mail:sun1982wj@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孙维君,秦翔,徐跃通,吴秀平,刘宇硕,任贾文. 祁连山老虎沟12号冰川辐射各分量年变化特征[J]. 地球科学进展, 2011, 26(3): 347-354.

Sun Weijun, Qin Xiang, Xu Yuetong, Wu Xiuping, Liu Yushuo, Ren Jiawen. Annual Variations of the Components of Radiation on the Laohugou No.12 Glacier in the Qilian Mountains . Advances in Earth Science, 2011, 26(3): 347-354.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2011.03.0347        http://www.adearth.ac.cn/CN/Y2011/V26/I3/347

[1] Zhao Jingping, Li Tao, Zhang Shugang, et al. The shortwave solar radiation energy absorbed by packed sea ice in the central Arctic [J]. Advances in Earth Science, 2009, 24(1): 33-41.[赵进平, 李涛, 张树刚,等. 北冰洋中央密集冰区海冰对太阳短波辐射能吸收的观测研究[J]. 地球科学进展, 2009, 24(1): 33-41.]
[2] Zhou Mingyu, Xu Xiangde, Bian Lin′gen, et al. Observational Analysis and Dynamic Study of Atmospheric Boundary Layer on Tibetan Plateau[M]. Beijing: China Meteorological Press, 2000.[周明煜,徐祥德,卞林根,等.青藏高原大气边界层观测分析与动力学研究[M]. 北京: 气象出版社, 2000.]
[3] Xizang Science Expedition Team of the Chinese Academy of Sciences. Scientific Report of the Investigation on Mt Qomolangma (1966-1968), Meteorology and Solar Radiation[M]. Beijing: Science Press,1975. [中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告(1966—1968), 气象与太阳辐射[M]. 北京: 科学出版社, 1975.]
[4]Kang Ersi, Ohmura A. A parameterized energy balance model of glacier melting on the Tianshan Mountain[J]. Acta Geographica Sinica,1994, 49 (5): 467-476.[康尔泗,Ohmura A.天山冰川消融参数化能量平衡模型[J]. 地理学报, 1994, 49(5): 467-476.]
[5] Zhang Yinsheng, Yao Tandong, Pu Jianchen, et al. Energy budget at ELA on Dongkemadi Glacier in the Tonggula Mts. Tibetan Plateau [J].Journal of Glaciology and Geocryology,1996, 18 (1): 10-19.[张寅生,姚檀栋,蒲健辰,等.唐古拉山冬克玛底冰川平衡线高度附近的能量平衡[J].冰川冻土,1996,18(1):10-19.]
[6]Chen Liang, Duan Keqin, Wang Ninglian, et al. Characteristics of the surface energy balance of the Qiyi Glacier in Qilian Mountains in melting season[J]. Journal of Glaciology and Geocryology,2007, 29(6): 882-888.[陈亮,段克勤,王宁练,等.祁连山七一冰川消融期间的能量平衡特征[J].冰川冻土,2007,29(6):882-888.]
[7]Jiang Youyan, Ren Jiawen, Qin Xiang, et al. Radiation balance observation at an elevation of 6 523 m on the north slope of Mount Qomolangma[J]. Journal of Glaciology and Geocryology,2007, 29(4): 589-594.[蒋友严,任贾文,秦翔,等.珠穆朗玛峰北坡海拔6 523 m辐射平衡观测结果分析[J].冰川冻土,2007,29(4):589-594.]
[8]Li Jing, Liu Shiyin, Zhang Yong. Snow surface energy balance over the Ablation period on the Keqicar Baxi Glacier in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 366-373.[李晶,刘时银,张勇.天山南坡科契卡尔巴西冰川消融期雪面能量平衡研究[J].冰川冻土,2007,29(3):366-373.]
[9]Shi Yafeng. An Introduction to the Glaciers in China[M]. Beijing: Science Press, 1988. [施雅风.中国冰川概论[M]. 北京: 科学出版社, 1988.]
[10]Wang Zongtai. Glacier Inventory of China I: Qilian Mountains[M]. Lanzhou: Lanzhou Institute of Glaciology and Cryopedology, 1981. [王宗太. 中国冰川目录Ⅰ:祁连山区[M]. 兰州:中国科学院兰州冰川冻土研究所, 1981.]
