地球科学进展 ›› 2021, Vol. 36 ›› Issue (3): 288 -306. doi: 10.11867/j.issn.1001-8166.2021.035

综述与评述 上一篇    下一篇

俯冲带岩浆弧安山岩的成因研究进展
张晓智( ), 周怀阳( ), 钱生平   
  1. 同济大学 海洋与地球科学学院,上海 200092
  • 收稿日期:2021-01-07 修回日期:2021-02-27 出版日期:2021-04-30
  • 通讯作者: 周怀阳 E-mail:zghydxzxz@163.com;zhouhy@tongji.edu.cn
  • 基金资助:
    国家重点基础研究发展计划“西南印度洋洋中脊热液成矿过程与硫化物矿区预测”(2012CB417300);国家自然科学基金重点项目“南海深海海底铁锰结核/结壳的成因和历史记录”(91428207)

Reviews on Genesis of Magmatic Arc Andesite in Subduction Zone

Xiaozhi ZHANG( ), Huaiyang ZHOU( ), Shengping QIAN   

  1. School of Ocean and Earth Science,Tongji University,Shanghai 200092,China
  • Received:2021-01-07 Revised:2021-02-27 Online:2021-04-30 Published:2021-04-30
  • Contact: Huaiyang ZHOU E-mail:zghydxzxz@163.com;zhouhy@tongji.edu.cn
  • About author:ZHANG Xiaozhi (1996-), male, Xinyang City, Henan Province, Master student. Research areas include petrological geochemistry. E-mail: zghydxzxz@163.com
  • Supported by:
    the Major State Basic Research Development Program of China "Hydrothermal mineralization process and prediction of sulfide deposits of the SWIR"(2012CB417300);The National Natural Science Foundation of China "Genesis and historical records of ferromanganese nodules/crusts in the South China Sea"(91428207)

安山岩是俯冲带岩浆弧中重要的岩石类型,其成因至今仍是国际地质学界研究的热点之一。根据安山岩分布的地质背景,岩浆弧安山岩可以简单划分为陆弧安山岩和洋弧安山岩,二者在化学成分和空间分布等方面存在明显差异。自20世纪20年代末以来,大量的研究成果丰富了人们对岩浆弧安山岩成因的认识,逐渐将其归纳为玄武质岩浆输入和安山质岩浆输入2种模型。玄武质岩浆输入模型认为形成岩浆弧安山岩的初始岩浆成分为玄武质,强调分离结晶、同化混染和岩浆混合等壳内过程;而安山质岩浆输入模型认为地幔源区可以直接形成安山质熔体,强调俯冲板片来源的流体/熔体—地幔橄榄岩的交代反应和沉积物底辟等壳下过程。虽然岩浆弧安山岩的成因研究取得了一定的进展,但每一个模型都有亟待完善之处。地幔交代岩的实验岩石学研究、安山岩与大陆地壳形成与演化间的关系、理论计算和模拟的应用等都是未来需要研究的领域。

Andesite is an important rock type in subduction zone magmatic arcs. Its genesis is still one of focuses on the international geological research. According to the tectonic setting of the andesite, magmatic arc andesite can be classified as continental arc andesite and oceanic arc andesite, which show different features in chemical composition and spatial distribution. Since the late 1920s, numerous researches have enriched our understanding of the genesis of magmatic arc andesite, which gradually can be summarized as Basalt-input model and Andesite-input model. The Basalt-input model considers the primary magma of magmatic arc andesite is basaltic, emphasizing the intra-crustal processes such as fractional crystallization, assimilation and contamination, and magma mixing. The Andesite-input model suggests andesitic melts can be formed directly in the mantle source, emphasizing the sub-crustal processes such as the metasomatic reaction between slab-derived fluid/melt and mantle peridotite, and rising of sediment diapirs. Although some progress has been made in the study of the genesis of magmatic arc andesite, each model still needs to be improved. There are many research fields to be studied in the future, including experimental petrology research of mantle metasomatite, relationship between andesite and the formation and evolution of continental crust, application of theoretical calculation and modelling and so on.

中图分类号: 

图1 两种大洋俯冲带的示意图(据参考文献[ 11 ]修改)
(a)洋—陆俯冲带;(b)洋—洋俯冲带;主要展示发生在大洋俯冲带的一系列地质过程,诸如:俯冲板片的脱水作用/部分熔融、上覆地幔楔的交代变质与部分熔融、岩浆在地幔楔和地壳内的迁移以及地表岩石的风化、搬运、沉积等过程;值得一提的是,陆弧在更高的地势条件下,风化作用更加强烈,有更多的陆源沉积物组分在洋—陆俯冲带参与俯冲
Fig.1 Schematic diagrams of two types of oceanic subduction zonesmodified after reference [ 11 ])
Schematic diagrams of subduction zones of (a) Ocean-Continent subduction zone and (b) Ocean-Ocean subduction zone, showing a series of geological processes occurred in oceanic subduction zone: Metamorphic dehydration/partial melting of the subducting crust, crustal metasomatism of the mantle wedge, mantle melting and melt migration through the mantle wedge and the crust, weathering of the continental margin and transporting of the terrigenous sediment into subduction zones. Note that the terrigenous sediment is much more abundant in Ocean-Continent subduction zones than those Ocean-Ocean subduction zones owing to the severe weathering
图1 两种大洋俯冲带的示意图(据参考文献[ 11 ]修改)
(a)洋—陆俯冲带;(b)洋—洋俯冲带;主要展示发生在大洋俯冲带的一系列地质过程,诸如:俯冲板片的脱水作用/部分熔融、上覆地幔楔的交代变质与部分熔融、岩浆在地幔楔和地壳内的迁移以及地表岩石的风化、搬运、沉积等过程;值得一提的是,陆弧在更高的地势条件下,风化作用更加强烈,有更多的陆源沉积物组分在洋—陆俯冲带参与俯冲
Fig.1 Schematic diagrams of two types of oceanic subduction zonesmodified after reference [ 11 ])
Schematic diagrams of subduction zones of (a) Ocean-Continent subduction zone and (b) Ocean-Ocean subduction zone, showing a series of geological processes occurred in oceanic subduction zone: Metamorphic dehydration/partial melting of the subducting crust, crustal metasomatism of the mantle wedge, mantle melting and melt migration through the mantle wedge and the crust, weathering of the continental margin and transporting of the terrigenous sediment into subduction zones. Note that the terrigenous sediment is much more abundant in Ocean-Continent subduction zones than those Ocean-Ocean subduction zones owing to the severe weathering
图2 岩浆弧火山岩SiO2的核密度函数估算直方图
所有数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/);B:玄武岩,BA:玄武安山岩,A:安山岩,D:英安岩,R:流纹岩
Fig.2 Kernel Density Estimations histogram for SiO2 of igneous rocks in magmatic arcs
All the data from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/);B. Basalt, BA. Basaltic-Andesite, A. Andesite, D. Dacite, R. Rhyolite
图2 岩浆弧火山岩SiO2的核密度函数估算直方图
所有数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/);B:玄武岩,BA:玄武安山岩,A:安山岩,D:英安岩,R:流纹岩
Fig.2 Kernel Density Estimations histogram for SiO2 of igneous rocks in magmatic arcs
All the data from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/);B. Basalt, BA. Basaltic-Andesite, A. Andesite, D. Dacite, R. Rhyolite
表1 部分典型岩浆弧安山岩的平均化学组成
Table 1 Average chemical compositions of andesites in several typical magmatic arcs
表1 部分典型岩浆弧安山岩的平均化学组成
Table 1 Average chemical compositions of andesites in several typical magmatic arcs
图3 部分典型岩浆弧安山岩的微量元素分配图和Sr-Nd同位素图解
(a)陆弧安山岩和洋弧安山岩的原始地幔标准化微量元素配分曲线(标准化值据参考文献[ 40 ]);(b)陆弧安山岩和洋弧安山岩的Sr-Nd同位素图解;所有数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/)
Fig.3 Trace element distribution and Sr-Nd isotope compositions diagrams of andesites in several typical magmatic arcs
