Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (1): 101-109    DOI: 10.11867/j.issn.1001-8166.2017.01.0101
全球变化研究     
近25年唐古拉山西段冰川变化遥感监测
王聪强, 杨太保*, 许艾文, 冀琴, MihretabG.Ghebrezgabher
兰州大学资源环境学院, 甘肃 兰州 730000
Remote Sensing Monitoring of Glacier Changes in the Western Region of Tanggula Mountains in Recent 25 Years
Wang Congqiang, Yang Taibao*, Xu Aiwen, Ji Qin, Mihretab G. Ghebrezgabher
College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
 全文: PDF(22842 KB)   HTML
摘要: 基于1990—2015年Landsat影像数据,利用比值阈值和NIR水体识别相结合的新方法提取并研究了近25年来唐古拉山西段冰川变化情况和规律,并采用克里金插值构建研究区气候分布及变化特征,揭示冰川变化与气候变化的关系。研究得出:唐古拉山西段冰川总体退缩比较严重,近25年来冰川面积退缩约202.84 km2,占1990年面积的11.98%;冰川退缩主要集中在海拔5 800 m以下;研究区东南部冰川退缩最严重,中部格拉丹冬地区冰川退缩较少;空间插值表明研究区东南部相对较湿热而西北部干冷,西北—东南方向温度分布呈现由低到高的变化趋势,降水量先减少后增加总体变化幅度不大,但研究区气温普遍上升,插值变化显示增温区从研究区中心向周围辐射,最大增温区几乎已经覆盖整个冰川区域;唐古拉山西段冰川的加速退缩主要是由升温造成的。
关键词: 冰川退缩NIR水体识别法气候变化克里金插值唐古拉山西段    
Abstract: This paper focuses on revealing the status quo and variation of glaciers in the western region of Tanggula Mountains. The ratio threshold, NIR water identification and visual interpretation were used to extract the boundary of glaciers based on Landsat data (TM/ETM+/OLI) from 1990 to 2015. In particular, the NIR water identification is a new method to extract glaciers from water, which is suitable to improve the traditional method of ratio threshold. This study used spatial interpolation method to evaluate temperature and precipitation changes. The kriging interpolation method was adapted to manipulate and to extract the appropriate data based on ten weather stations. Comparing to the variations and characteristics of glaciers and climate change from 1990 to 2015, we concluded that glacial retreat in the western region of Tanggula Mountains was serious. The glacier area reduced from 1 693.65 km2 to 1 490.81 km2, respectively, in 1990 and 2015, in general, approximately 202.84 km2 (11.98%) of glacier area has been retreated in the last 25 years. Moreover, the rate of glacier decline after 2000 was much faster than the last decade of the 20th century. In addition, the decreased area of glaciers in the lower altitude basins below 5 000 meters occupied 94.84% of the total change area while the glacier above 5 000 meters almost had no change. The kriging interpolation of the meteorological data indicated that the southeast of the study area was damp and hot while the northwest was cold and dry. The characteristic of temperature distribution from the northwest to the southeast presented from low to high, and precipitation increased in the first of the study period and then decreased but both of them were not very significant. In short, the temperature of study area was increased more prominently since 2000, while the precipitation change was very weak. The mean annual temperature and precipitation of 1980-1989a, 1990-1999a, and 2000-2013a were -3.53 ℃, -3.20 ℃, -2.22 ℃, and 384.49 mm, 354.27 mm, 428.13 mm, respectively. The study found that the glacier change was consistent with temperature variation in spite of the adverse effects of increased precipitation. Therefore, the research concluded that the precipitation change was not more significant comparing to temperature change. In other words, the main reason of the rapid decrease of glaciers in study area was likely due to the rise of temperature.
Key words: NIR water identification    Climate change.    Kriging interpolation    Glacier retreat    The western region of Tanggula Mountains
收稿日期: 2016-08-10 出版日期: 2017-01-10
ZTFLH:  P343.6  
基金资助: *国家自然科学基金项目“黄河上游晚更新世河流阶地和冰川演化对千年尺度气候变化的响应”(编号:41271024); 兰州大学地理学基地科研训练及科研能力提高项目(编号:J1210065)资助.