[11]Van den Broeke M, Van As D, Reijmer C, et al. Assessing and improving the quality of unattended radiation observations in Antarctica[J]. Journal of Atmospheric Oceanic Technology,2004,21:1 417-1 431.
[12]Pan Shouwen. The Theory of Modern Climatology[M]. Beijing: China Meteorological Press, 1994. [潘守文. 现代气候学原理[M].北京: 气象出版社, 1994.]
[13]Memoirs of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, No.5(Glacier Variations and Utilizations in Qilian Mountains.)[C]. Beijing: Science Press, 1985: 9-15.[中国科学院兰州冰川冻土研究所集刊第5号(祁连山冰川变化及利用)[C].北京:科学出版社,1985:9-15.]
[14]Zhang Qiang, Cao Xiaoyan. The influence of synoptic conditions on the averaged surface heat and radiation budget energy over desert or gobi[J].Chinese Journal of Atmospheric Sciences,2003, 27(2): 245-254.[张强,曹晓彦.敦煌地区荒漠戈壁地表热量和辐射平衡特征研究[J].大气科学,2003, 27(2): 245-254.]
[15]Yao Jimin. The Surface Energy and Water Budget in Tanggula Permafrost Region on the Tibetan Plateau [D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2009.[姚济敏. 青藏高原唐古拉垭口多年冻土区地表能水收支研究[D].兰州:中国科学院寒区旱区环境与工程研究所, 2009.]
[16]Lu Longhua, Dai Jiaxi. The global and net solar radations in the region of Tanggula[J]. Chinese Science Bulletin, 1979, 24(9): 400-404.[陆龙骅,戴家洗.唐古拉地区的总辐射和净辐射[J].科学通报, 1979, 24(9): 400-404.]
[17]Lu Longhua, Zhou Guoxian, Zhang Zhengqiu. Direct and global solar radiations in the region of MT.Qomolangma during the summer 1992 [J]. Acta Energiae Solaris Sinica,1995, 16(3): 229-233.[陆龙骅, 周国贤, 张正秋. 1992年夏季珠穆朗玛峰地区的太阳直接辐射和总辐射[J]. 太阳能学报, 1995, 16(3): 229-233.]
[18]Bian Lin′gen, Lu Longhua, Lu Changgui, et al. The characteristics of radiation balance components of the Tibetan Plateau in the summer of 1998[J]. Chinese Journal of Atemospheric Sciences,2001, 25(5): 577-588.[卞林根, 陆龙骅, 逯昌贵,等. 1998年夏季青藏高原辐射平衡分量特征[J]. 大气科学, 2001, 25(5): 577-588.]
[19]Rouse W R. Examples of enhanced global solar radiation through multiple reflection from an icecovered Arctic sea[J]. Journal of Climate and Applied Meteorology,1987,26(6):670-674.
[20]Yang Xingguo, Qin Dahe, Zhang Tingjun, et al. Seasonal characteristics of surface radiative fluxes on the East Rongbuk Glacier in the north slope of Mt. Qomolangma (Mt. Everest)region[J].Acta Meteorologica Sinica,2010, 68(1):19-31.[杨兴国,秦大河,张廷军,等.珠穆朗玛峰北坡绒布冰川表面辐射特征观测研究[J].气象学报,2010,68(1):19-31.]
[21]Wang Weizhen, Xu Zhiwei, Liu Shaomin, et al. The characteristics of heat and water vapor fluxes over different surface in the Heihe river basin[J]. Advances in Earth Science, 2009, 24(7):714-723.[王维真, 徐自为, 刘绍民,等.黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展, 2009, 24(7):714-723.]

[1] 邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42-55.
[2] 武震,张世强,刘时银,杜文涛. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631-641.
[3] 武震,刘时银,张世强. 祁连山老虎沟12号冰川冰下形态特征分析[J]. 地球科学进展, 2009, 24(10): 1149-1158.