(a) Primitive normalized trace element patterns for continental arc andesites and oceanic arc andesites (normalization values from reference [ 40 ]);(b) The Sr and Nd isotope compositions of continental arc andesites and oceanic arc andesites;All the data from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/)
图3 部分典型岩浆弧安山岩的微量元素分配图和Sr-Nd同位素图解
(a)陆弧安山岩和洋弧安山岩的原始地幔标准化微量元素配分曲线(标准化值据参考文献[ 40 ]);(b)陆弧安山岩和洋弧安山岩的Sr-Nd同位素图解;所有数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/)
Fig.3 Trace element distribution and Sr-Nd isotope compositions diagrams of andesites in several typical magmatic arcs
(a) Primitive normalized trace element patterns for continental arc andesites and oceanic arc andesites (normalization values from reference [ 40 ]);(b) The Sr and Nd isotope compositions of continental arc andesites and oceanic arc andesites;All the data from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/)
图4 两种玄武岩的相平衡实验结果
(a, c)温度—SiO 2; (b, d)温度—晶体百分比;(a)和(c)图中数字代表当前温度下结晶矿物的总含量; plag:斜长石;tmte:钛磁铁矿;olivine:橄榄石;augite:普通辉石;opx:斜方辉石;garnet:石榴子石;hbde:角闪石;数据来源:(a)和(b)数据来自参考文献[ 43 ];(c)和(d)数据来自参考文献[ 44 ];(a)和(b)展示Sisson等 [ 43 ]在200 MPa、水饱和(质量百分含量为4.9%)条件下的玄武岩相平衡实验的结果;(c)和(d)展示Muntener等 [ 44 ]在1.2 GPa、富水(质量百分含量为5.0%)条件下玄武岩相平衡实验的结果
Fig.4 Plots of the phase-equilibrium experiment results for two types of basalts
(a, c) Temperature versus SiO 2; (b, d) Temperature versus Crystal percentage; The figures in the plots (a) and (c) represent the total amount of crystallization minerals at the current temperature. plag:Plagioclase; tmte:Titanomagnetite; olivine:Olivine; augite:Augite; opx:Orthopyroxene; garnet:Garnet; hbde:Hornblende. Data of plots (a) and (b) from reference [ 43 ]; Data of plots (c) and (d) from reference [ 44 ]. Plots (a) and (b) show the result of basalt phase-equilibrium experiment at 200 MPa, water saturation (4.9 wt.%) by Sisson et al. [ 43 ]; Plots (c) and (d) show the result of basalt phase-equilibrium experiment at 1.2 GPa、high water content (5.0 wt.%) by Muntener et al. [ 44 ]
图4 两种玄武岩的相平衡实验结果
(a, c)温度—SiO 2; (b, d)温度—晶体百分比;(a)和(c)图中数字代表当前温度下结晶矿物的总含量; plag:斜长石;tmte:钛磁铁矿;olivine:橄榄石;augite:普通辉石;opx:斜方辉石;garnet:石榴子石;hbde:角闪石;数据来源:(a)和(b)数据来自参考文献[ 43 ];(c)和(d)数据来自参考文献[ 44 ];(a)和(b)展示Sisson等 [ 43 ]在200 MPa、水饱和(质量百分含量为4.9%)条件下的玄武岩相平衡实验的结果;(c)和(d)展示Muntener等 [ 44 ]在1.2 GPa、富水(质量百分含量为5.0%)条件下玄武岩相平衡实验的结果
Fig.4 Plots of the phase-equilibrium experiment results for two types of basalts
(a, c) Temperature versus SiO 2; (b, d) Temperature versus Crystal percentage; The figures in the plots (a) and (c) represent the total amount of crystallization minerals at the current temperature. plag:Plagioclase; tmte:Titanomagnetite; olivine:Olivine; augite:Augite; opx:Orthopyroxene; garnet:Garnet; hbde:Hornblende. Data of plots (a) and (b) from reference [ 43 ]; Data of plots (c) and (d) from reference [ 44 ]. Plots (a) and (b) show the result of basalt phase-equilibrium experiment at 200 MPa, water saturation (4.9 wt.%) by Sisson et al. [ 43 ]; Plots (c) and (d) show the result of basalt phase-equilibrium experiment at 1.2 GPa、high water content (5.0 wt.%) by Muntener et al. [ 44 ]
表2 不平衡的矿物结构、成分和组合示意图及解释 [ 64 ~ 77 ]
Table 2 Schematic representations and interpretation of some disequilibrious mineral micro-textures, composition and assemblages [ 64 ~ 77 ]
矿物结构 特征描述 形成机制 参考文献
T1-尘状熔蚀结构(Fine-sieve):许多紧密定向排列的玻璃包裹体在斜长石中形成一种模糊的“尘状”表面 斜长石在更富Ca、更高温的熔体中被部分熔蚀,直到熔体—晶体界面重新达到平衡发生重结晶 [ 64 , 65 ]
T2-复杂环带结构:斜长石相邻环带间成分变化剧烈(ΔAn>10%)内层环带和外层环带往往为“不整合”接触 基性岩浆的多期次补给与岩浆混合作用 [ 66 , 67 ]
T3-斜长石An变化范围较大,在频率分布直方图上出现双峰分布 多种组分的岩浆混合形成成分变化剧烈的斜长石系列 [ 68 , 69 ]
T4-角闪石的“分解反应”:晶体被分解成细粒的不透明物质,但仍保持其特有的晶形 外来基性岩浆的混合使得岩浆温度迅速升高,超过了角闪石的稳定范围,相比降压作用角闪石发生更大规模的分解反应 [ 70 , 71 ]
T5-具核—幔—边结构的“绿核”辉石:幔部相比核部及边部具有更高的Mg#,形成明显的反环带结构,两者界线清晰,成分上存在突变 偏基性岩浆注入岩浆房后,岩浆发生大规模扩散之前形成了更加富Mg的幔部辉石 [ 72 ~ 74 ]
T6-异常的包裹结构:与鲍文反应序列相反,辉石晶体包裹着角闪石晶体,两者光性连续 外来基性岩浆的混合使得岩浆成分和温度发生了突变 [ 71 , 75 ]
T7-不平衡的矿物组合:橄榄石+石英;低Mg#单斜辉石+高Mg#橄榄石 酸性端元岩浆和基性端元岩浆的混合作用 [ 68 , 76 , 77 ]
表2 不平衡的矿物结构、成分和组合示意图及解释 [ 64 ~ 77 ]
Table 2 Schematic representations and interpretation of some disequilibrious mineral micro-textures, composition and assemblages [ 64 ~ 77 ]
矿物结构 特征描述 形成机制 参考文献
T1-尘状熔蚀结构(Fine-sieve):许多紧密定向排列的玻璃包裹体在斜长石中形成一种模糊的“尘状”表面 斜长石在更富Ca、更高温的熔体中被部分熔蚀,直到熔体—晶体界面重新达到平衡发生重结晶 [ 64 , 65 ]
T2-复杂环带结构:斜长石相邻环带间成分变化剧烈(ΔAn>10%)内层环带和外层环带往往为“不整合”接触 基性岩浆的多期次补给与岩浆混合作用 [ 66 , 67 ]
T3-斜长石An变化范围较大,在频率分布直方图上出现双峰分布 多种组分的岩浆混合形成成分变化剧烈的斜长石系列 [ 68 , 69 ]
T4-角闪石的“分解反应”:晶体被分解成细粒的不透明物质,但仍保持其特有的晶形 外来基性岩浆的混合使得岩浆温度迅速升高,超过了角闪石的稳定范围,相比降压作用角闪石发生更大规模的分解反应 [ 70 , 71 ]
T5-具核—幔—边结构的“绿核”辉石:幔部相比核部及边部具有更高的Mg#,形成明显的反环带结构,两者界线清晰,成分上存在突变 偏基性岩浆注入岩浆房后,岩浆发生大规模扩散之前形成了更加富Mg的幔部辉石 [ 72 ~ 74 ]
T6-异常的包裹结构:与鲍文反应序列相反,辉石晶体包裹着角闪石晶体,两者光性连续 外来基性岩浆的混合使得岩浆成分和温度发生了突变 [ 71 , 75 ]
T7-不平衡的矿物组合:橄榄石+石英;低Mg#单斜辉石+高Mg#橄榄石 酸性端元岩浆和基性端元岩浆的混合作用 [ 68 , 76 , 77 ]
图5 地幔橄榄岩熔体与岩浆弧安山岩Mg#的比较
(a,b)5种不同地幔橄榄岩的熔融:(a)压力—温度,(b)SiO 2—Mg#;(c,d)岩浆弧安山岩Mg#的KDES曲线图:(c)陆弧安山岩,(d)洋弧安山岩;KLB-1*、HK-66在干的条件下熔融,其余在含水条件下熔融;地幔橄榄岩熔体数据来源:KLB-1*,HK-66来自参考文献[ 89 ],KLB-1来自参考文献[ 16 , 17 ],PHN1611来自参考文献[ 90 ],MM3来自参考文献[ 91 ],H&Z来自参考文献[ 85 ],岩浆弧安山岩数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/)
Fig.5 A comparison of Mg# between the mantle peridotite melts and andesites in the magmatic arcs
(a, b) Partial melts derived from five types of mantle peridotites, (a)Pressure versus temperature, (b)SiO 2 versus Mg#; (c, d) KDES diagram for Mg# of andesites in magmatic arcs, (c)Continental arc andesites, (d)Oceanic arc andesites; All melts derived from hydrous mantle peridotites except KLB-1* and HK-66; KLB-1* and HK-66 from reference [ 89 ], KLB-1 from references [16,17], PHN1611 from reference [ 90 ], MM3 from reference [ 91 ], H&Z from reference [ 85 ], data of magmatic arc andesites from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/)
图5 地幔橄榄岩熔体与岩浆弧安山岩Mg#的比较
(a,b)5种不同地幔橄榄岩的熔融:(a)压力—温度,(b)SiO 2—Mg#;(c,d)岩浆弧安山岩Mg#的KDES曲线图:(c)陆弧安山岩,(d)洋弧安山岩;KLB-1*、HK-66在干的条件下熔融,其余在含水条件下熔融;地幔橄榄岩熔体数据来源:KLB-1*,HK-66来自参考文献[ 89 ],KLB-1来自参考文献[ 16 , 17 ],PHN1611来自参考文献[ 90 ],MM3来自参考文献[ 91 ],H&Z来自参考文献[ 85 ],岩浆弧安山岩数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/)