通讯作者: 杨太保(1962-),男,山西运城人,教授,主要从事自然地理环境变化的研究.E-mail:yangtb@lzu.edu.cn   
作者简介: 王聪强(1989-),男,河南平顶山人,硕士研究生,主要研究环境演变与全球变化.E-mail:15101229024@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许艾文
MihretabG.Ghebrezgabher
冀琴
王聪强
杨太保

引用本文:

王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.

Wang Congqiang, Yang Taibao, Xu Aiwen, Ji Qin, Mihretab G. Ghebrezgabher. Remote Sensing Monitoring of Glacier Changes in the Western Region of Tanggula Mountains in Recent 25 Years. Advances in Earth Science, 2017, 32(1): 101-109.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.01.0101        http://www.adearth.ac.cn/CN/Y2017/V32/I1/101

[1] Li Kaiming,Li Zhongqin,Gao Wenyu, et al .Recent glacial retreat and its effect on water resources in Eastern Xinjiang[J]. Chinese Science Bulletin ,2011,56(32):2 708-2 716.
.科学通报,2011,56(32):2 708-2 716.]
[2] Qin Dahe.Climate change science and sustainable development[J]. Progress in Geography ,2014,33(7):874-883.
.地理科学进展,2014,33(7):874-883.]
[3] Duan Jianping,Wang Lili,Ren Jiawen, et al .Progress in glacier variations in China and its sensitivity to climatic change during the past century [J]. Progress in Geography ,2009,28(2):231-237.
.地理科学进展,2009,28(2):231-237.]
[4] Xin Huijuan,He Yuanqing,Zhang Tao, et al .The features of climate variation and glacier response in Mt.Yulong,Southeastern Tibetan Plateau[J]. Advances in Earth Science ,2013,28(11):1 257-1 268.
.地球科学进展,2013,28(11):1 257-1 268.]
[5] Wu Shanshan,Yao Zhijun,Jiang Liguang, et al .Method review of modern glacier volume change[J]. Advances in Earth Science ,2015,30(2):237-246.
.地球科学进展,2015,30(2): 237-246.]
[6] Wang Puyu,Li Zhongqin,Luo Shufei, et al .Five decades of changes in the glaciers on the Friendship Peak in the Altai Mountains, China: Changes in area and ice surface elevation[J]. Gold Regions Science and Technology ,2015,116:24-31.
[7] Zhang Liyun,Tang Ya,Yang Xin, et al .Overall and local changing patterns of main glaciers and their responses to climate change in Geladandong area of Yangtze Headwater region during 1969-2012[J]. Arid Land Geography ,2014,37(2):212-221.
.干旱区地理,2014,37(2):212-221.]
[8] Ding Yihui,Wang Shaowu,Zheng Jingyun, et al. Climate of China[M].Beijing:Science Press,2013:342-345.
.北京:科学出版社,2013:342-345.]
[9] Duan Wei,Duan Xu,Fan Feng, et al .Climatic characteristics of dry and wet season in the southeast side of the Tibetan Plateau and its causes [J]. Journal of Arid Meteorology ,2015,33(4):546-554.
.干旱气象,2015,33(4):546-554.]
[10] Li Shengchen,Li Dongliang,Zhao Ping, et al .The climatic characteristics of vapor transportation in rainy season of the origin area of three rivers in Qinhai-Xizang Plateau[J]. Acta Meteorologica Sinica ,2009,67(4):591-598.
.气象学报,2009,67(4):591-598.]
[11] Guo Wanqin. The First Glacier Inventory Dataset of China[Z].Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, 2012.
.兰州:中国科学院寒区旱区环境与工程研究所, 2012.]
[12] Guo Wanqin, Liu Shiyin, Yao Xiaojun, et al . Second Glacier Inventory Dataset of China (Version 1.0)[EB/OL]. Cold and Arid Regions Science Data Center at Lanzhou, 2014, doi:10.3972/glacier.001.2013.db.