Fig.5 A comparison of Mg# between the mantle peridotite melts and andesites in the magmatic arcs
(a, b) Partial melts derived from five types of mantle peridotites, (a)Pressure versus temperature, (b)SiO 2 versus Mg#; (c, d) KDES diagram for Mg# of andesites in magmatic arcs, (c)Continental arc andesites, (d)Oceanic arc andesites; All melts derived from hydrous mantle peridotites except KLB-1* and HK-66; KLB-1* and HK-66 from reference [ 89 ], KLB-1 from references [16,17], PHN1611 from reference [ 90 ], MM3 from reference [ 91 ], H&Z from reference [ 85 ], data of magmatic arc andesites from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/)
图6 岩浆弧安山岩微量元素关系图解
(a, b) Y-Sr/Y图解,(c, d)球粒陨石标准化的(Yb) N-(La/Yb) N图解(标准化值来自参考文献[ 40 ]);图中虚线圈定的区域为Defant等 [ 100 ]界定的埃达克岩成分范围;岩浆弧安山岩数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/);在MATLAB内以3为区间长度,计算了每个区间内数据的平均值与标准误差
Fig.6 Diagrams of trace element relationships for the magmatic arc andesites
(a, b) Plots of Y versus Sr/Y, (c,d) Plots of chondrite-normalized (Yb) N versus (La/Yb) N (normalization values from reference [ 40 ]). The area delineated by the dotted line is the composition field of adakite according to Defant et al. [ 100 ], Data of magmatic arc andesites from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/). Taking 3 as interval length in MATLAB, the average value and standard error of data in each interval are calculated
图6 岩浆弧安山岩微量元素关系图解
(a, b) Y-Sr/Y图解,(c, d)球粒陨石标准化的(Yb) N-(La/Yb) N图解(标准化值来自参考文献[ 40 ]);图中虚线圈定的区域为Defant等 [ 100 ]界定的埃达克岩成分范围;岩浆弧安山岩数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/);在MATLAB内以3为区间长度,计算了每个区间内数据的平均值与标准误差
Fig.6 Diagrams of trace element relationships for the magmatic arc andesites
(a, b) Plots of Y versus Sr/Y, (c,d) Plots of chondrite-normalized (Yb) N versus (La/Yb) N (normalization values from reference [ 40 ]). The area delineated by the dotted line is the composition field of adakite according to Defant et al. [ 100 ], Data of magmatic arc andesites from the GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/). Taking 3 as interval length in MATLAB, the average value and standard error of data in each interval are calculated
图7 地幔交代岩熔融形成安山岩的概念模型图解(据参考文献[ 119 ]修改)
展示了地幔交代岩熔融形成安山岩关键的4个步骤: 俯冲洋壳在弧前深度脱水; 俯冲洋壳与俯冲沉积物在弧下深度部分熔融; 富水的长英质熔体与地幔楔橄榄岩反应形成镁铁质—超镁铁质的交代岩; 玄武质交代岩部分熔融形成安山质熔体,可能的熔融机制包括:地幔交代岩的底辟上升(4a),板片的拖曳作用(4b)以及板片的回卷作用(4c) [ 119 ]
Fig.7 Schematic diagram of conceptual model of andesite formed by melting of mantle metasomatitesmodified after reference [ 119 ])
Schematic diagram showing the four key steps for origin of andesites by melting of mantle metasomatites: Dehydration of the subducting oceanic crust at forearc depths; Partial melting of the subducting sediment and altered oceanic basalt at subarc depths; Reaction of the hydrous felsic melts with the mantle wedge peridotite to generate the mafic-ultramafic metasomatites; Partial melting of basaltic metasomatites to produce the andesitic melts, the possible melting mechanisms include: Diapir of basaltic metasomatites (4a), slab dragging (4b) and slab rollback (4c) [ 119 ]
图7 地幔交代岩熔融形成安山岩的概念模型图解(据参考文献[ 119 ]修改)
展示了地幔交代岩熔融形成安山岩关键的4个步骤: 俯冲洋壳在弧前深度脱水; 俯冲洋壳与俯冲沉积物在弧下深度部分熔融; 富水的长英质熔体与地幔楔橄榄岩反应形成镁铁质—超镁铁质的交代岩; 玄武质交代岩部分熔融形成安山质熔体,可能的熔融机制包括:地幔交代岩的底辟上升(4a),板片的拖曳作用(4b)以及板片的回卷作用(4c) [ 119 ]
Fig.7 Schematic diagram of conceptual model of andesite formed by melting of mantle metasomatitesmodified after reference [ 119 ])
Schematic diagram showing the four key steps for origin of andesites by melting of mantle metasomatites: Dehydration of the subducting oceanic crust at forearc depths; Partial melting of the subducting sediment and altered oceanic basalt at subarc depths; Reaction of the hydrous felsic melts with the mantle wedge peridotite to generate the mafic-ultramafic metasomatites; Partial melting of basaltic metasomatites to produce the andesitic melts, the possible melting mechanisms include: Diapir of basaltic metasomatites (4a), slab dragging (4b) and slab rollback (4c) [ 119 ]
1 GROVE T L, KINZLER R J. Petrogenesis of andesites[J]. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 417-454.
GROVE T L, KINZLER R J. Petrogenesis of andesites[J]. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 417-454.
2 RAYMOND L A. Petrology: The study of igneous, sedimentary, metamorphic rocks[M]. Dubuque, Iowa: Wm. C. Brown, 1995.
RAYMOND L A. Petrology: The study of igneous, sedimentary, metamorphic rocks[M]. Dubuque, Iowa: Wm. C. Brown, 1995.
3 BLATT H, TRECY R J. Petrology [M]. Second edition. New York: WH Freeman and Company, 1996.
BLATT H, TRECY R J. Petrology [M]. Second edition. New York: WH Freeman and Company, 1996.
4 LU Fengxiang, SANG Longkang. Petrology[M]. Beijing: Geology Press, 2002.
LU Fengxiang, SANG Longkang. Petrology[M]. Beijing: Geology Press, 2002.
路凤香,桑隆康. 岩石学[M].北京:地质出版社,2002.
路凤香,桑隆康. 岩石学[M].北京:地质出版社,2002.
5 BOWEN N L. The evolution of the igneous rocks [M]. New York: Princeton University Press, 1928.
BOWEN N L. The evolution of the igneous rocks [M]. New York: Princeton University Press, 1928.
6 DIETZ R S. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 1961, 190(4 779): 854-857.
DIETZ R S. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 1961, 190(4 779): 854-857.
7 ZHENG Yongfei, CHEN Yixiang, DAI Liqun, et al. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China Earth Sciences, 2015, 45(6):711.
ZHENG Yongfei, CHEN Yixiang, DAI Liqun, et al. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China Earth Sciences, 2015, 45(6):711.
郑永飞, 陈伊翔, 戴立群,等. 发展板块构造理论:从洋壳俯冲带到碰撞造山带[J]. 中国科学:地球科学, 2015, 45(6):711.
郑永飞, 陈伊翔, 戴立群,等. 发展板块构造理论:从洋壳俯冲带到碰撞造山带[J]. 中国科学:地球科学, 2015, 45(6):711.
8 NIU Yaolin. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2018, 10(1): 23-46.
NIU Yaolin. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2018, 10(1): 23-46.
9 KAY R W. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust[J]. Journal of Volcanology and Geothermal Research, 1978, 4(1/2):117-132.
KAY R W. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust[J]. Journal of Volcanology and Geothermal Research, 1978, 4(1/2):117-132.