[13] Li Chengxiu,Yang Taibao,Tian Hongzhen, et al .Variation of west Kunlun Mountains glacier during 1990-2011[J]. Progress in Geography ,2013,32(4):548-559.
.地理科学进展,2013,32(4):548-559.]
[14] Wang Xiuna,Yang Taibao,Tian Hongzhen, et al .Response of glacier variation in the southern Altai Mountains to climate change during the last 40 years[J]. Arid Land Resources and Environment ,2013,27(2):77-82.
.干旱区资源与环境,2013,27(2):77-82.]
[15] Du Weibing,Li Junli,Bao Anming, et al .Information extraction method of alpine glaciers with multitemporal and multiangle remote sensing[J]. Acta Geodaetica et Cartographica Sinica ,2015,44(1):85-89.
.测绘学报,2015,44(1):85-89.]
[16] He Yi,Yang Taibao,Ji Qin, et al .Glacier shrinkage and its dependence on climate in the Central Asia Alatau Region [J]. Arid Land Geograghy ,2014,37(5):908-915.
. 干旱区地理, 2014, 37(5): 908-915.]
[17] Li Lin,Chen Xiaoguang,Wang Zhenyu, et al .Climate change and its regional differences over the Tibetan Plateau[J]. Advances in Climate Change Research ,2010,6(3):181-186.
.气候变化研究进展,2010,6(3):181-186.]
[18] Jiang Yongjian,Li Shijie,Shen Defu, et al .Climate change and its impact on the lake environment in the Tibetan Plateau in 1971-2008[J]. Scientia Geographica Sinica ,2012,32(12):1 503-1 512.
.地理科学,2012,32(12):1 503-1 512.]
[19] Qin Xiaojing,Sun Jian,Chen Tao, et al .Study on spatiotemporal variation of temperature and precipitation in Qinghai-Tibetan Plateau from 1974 to 2013 [J]. Journal of Chengdu University ,2015,34(2):191-195.
.成都大学学报,2015,34(2):191-195.]
[20] Huai Baojuan,Li Zhongqin,Sun Meiping, et al .RS analysis of glaciers change in the Heihe River Basin in the last 50 years [J]. Acta Geographica Sinica ,2014,69(3):365-367.
.地理学报,2014,69(3):365-367.]
[21] Xu Junli,Zhang Shiqiang,Shangguan Donghui, et al .Glacier change in headwaters of the Yangtze River in recent three decades[J]. Arid Zone Research ,2013,30(5):919-926.
.干旱区研究,2013,30(5):919-926.]
[22] Jin Shanshan,Zhang Yonghong,Wu Hongan.Study on glacial advancement and retreatment in Geladandong Region of Changjiangyuan in recent 40 years [J]. Journal of Natural Resources ,2013,28(12):2 095-2 104.
.自然资源学报,2013,28(12):2 095-2 104.]
[23] Ye Q,Kang S,Chen F, et al .Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies[J]. Journal of Glaciology ,2006,52(179):537-545.
[24] Zhang Jian,He Xiaobo,Ye Baisheng, et al .Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its influencing factors[J]. Journal of Glaciology and Geocryology ,2013,35(2):263-271.
.冰川冻土,2013,35(2):263-271.]
[25] Qiao Chengjun.Remote sensing monitoring of glacier changes in Dongkemadi Region of Tanggula Mountain[J]. Journal of Anhui Agricultural Sciences ,2010,38(14):7 703-7 705.
.安徽农业科学,2010,38(14):7 703-7 705.]
[26] Wang Ninglian,Ding Liangfu.Study on the glacier variation in Bujiagangri Section of the east Tanggula Range since the Little Ice Age [J] . Journal of Glaciology and Geocryology ,2002,24(3):234-244.
.冰川冻土,2002,24(3):234-244.]
[1] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[2] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[3] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[4] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[5] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[6] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[7] 方修琦, 张頔旸. 气候变化影响区域文明发展演化的主要表现方式[J]. 地球科学进展, 2017, 32(11): 1218-1225.
[8] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[9] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[10] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[11] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[12] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[13] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[14] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[15] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.