10 SAALFELD M A, KELLEY D F, PANTER K S. Insight on magma evolution and storage through the recent eruptive history of Cotopaxi Volcano, Ecuador[J]. Journal of South American Earth sciences, 2019, 93:85-101.
SAALFELD M A, KELLEY D F, PANTER K S. Insight on magma evolution and storage through the recent eruptive history of Cotopaxi Volcano, Ecuador[J]. Journal of South American Earth sciences, 2019, 93:85-101.
11 CHEN Long, ZHAO Zifu. Origin of continental arc andesites: The composition of source rocks is the key[J]. Journal of Asian Earth Sciences, 2017, 145: 217-232.
CHEN Long, ZHAO Zifu. Origin of continental arc andesites: The composition of source rocks is the key[J]. Journal of Asian Earth Sciences, 2017, 145: 217-232.
12 EICHELBERGER J C. Origin of andesite and dacite: Evidence of mixing at glass mountain in California and at other circum-pacific volcanoes[J]. Geological Society of America Bulletin, 1975, 86(10):1 381-1 391.
EICHELBERGER J C. Origin of andesite and dacite: Evidence of mixing at glass mountain in California and at other circum-pacific volcanoes[J]. Geological Society of America Bulletin, 1975, 86(10):1 381-1 391.
13 SAKUYAMA M. Evidence of magma mixing: Petrological study of Shirouma-Oike calc-alkaline andesite volcano, Japan[J]. Journal of Volcanology and Geothermal Research, 1979, 5(1/2): 179-208.
SAKUYAMA M. Evidence of magma mixing: Petrological study of Shirouma-Oike calc-alkaline andesite volcano, Japan[J]. Journal of Volcanology and Geothermal Research, 1979, 5(1/2): 179-208.
14 KUSHIRO I. Melting of hydrous upper mantle and possible generation of andesitic magma: An approach from synthetic systems[J]. Earth and Planetary Science Letters, 1974, 22(4):294-299.
KUSHIRO I. Melting of hydrous upper mantle and possible generation of andesitic magma: An approach from synthetic systems[J]. Earth and Planetary Science Letters, 1974, 22(4):294-299.
15 MYSEN B O, BOETTCHER A L. Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide[J]. Journal of Petrology,1975, 16(1):549-593.
MYSEN B O, BOETTCHER A L. Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide[J]. Journal of Petrology,1975, 16(1):549-593.
16 HIROSE K, KAWAMOTO T. Hydrous partial melting of lherzolite at 1GPa: The effect of H2O on the genesis of basaltic magmas[J]. Earth and Planetary Science Letters, 1995, 133(3/4):463-473.
HIROSE K, KAWAMOTO T. Hydrous partial melting of lherzolite at 1GPa: The effect of H2O on the genesis of basaltic magmas[J]. Earth and Planetary Science Letters, 1995, 133(3/4):463-473.
17 HIROSE K. Melting experiments on lherzolite KLB-1under hydrous conditions and generation of high-magnesian andesitic melts[J]. Geology, 1997, 25(1) :42-44.
HIROSE K. Melting experiments on lherzolite KLB-1under hydrous conditions and generation of high-magnesian andesitic melts[J]. Geology, 1997, 25(1) :42-44.
18 ZHANG Ji, LI Haiping, CHEN Qing, et al. Review on the research of subduction zone[J]. Geological Survey and Research, 2015, 38(1):18-27.
ZHANG Ji, LI Haiping, CHEN Qing, et al. Review on the research of subduction zone[J]. Geological Survey and Research, 2015, 38(1):18-27.
张继, 李海平, 陈青,等. 俯冲带研究进展与问题[J]. 地质调查与研究, 2015, 38(1):18-27.
张继, 李海平, 陈青,等. 俯冲带研究进展与问题[J]. 地质调查与研究, 2015, 38(1):18-27.
19 GILL J. Orogenic andesites and plate tectonics[M]. Berlin: Springer-Verlag Berlin, 1981.
GILL J. Orogenic andesites and plate tectonics[M]. Berlin: Springer-Verlag Berlin, 1981.
20 ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 46(3):253-286.
ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 46(3):253-286.
郑永飞, 陈仁旭, 徐峥,等. 俯冲带中的水迁移[J]. 中国科学:地球科学, 2016, 46(3):253-286.
郑永飞, 陈仁旭, 徐峥,等. 俯冲带中的水迁移[J]. 中国科学:地球科学, 2016, 46(3):253-286.
21 LI Yalin, HE Juan, WANG Chengshan, et al. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan Plateau?[J]. Lithos, 2013, 160: 1-13.
LI Yalin, HE Juan, WANG Chengshan, et al. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan Plateau?[J]. Lithos, 2013, 160: 1-13.
22 HU Peiyuan, ZHAI Qingguo, JAHN B, et al. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination[J]. Gondwana Research, 2017, 44: 116-138.
HU Peiyuan, ZHAI Qingguo, JAHN B, et al. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination[J]. Gondwana Research, 2017, 44: 116-138.
23 HAMILTON W B. Plate tectonics and island arcs[J]. Geological Society of America Bulletin, 1988, 100(10): 1 503-1 527.
HAMILTON W B. Plate tectonics and island arcs[J]. Geological Society of America Bulletin, 1988, 100(10): 1 503-1 527.
24 SYERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.
SYERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.
25 WU Fuyuan, WANG Jiangang, LIU Chuanzhou, et al. Intra-oceanic arc: Its formation and evolution[J]. Acta Petrologica Sinica, 2019, 35(1):1-15.
WU Fuyuan, WANG Jiangang, LIU Chuanzhou, et al. Intra-oceanic arc: Its formation and evolution[J]. Acta Petrologica Sinica, 2019, 35(1):1-15.
吴福元, 王建刚, 刘传周, 等. 大洋岛弧的前世今生[J]. 岩石学报, 2019, 35(1):1-15.
吴福元, 王建刚, 刘传周, 等. 大洋岛弧的前世今生[J]. 岩石学报, 2019, 35(1):1-15.
26 FRISCH W, MESCHEDE M, BLAKEY R C. Plate tectonics: Continental drift and mountain building[M]. Berlin Heidelberg: Springer, 2011.
FRISCH W, MESCHEDE M, BLAKEY R C. Plate tectonics: Continental drift and mountain building[M]. Berlin Heidelberg: Springer, 2011.
27 PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4):325-394.
PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4):325-394.
28 XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020,50(12):1 818-1 844.
XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020,50(12):1 818-1 844.
徐义刚,王强,唐功建,等.弧玄武岩的成因:进展与问题[J].中国科学:地球科学,2020,50(12):1 818-1 844.
徐义刚,王强,唐功建,等.弧玄武岩的成因:进展与问题[J].中国科学:地球科学,2020,50(12):1 818-1 844.
29 STRAUB S M, GÓMEZ-TUENA A, VANNUCCHI P. Subduction erosion and arc volcanism[J]. Nature Reviews Earth & Environment, 2020, 1(11): 574-589.
STRAUB S M, GóMEZ-TUENA A, VANNUCCHI P. Subduction erosion and arc volcanism[J]. Nature Reviews Earth & Environment, 2020, 1(11): 574-589.
30 RUDGE J F. Finding peaks in geochemical distributions: A re-examination of the helium-continental crust correlation[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 179-188.
RUDGE J F. Finding peaks in geochemical distributions: A re-examination of the helium-continental crust correlation[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 179-188.
31 KELEMEN P B, HANGHJ K, GREENE A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2007, 3:1-70.
KELEMEN P B, HANGHJ K, GREENE A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[J]. Treatise on Geochemistry, 2007, 3:1-70.
32 ZHENG Yongfei, XU Zheng, CHEN Long, et al. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Sciences, 2020, 194:104-185.
ZHENG Yongfei, XU Zheng, CHEN Long, et al. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Sciences, 2020, 194:104-185.
33 WINTER J D N. Principles of igneous and metamorphic petrology[M]. Harlow, UK: Pearson education, 2014.
WINTER J D N. Principles of igneous and metamorphic petrology[M]. Harlow, UK: Pearson education, 2014.
34 ISHIZUKA O, KIMURA J I, LI Y B, et al. Early stages in the evolution of Izu-Bonin arc volcanism: New age, chemical, and isotopic constraints[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 385-401.
ISHIZUKA O, KIMURA J I, LI Y B, et al. Early stages in the evolution of Izu-Bonin arc volcanism: New age, chemical, and isotopic constraints[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 385-401.
35 STERN R J, OHARA Y, REN M, et al. Glimpses of oceanic lithosphere of the Challenger Deep forearc segment in the southernmost Marianas: The 143° E transect, 5 800-4 200 m[J]. Island Arc, 2020. DOI:10.1111/iar.12359.
STERN R J, OHARA Y, REN M, et al. Glimpses of oceanic lithosphere of the Challenger Deep forearc segment in the southernmost Marianas: The 143° E transect, 5 800-4 200 m[J]. Island Arc, 2020. DOI:10.1111/iar.12359.
doi: 10.1111/iar.12359    
36 CAULFIELD J T, TURNER S P, SMITH I E M, et al. Magma evolution in the primitive, intra-oceanic Tonga arc: Petrogenesis of basaltic andesites at Tofua volcano[J]. Journal of Petrology, 2012, 53(6): 1 197-1 230.
CAULFIELD J T, TURNER S P, SMITH I E M, et al. Magma evolution in the primitive, intra-oceanic Tonga arc: Petrogenesis of basaltic andesites at Tofua volcano[J]. Journal of Petrology, 2012, 53(6): 1 197-1 230.
37 SAS M, DEBARI S M, CLYNNE M A, et al. Using mineral geochemistry to decipher slab, mantle, and crustal input in the generation of high-Mg andesites and basaltic andesites from the northern Cascade Arc[J]. American Mineralogist, 2017, 102(5): 948-965.
SAS M, DEBARI S M, CLYNNE M A, et al. Using mineral geochemistry to decipher slab, mantle, and crustal input in the generation of high-Mg andesites and basaltic andesites from the northern Cascade Arc[J]. American Mineralogist, 2017, 102(5): 948-965.
38 REUBI O, NICHOLLS I A. Structure and dynamics of a silicic magmatic system associated with caldera-forming eruptions at Batur volcanic field, Bali, Indonesia[J]. Journal of Petrology, 2005, 46(7): 1 367-1 391.
REUBI O, NICHOLLS I A. Structure and dynamics of a silicic magmatic system associated with caldera-forming eruptions at Batur volcanic field, Bali, Indonesia[J]. Journal of Petrology, 2005, 46(7): 1 367-1 391.
39 GÓMEZ-TUENA A, STRAUB S M, ZELLMER G F. An introduction to orogenic andesites and crustal growth[J]. Geological Society, London, Special Publications, 2014, 385(1): 1-13.
GóMEZ-TUENA A, STRAUB S M, ZELLMER G F. An introduction to orogenic andesites and crustal growth[J]. Geological Society, London, Special Publications, 2014, 385(1): 1-13.
40 SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
41 LEE C T A, BACHMANN O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393: 266-274.
LEE C T A, BACHMANN O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393: 266-274.
42 REUBI O, BLUNDY J. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites[J]. Nature, 2009, 461(7 268): 1 269-1 273.
REUBI O, BLUNDY J. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites[J]. Nature, 2009, 461(7 268): 1 269-1 273.
43 SISSON T W, GROVE T L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 1993, 113(2):143-166.
SISSON T W, GROVE T L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 1993, 113(2):143-166.
44 MUNTENER O, KELEMEN P B, GROVE T L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study[J]. Contributions to Mineralogy and Petrology, 2001, 141(6):643-658.
MUNTENER O, KELEMEN P B, GROVE T L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study[J]. Contributions to Mineralogy and Petrology, 2001, 141(6):643-658.
45 GROVE T L, ELKINS-Tanton L T, PARMAN S W, et al. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145(5):515-533.
GROVE T L, ELKINS-Tanton L T, PARMAN S W, et al. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145(5):515-533.
46 ANNEN C, BLUNDY J D, SPARKS R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2005,47(3):505-539.
ANNEN C, BLUNDY J D, SPARKS R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2005,47(3):505-539.
47 DEPAOLO D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters, 1981, 53(2): 189-202.
DEPAOLO D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters, 1981, 53(2): 189-202.
48 HILDRETH W, MOORBATH S. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contributions to Mineralogy and Petrology, 1988, 98(4): 455-489.
HILDRETH W, MOORBATH S. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contributions to Mineralogy and Petrology, 1988, 98(4): 455-489.
49 FRANCALANCI L, VAREKAMP J C, VOUGIOUKALAKIS G, et al. Crystal retention, fractionation and crustal assimilation in a convecting magma chamber, Nisyros Volcano, Greece[J]. Bulletin of Volcanology, 1995, 56(8): 601-620.
FRANCALANCI L, VAREKAMP J C, VOUGIOUKALAKIS G, et al. Crystal retention, fractionation and crustal assimilation in a convecting magma chamber, Nisyros Volcano, Greece[J]. Bulletin of Volcanology, 1995, 56(8): 601-620.
50 DUCEA M N, SALEEBY J B, BERGANTZ G. The architecture, chemistry, and evolution of continental magmatic arcs[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 299-331.
DUCEA M N, SALEEBY J B, BERGANTZ G. The architecture, chemistry, and evolution of continental magmatic arcs[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 299-331.
51 PRICE R C, SMITH I E M, STEWART R B, et al. High-K andesite petrogenesis and crustal evolution: Evidence from mafic and ultramafic xenoliths, Egmont Volcano (Mt. Taranaki) and comparisons with Ruapehu Volcano, North Island, New Zealand[J]. Geochimica et Cosmochimica Acta, 2016, 185: 328-357.
PRICE R C, SMITH I E M, STEWART R B, et al. High-K andesite petrogenesis and crustal evolution: Evidence from mafic and ultramafic xenoliths, Egmont Volcano (Mt. Taranaki) and comparisons with Ruapehu Volcano, North Island, New Zealand[J]. Geochimica et Cosmochimica Acta, 2016, 185: 328-357.
52 CONWAY C E, GAMBLE J A, WILSON C J N, et al. New petrological, geochemical, and geochronological perspectives on andesite-dacite magma genesis at Ruapehu volcano, New Zealand[J]. American Mineralogist: Journal of Earth and Planetary Materials, 2018, 103(4): 565-581.
CONWAY C E, GAMBLE J A, WILSON C J N, et al. New petrological, geochemical, and geochronological perspectives on andesite-dacite magma genesis at Ruapehu volcano, New Zealand[J]. American Mineralogist: Journal of Earth and Planetary Materials, 2018, 103(4): 565-581.
53 JACQUES G, HOERNLE K, GILL J, et al. Geochemical variations in the Central Southern Volcanic Zone, Chile (38-43 °S): the role of fluids in generating arc magmas[J]. Chemical Geology, 2014, 371: 27-45.
JACQUES G, HOERNLE K, GILL J, et al. Geochemical variations in the Central Southern Volcanic Zone, Chile (38-43 °S): the role of fluids in generating arc magmas[J]. Chemical Geology, 2014, 371: 27-45.
54 BUYS J, SPANDLER C, HOLM R J, et al. Remnants of ancient Australia in Vanuatu: Implications for crustal evolution in island arcs and tectonic development of the southwest Pacific[J]. Geology, 2014, 42(11): 939-942.
BUYS J, SPANDLER C, HOLM R J, et al. Remnants of ancient Australia in Vanuatu: Implications for crustal evolution in island arcs and tectonic development of the southwest Pacific[J]. Geology, 2014, 42(11): 939-942.
55 SHAO Wenyu, CHUNG Sunlin, CHEN Wenshan, et al. Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny[J]. Geology, 2015, 43(6): 479-482.
SHAO Wenyu, CHUNG Sunlin, CHEN Wenshan, et al. Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny[J]. Geology, 2015, 43(6): 479-482.
56 LAI Yuming, Song Shengrong, LO C H, et al. Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc[J]. Lithos, 2017, 272: 92-115.
LAI Yuming, Song Shengrong, LO C H, et al. Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc[J]. Lithos, 2017, 272: 92-115.
57 ROJAS-AGRAMONTE Y, GARCIA-CASCO A, KEMP A, et al. Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example[J]. Earth and Planetary Science Letters, 2016, 436: 93-107.
ROJAS-AGRAMONTE Y, GARCIA-CASCO A, KEMP A, et al. Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example[J]. Earth and Planetary Science Letters, 2016, 436: 93-107.
58 BLANCO‐QUINTERO I F, GERYA T V, GARCÍA‐CASCO A, et al. Subduction of young oceanic plates: A numerical study with application to aborted thermal-chemical plumes[J]. Geochemistry, Geophysics, Geosystem, 2013. DOI:10.1029/2011GC003717.
BLANCO‐QUINTERO I F, GERYA T V, GARCíA‐CASCO A, et al. Subduction of young oceanic plates: A numerical study with application to aborted thermal-chemical plumes[J]. Geochemistry, Geophysics, Geosystem, 2013. DOI:10.1029/2011GC003717.
doi: 10.1029/2011GC003717    
59 PROENZA J A, GONZÁLEZ-JIMÉNEZ J M, GARCIA-CASCO A, et al. Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites[J]. Geoscience Frontiers, 2018, 9(6): 1 921-1 936.
PROENZA J A, GONZáLEZ-JIMéNEZ J M, GARCIA-CASCO A, et al. Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites[J]. Geoscience Frontiers, 2018, 9(6): 1 921-1 936.
60 ZHU Mingshuai, LAI Chengmiao, SHUN Huyang. Genesis and evolution of subduction-zone andesites: Evidence from melt inclusions[J]. International Geology Review, 2013, 55(10):1 179-1 190.
ZHU Mingshuai, LAI Chengmiao, SHUN Huyang. Genesis and evolution of subduction-zone andesites: Evidence from melt inclusions[J]. International Geology Review, 2013, 55(10):1 179-1 190.
61 TONARINI S, D'ANTONIO M, DI VITO M A, et al. Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (southern Italy) [J]. Lithos, 2009, 107(3/4): 135-151.
TONARINI S, D'ANTONIO M, DI VITO M A, et al. Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (southern Italy) [J]. Lithos, 2009, 107(3/4): 135-151.
62 TEMIZEL I. Petrochemical evidence of magma mingling and mixing in the Tertiary monzogabbroic stocks around the Bafra (Samsun) area in Turkey: Implications of coeval mafic and felsic magma interactions[J]. Mineralogy and Petrology, 2014, 108(3): 353-370.
TEMIZEL I. Petrochemical evidence of magma mingling and mixing in the Tertiary monzogabbroic stocks around the Bafra (Samsun) area in Turkey: Implications of coeval mafic and felsic magma interactions[J]. Mineralogy and Petrology, 2014, 108(3): 353-370.
63 QI Youqiang,HU Ruizhong, LIU Shen, et al. Review on magma mixing and mingling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(4):409-416.
QI Youqiang,HU Ruizhong, LIU Shen, et al. Review on magma mixing and mingling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(4):409-416.
齐有强, 胡瑞忠, 刘燊,等. 岩浆混合作用研究综述[J]. 矿物岩石地球化学通报, 2008, 27(4):409-416.
齐有强, 胡瑞忠, 刘燊,等. 岩浆混合作用研究综述[J]. 矿物岩石地球化学通报, 2008, 27(4):409-416.
64 TSUCHIYAMA A. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites[J]. Contributions to Mineralogy and Petrology,1985, 89(1):1-16.
TSUCHIYAMA A. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites[J]. Contributions to Mineralogy and Petrology,1985, 89(1):1-16.
65 GIACOMONI P P, FERLITO C, COLTORTI M, et al. Plagioclase as archive of magma ascent dynamics on "open conduit" volcanoes: The 2001-2006 eruptive period at Mt. Etna[J]. Earth-Science Reviews, 2014,138:371-393.
GIACOMONI P P, FERLITO C, COLTORTI M, et al. Plagioclase as archive of magma ascent dynamics on "open conduit" volcanoes: The 2001-2006 eruptive period at Mt. Etna[J]. Earth-Science Reviews, 2014,138:371-393.
66 RAY D, RAJAN S, RAVINDRA R, et al. Microtextural and mineral chemical analyses of andesite-dacite from Barren and Narcondam islands: Evidences for magma mixing and petrological implications[J]. Journal of Earth System Science, 2011, 120(1): 145-155.
RAY D, RAJAN S, RAVINDRA R, et al. Microtextural and mineral chemical analyses of andesite-dacite from Barren and Narcondam islands: Evidences for magma mixing and petrological implications[J]. Journal of Earth System Science, 2011, 120(1): 145-155.
67 FODOR R V, JOHNSON K G. Origin of Miocene andesite and dacite in the Goldfield-Superstition volcanic province, central Arizona: Hybrids of mafic and silicic magma mixing[J]. Geochimica et Cosmochimica Acta, 2016, 185: 394-417.
FODOR R V, JOHNSON K G. Origin of Miocene andesite and dacite in the Goldfield-Superstition volcanic province, central Arizona: Hybrids of mafic and silicic magma mixing[J]. Geochimica et Cosmochimica Acta, 2016, 185: 394-417.
68 SAKUYAMA M. Petrological study of the Myoko and Kurohime volcanoes, Japan: Crystallization sequence and evidence for magma mixing [J]. Journal of Petrology, 1981,22(4): 553-583.
SAKUYAMA M. Petrological study of the Myoko and Kurohime volcanoes, Japan: Crystallization sequence and evidence for magma mixing [J]. Journal of Petrology, 1981,22(4): 553-583.
69 TATSUMI Y, TAKAHASHI T, HIRAHARA Y, et al. New insights into andesite genesis: The role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao Volcano, NE Japan[J]. Journal of Petrology, 2008, 49(11):1 971-2 008.
TATSUMI Y, TAKAHASHI T, HIRAHARA Y, et al. New insights into andesite genesis: The role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao Volcano, NE Japan[J]. Journal of Petrology, 2008, 49(11):1 971-2 008.
70 RUTHERFORD M J, HILL P M. Magma ascent rates from amphibole breakdown: An experimental study applied to the 1980-1986 Mount St. Helens eruptions[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B11):19 667-19 685.
RUTHERFORD M J, HILL P M. Magma ascent rates from amphibole breakdown: An experimental study applied to the 1980-1986 Mount St. Helens eruptions[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B11):19 667-19 685.
71 RUTHERFORD M J. Magma ascent rates[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1):241-271.
RUTHERFORD M J. Magma ascent rates[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1):241-271.
72 BARTON M, BERGEN M J V. Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming[J]. Contributions to Mineralogy and Petrology, 1981, 77(2):101-114.
BARTON M, BERGEN M J V. Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming[J]. Contributions to Mineralogy and Petrology, 1981, 77(2):101-114.
73 GUO Feng, NAKAMURU E, FAN Weiming, et al. Generation of Paleocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China[J]. Journal of Petrology, 2007, 48(4):661-692.
GUO Feng, NAKAMURU E, FAN Weiming, et al. Generation of Paleocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China[J]. Journal of Petrology, 2007, 48(4):661-692.
74 HONG Wentao, WANG Tiangang, XING Guangfu, et al. Implications of mineral textures for magma mixing: A case study of Pyroxenes from Holocene Ruapehu Andesite, New Zealand[J]. Geological Journal of China Universities, 2015(3):478-491.
HONG Wentao, WANG Tiangang, XING Guangfu, et al. Implications of mineral textures for magma mixing: A case study of Pyroxenes from Holocene Ruapehu Andesite, New Zealand[J]. Geological Journal of China Universities, 2015(3):478-491.
洪文涛, 王天刚, 邢光福,等. 矿物结构特征对岩浆混合过程的指示:以新西兰Ruapehu全新世安山岩中的辉石为例[J]. 高校地质学报, 2015(3):478-491.
洪文涛, 王天刚, 邢光福,等. 矿物结构特征对岩浆混合过程的指示:以新西兰Ruapehu全新世安山岩中的辉石为例[J]. 高校地质学报, 2015(3):478-491.
75 RUTHERFORD M J, DEVINE J D. Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995-2002 Soufrière hills magma[J]. Journal of Petrology, 2003,44:1 433-1 454.
RUTHERFORD M J, DEVINE J D. Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995-2002 Soufrière hills magma[J]. Journal of Petrology, 2003,44:1 433-1 454.
76 KOYAGUCHI T. Textural and compositional evidence for magma mixing and its mechanism, Abu volcano group, southwestern Japan[J]. Contributions to Mineralogy and Petrology, 1986, 93(1):33-45.
KOYAGUCHI T. Textural and compositional evidence for magma mixing and its mechanism, Abu volcano group, southwestern Japan[J]. Contributions to Mineralogy and Petrology, 1986, 93(1):33-45.
77 CLYNNE M A. A complex magma mixing origin for rocks Erupted in 1915, Lassen Peak, California[J]. Journal of Petrology, 1999, 40(1):105-132.
CLYNNE M A. A complex magma mixing origin for rocks Erupted in 1915, Lassen Peak, California[J]. Journal of Petrology, 1999, 40(1):105-132.
78 TEPLEY III F J, DAVIDSON J P, TILLING R I, et al. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico[J]. Journal of Petrology, 2000, 41(9): 1 397-1 411.
TEPLEY III F J, DAVIDSON J P, TILLING R I, et al. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico[J]. Journal of Petrology, 2000, 41(9): 1 397-1 411.
79 LESHER C E. Decoupling of chemical and isotopic exchange during magma mixing[J]. Nature, 1990, 344(6 263): 235-237.
LESHER C E. Decoupling of chemical and isotopic exchange during magma mixing[J]. Nature, 1990, 344(6 263): 235-237.
80 DAVIDSON J P, TEPLEY F J. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts[J]. Science, 1997, 275(5 301): 826-829.
DAVIDSON J P, TEPLEY F J. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts[J]. Science, 1997, 275(5 301): 826-829.
81 GINIBRE C, DAVIDSON J P. Sr isotope zoning in plagioclase from Parinacota Volcano (northern Chile): Quantifying magma mixing and crustal contamination[J]. Journal of Petrology, 2014, 55(6): 1 203-1 238.
GINIBRE C, DAVIDSON J P. Sr isotope zoning in plagioclase from Parinacota Volcano (northern Chile): Quantifying magma mixing and crustal contamination[J]. Journal of Petrology, 2014, 55(6): 1 203-1 238.
82 WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220.
WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220.
吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2):185-220.
吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2):185-220.
83 WAN Yusheng, Kungsuan HO, LIU Dunyi, et al. Micro-scale heterogeneity of andesite from Chilungshan, northern Taiwan: Evidence from melt inclusions, geochronology and Hf-O isotopes of zircons[J]. Chemical Geology, 2012, 328: 244-258.
WAN Yusheng, Kungsuan HO, LIU Dunyi, et al. Micro-scale heterogeneity of andesite from Chilungshan, northern Taiwan: Evidence from melt inclusions, geochronology and Hf-O isotopes of zircons[J]. Chemical Geology, 2012, 328: 244-258.
84 KELLER C B, SCHOENE B, BARBONI M, et al. Volcanic-plutonic parity and the differentiation of the continental crust[J]. Nature, 2015, 523(7 560): 301-307.
KELLER C B, SCHOENE B, BARBONI M, et al. Volcanic-plutonic parity and the differentiation of the continental crust[J]. Nature, 2015, 523(7 560): 301-307.
85 MITCHELL A L, GROVE T L. Melting the hydrous, subarc mantle: The origin of primitive andesites[J]. Contributions to Mineralogy and Petrology, 2015, 170(2): 1-23.
MITCHELL A L, GROVE T L. Melting the hydrous, subarc mantle: The origin of primitive andesites[J]. Contributions to Mineralogy and Petrology, 2015, 170(2): 1-23.
86 HACKER B R, KELEMEN P B, BEHN M D. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 501-516.
HACKER B R, KELEMEN P B, BEHN M D. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 501-516.
87 O'HARA M J. Primary magmas and the origin of basalts[J]. Scottish Journal of Geology, 1965, 1(1):19-40.
O'HARA M J. Primary magmas and the origin of basalts[J]. Scottish Journal of Geology, 1965, 1(1):19-40.
88 KUSHIRO I. The system forsterite-diopside-silica with and without water at high pressures[J]. American Journal of Science, 1969,267(A):269-294.
KUSHIRO I. The system forsterite-diopside-silica with and without water at high pressures[J]. American Journal of Science, 1969,267(A):269-294.
89 HIROSE K, KUSHIRO I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond[J]. Earth and Planetary Science Letters, 1993, 114(4): 477-489.
HIROSE K, KUSHIRO I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond[J]. Earth and Planetary Science Letters, 1993, 114(4): 477-489.
90 KUSHIRO I. Partial melting of fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond[J]. Geophysical Monograph—American Geophysical Union, 1996, 95:109-122.
KUSHIRO I. Partial melting of fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond[J]. Geophysical Monograph—American Geophysical Union, 1996, 95:109-122.
91 BAKER M B, STOLPER E M. Determining the composition of high-pressure mantle melts using diamond aggregates[J]. Geochimica et Cosmochimica Acta, 1994, 58(13): 2 811-2 827.
BAKER M B, STOLPER E M. Determining the composition of high-pressure mantle melts using diamond aggregates[J]. Geochimica et Cosmochimica Acta, 1994, 58(13): 2 811-2 827.
92 TATSUMI Y. Melting experiments on a high-magnesian andesite[J]. Earth and Planetary Science Letters, 1981, 54(2): 357-365.
TATSUMI Y. Melting experiments on a high-magnesian andesite[J]. Earth and Planetary Science Letters, 1981, 54(2): 357-365.
93 PARMAN S W, GROVE T L. Harzburgite melting with and without H2O: Experimental data and predictive modeling[J]. Journal of Geophysical Research: Solid Earth,2004. DOI:10.1029/2003JB002566.
PARMAN S W, GROVE T L. Harzburgite melting with and without H2O: Experimental data and predictive modeling[J]. Journal of Geophysical Research: Solid Earth,2004. DOI:10.1029/2003JB002566.
doi: 10.1029/2003JB002566    
94 GROVE T L, TILL C B. H2O-rich mantle melting near the slab-wedge interface[J]. Contributions to Mineralogy and Petrology, 2019, 174(10): 1-22.
GROVE T L, TILL C B. H2O-rich mantle melting near the slab-wedge interface[J]. Contributions to Mineralogy and Petrology, 2019, 174(10): 1-22.
95 LARA M, DASGUPTA R. Partial melting of a depleted peridotite metasomatized by a MORB-derived hydrous silicate melt-Implications for subduction zone magmatism[J]. Geochimica et Cosmochimica Acta, 2020, 290: 137-161.
LARA M, DASGUPTA R. Partial melting of a depleted peridotite metasomatized by a MORB-derived hydrous silicate melt-Implications for subduction zone magmatism[J]. Geochimica et Cosmochimica Acta, 2020, 290: 137-161.
96 KESSEL R, SCHMIDT M W, ULMER P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth[J]. Nature, 2005, 437(7 059):724-727.
KESSEL R, SCHMIDT M W, ULMER P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth[J]. Nature, 2005, 437(7 059):724-727.
97 GREEN T H, RINGWOOD A E. Genesis of the calc-alkaline igneous rock suite[J]. Contributions to Mineralogy and Petrology, 1968, 18(2): 105-162.
GREEN T H, RINGWOOD A E. Genesis of the calc-alkaline igneous rock suite[J]. Contributions to Mineralogy and Petrology, 1968, 18(2): 105-162.
98 TOKSÖZ M N, MINEAR J W, JULIAN B R. Temperature field and geophysical effects of a downgoing slab[J]. Journal of Geophysical Research, 1971, 76(5): 1 113-1 138.
TOKS?Z M N, MINEAR J W, JULIAN B R. Temperature field and geophysical effects of a downgoing slab[J]. Journal of Geophysical Research, 1971, 76(5): 1 113-1 138.
99 STERN C R. Melting products of olivine tholeiite basalt in subduction zones[J]. Geology, 1974, 2(5): 227-230.
STERN C R. Melting products of olivine tholeiite basalt in subduction zones[J]. Geology, 1974, 2(5): 227-230.
100 DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6 294):662-665.
DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6 294):662-665.
101 STERN C R, KILIAN R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281.
STERN C R, KILIAN R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281.
102 PEACOCK S M, RUSHMER T, THOMPSON A B. Partial melting of subducting oceanic crust[J]. Earth and Planetary Science Letters, 1994, 121(1):227-244.
PEACOCK S M, RUSHMER T, THOMPSON A B. Partial melting of subducting oceanic crust[J]. Earth and Planetary Science Letters, 1994, 121(1):227-244.
103 SYRACUSE E M, KEKEN P E VAN, ABERS G A. The global range of subduction zone thermal models[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 73-90.
SYRACUSE E M, KEKEN P E VAN, ABERS G A. The global range of subduction zone thermal models[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 73-90.
104 ROGERS G, SAUNDERS A D, TERRELL D J, et al. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico[J]. Nature, 1985, 315(6 018):389-392.
ROGERS G, SAUNDERS A D, TERRELL D J, et al. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico[J]. Nature, 1985, 315(6 018):389-392.
105 XU Jifeng, WANG Qiang, YU Xueyuan. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic mélange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust[J]. Geochemical Journal, 2000,34(5):359-377.
XU Jifeng, WANG Qiang, YU Xueyuan. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic mélange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust[J]. Geochemical Journal, 2000,34(5):359-377.
106 POLAT A, KERRICH R. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes[J]. Contributions to Mineralogy and Petrology, 2001, 141(1):36-52.
POLAT A, KERRICH R. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes[J]. Contributions to Mineralogy and Petrology, 2001, 141(1):36-52.
107 KÖNIG S, SCHUTH S, MÜNKER C, et al. The role of slab melting in the petrogenesis of high-Mg andesites: Evidence from Simbo Volcano, Solomon Islands[J]. Contributions to Mineralogy and Petrology, 2007, 153(1):85-103.
K?NIG S, SCHUTH S, MüNKER C, et al. The role of slab melting in the petrogenesis of high-Mg andesites: Evidence from Simbo Volcano, Solomon Islands[J]. Contributions to Mineralogy and Petrology, 2007, 153(1):85-103.
108 WANG Qiang, WYMAN D A, XU Jifeng, et al. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge[J]. Contributions to Mineralogy and Petrology, 2008, 155(4):473-490.
WANG Qiang, WYMAN D A, XU Jifeng, et al. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge[J]. Contributions to Mineralogy and Petrology, 2008, 155(4):473-490.
109 PINEDA‐VELASCO I, KITAGAWA H, NGUYEN T T, et al. Production of high‐Sr andesite and dacite magmas by melting of subducting oceanic lithosphere at propagating slab tears[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5):3 698-3 728.
PINEDA‐VELASCO I, KITAGAWA H, NGUYEN T T, et al. Production of high‐Sr andesite and dacite magmas by melting of subducting oceanic lithosphere at propagating slab tears[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5):3 698-3 728.
110 JOLLY W T, SCHELLEKENS J H, DICKIN A P. High-Mg andesites and related lavas from southwest Puerto Rico (Greater Antilles Island Arc): Petrogenetic links with emplacement of the Late Cretaceous Caribbean mantle plume[J]. Lithos, 2007, 98(1/4): 1-26.
JOLLY W T, SCHELLEKENS J H, DICKIN A P. High-Mg andesites and related lavas from southwest Puerto Rico (Greater Antilles Island Arc): Petrogenetic links with emplacement of the Late Cretaceous Caribbean mantle plume[J]. Lithos, 2007, 98(1/4): 1-26.
111 KILIAN R, STERN C R. Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths[J]. European Journal of Mineralogy, 2002, 14(1): 25-36.
KILIAN R, STERN C R. Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths[J]. European Journal of Mineralogy, 2002, 14(1): 25-36.
112 MARTIN H, SMITHIES R H, RAPP R, et al. An overview of adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24.
MARTIN H, SMITHIES R H, RAPP R, et al. An overview of adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24.
113 RAPP R P, SHIMIZU N, NORMAN M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356.
RAPP R P, SHIMIZU N, NORMAN M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356.
114 COOPER L B, RUSCITTO D M, PLANK T, et al. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs[J]. Geochemistry, Geophysics, Geosystems,2012. DOI:10.1029/2011GC003902.
COOPER L B, RUSCITTO D M, PLANK T, et al. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs[J]. Geochemistry, Geophysics, Geosystems,2012. DOI:10.1029/2011GC003902.
doi: 10.1029/2011GC003902    
115 NICHOLLS I A, RINGWOOD A E. Effect of water on olivine stability in tholeiites and the production of silica-saturated magmas in the island-arc environment[J]. The Journal of Geology, 1973, 81(3): 285-300.
NICHOLLS I A, RINGWOOD A E. Effect of water on olivine stability in tholeiites and the production of silica-saturated magmas in the island-arc environment[J]. The Journal of Geology, 1973, 81(3): 285-300.
116 STRAUB S M, GOMEZ-TUENA A, STUART F M, et al. Formation of hybrid arc andesites beneath thick continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 337-347.
STRAUB S M, GOMEZ-TUENA A, STUART F M, et al. Formation of hybrid arc andesites beneath thick continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 337-347.
117 HIRSCHMANN M M, KOGISO T, BAKER M B, et al. Alkalic magmas generated by partial melting of garnet pyroxenite[J]. Geology, 2003, 31(6): 481-484.
HIRSCHMANN M M, KOGISO T, BAKER M B, et al. Alkalic magmas generated by partial melting of garnet pyroxenite[J]. Geology, 2003, 31(6): 481-484.
118 CHEN Long, ZHAO Zifu, ZHENG Yongfei. Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China[J]. Lithos, 2014, 190: 220-239.
CHEN Long, ZHAO Zifu, ZHENG Yongfei. Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China[J]. Lithos, 2014, 190: 220-239.
119 CHEN Long, ZHENG Yongfei, XU Zheng, et al. Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites[J]. Geoscience Frontiers, 2021, 12(3): 101-124.
CHEN Long, ZHENG Yongfei, XU Zheng, et al. Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites[J]. Geoscience Frontiers, 2021, 12(3): 101-124.
120 LAMBART S, LAPORTE D, SCHIANO P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints[J]. Lithos, 2013, 160: 14-36.
LAMBART S, LAPORTE D, SCHIANO P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints[J]. Lithos, 2013, 160: 14-36.
121 SOBOLEV A V, HOFMANN A W, KUZMIN D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5 823): 412-417.
SOBOLEV A V, HOFMANN A W, KUZMIN D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5 823): 412-417.
122 GROVE T L, TILL C B, KRAWCZYNSKI M J. The role of H2O in subduction zone magmatism[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 413-439.
GROVE T L, TILL C B, KRAWCZYNSKI M J. The role of H2O in subduction zone magmatism[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 413-439.
123 KINCAID C, GRIFFITHS R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 2003, 425(6 953): 58-62.
KINCAID C, GRIFFITHS R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 2003, 425(6 953): 58-62.
124 CODILLO E A, LE ROUX V, MARSCHALL H R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge[J]. Nature Communications, 2018, 9(1): 1-11.
CODILLO E A, LE ROUX V, MARSCHALL H R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge[J]. Nature Communications, 2018, 9(1): 1-11.
125 CASTRO A, GERYA T, GARCÍA-CASCO A, et al. Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; Implications for the origin of Cordilleran-type batholiths[J]. Journal of Petrology, 2010, 51(6): 1 267-1 295.
CASTRO A, GERYA T, GARCíA-CASCO A, et al. Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; Implications for the origin of Cordilleran-type batholiths[J]. Journal of Petrology, 2010, 51(6): 1 267-1 295.
126 CRUZ-URIBE A M, MARSCHALL H R, GAETANI G A, et al. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs—An experimental study[J]. Geology, 2018, 46(4): 343-346.
CRUZ-URIBE A M, MARSCHALL H R, GAETANI G A, et al. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs—An experimental study[J]. Geology, 2018, 46(4): 343-346.
127 JAGOUTZ O, KELEMEN P B. Role of arc processes in the formation of continental crust[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 363-404.
JAGOUTZ O, KELEMEN P B. Role of arc processes in the formation of continental crust[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 363-404.
128 KELEMEN P B, BEHN M D. Formation of lower continental crust by relamination of buoyant arc lavas and plutons[J]. Nature Geoscience,2016, 9(3):197-205.
KELEMEN P B, BEHN M D. Formation of lower continental crust by relamination of buoyant arc lavas and plutons[J]. Nature Geoscience,2016, 9(3):197-205.
129 INGEBRITSEN S E, SHERROD D R, Mariner R H. Heat flow and hydrothermal circulation in the Cascade Range, north-central Oregon[J]. Science, 1989, 243(4 897): 1 458-1 462.
INGEBRITSEN S E, SHERROD D R, Mariner R H. Heat flow and hydrothermal circulation in the Cascade Range, north-central Oregon[J]. Science, 1989, 243(4 897): 1 458-1 462.
130 TANG Gongjian, WANG Qiang. High-Mg andesites and their geodynamic implications [J]. Acta Petrologica Sinica, 2010, 26(8):2 495-2 512.
TANG Gongjian, WANG Qiang. High-Mg andesites and their geodynamic implications [J]. Acta Petrologica Sinica, 2010, 26(8):2 495-2 512.
唐功建, 王强. 高镁安山岩及其地球动力学意义[J]. 岩石学报, 2010, 26(8):2 495-2 512.
唐功建, 王强. 高镁安山岩及其地球动力学意义[J]. 岩石学报, 2010, 26(8):2 495-2 512.
131 GHIORSO M S. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 1995, 119(2/3):197-212.
GHIORSO M S. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 1995, 119(2/3):197-212.
132 KIMURA J I. Modeling chemical geodynamics of subduction zones using the Arc Basalt Simulator version 5[J]. Geosphere, 2017, 13(4): 992-1 025.
KIMURA J I. Modeling chemical geodynamics of subduction zones using the Arc Basalt Simulator version 5[J]. Geosphere, 2017, 13(4): 992-1 025.
[1] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[2] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[3] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[4] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[5] 夏阳,张立飞. 中源地震脱水脆变机制的岩石学研究进展[J]. 地球科学进展, 2013, 28(9): 997-1006.
[6] 李艳青,佘振兵,马昌前. 石英SEM-CL微结构及其在岩石学中的应用[J]. 地球科学进展, 2011, 26(3): 325-331.
[7] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
[8] 王永锋;金振民;. 地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.
[9] 王利;周祖翼. 发震带试验(SEIZE)[J]. 地球科学进展, 2005, 20(8): 823-832.
[10] 金性春. 大洋钻探与西太平洋构造[J]. 地球科学进展, 1995, 10(3): 234-239.
阅读次数
全文


摘要