[1]Gutenberg B, Richter C F. Seismicity of the Earth and Related Phenomena[M]. Princeton NJ: Princeton University Press, 1954: 310.
[2]Scholz C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge UK: Cambridge University Press, 2002.
[3]Frohlich C. The nature of deep-focus earthquakes[J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 227-254.
[4]Peacock S M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?[J].Geological Society of America, 2001,29: 299-302.
[5]Jung H, Green H W, Dohrzhinetskaya L F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change[J]. Nature, 2004, 428: 545-549.
[6]Hasegawa A, Nakajima J, Uchida N, et al. Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: An overview[J]. Gondwana Research, 2009, 16: 370-400.
[7]Davies J H. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism[J]. Nature, 1999, 398: 142-145.
[8]Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. Journal of Geophysical Research, 2003, 108: 1-16.
[9]Barcheck C G, Wiens D A, van Keken P E, et al. The relationship of intermediate-and deep-focus seismicity to the hydration and dehydration of subducting slabs[J]. Earth and Planetary Science Letters, 2012, 349: 153-160.
[10]Raleigh C B, Paterson M S. Experimental deformation of serpentine and its tectonic implications[J]. Journal of Geophysical Research, 1965, 70: 3 965-3 985.
[11]Green H W, Houston H. The mechanics of deep earthquakes[J]. Annual Review of Earth and Planet Sciences, 1995, 23: 169-213.
[12]Kirby S H, Engdahl E R, Denlinger R. Intermediate-depth Intraslab Earthquakes and Arc Volcanism as Physical Expressions of Crustal and Uppermost Mantle Metamorphism in Subducting Slabs[C]∥Bebout G E, et al, eds. Subduction Top to Bottom, Geophysical Monograph Serial. Washington DC: AGU, 1996, 96: 195-214.
[13]Kirby S H. Interslab earthquakes and phase changes in subducting lithosphere[J]. Reviews of Geophysics, 1995, 33: 287-297.
[14]Tao W C, Oconnel R J. Deformation of a weak subducted slab and variation of seismicity with depth[J]. Nature, 1993, 361: 626-628.
[15]Vassiliou M S, Hager B H. Subduction zone earthquakes and stress in slabs[J]. Pure and Applied Geophysics, 1988, 128(3/4): 547-624.
[16]Peacock S M. Fluid process in subduction zones[J]. Science, 1990, 248: 329-337.
[17]Ko S Z, Olgaard D L, Wong T F. Generation and maintenance of pore pressure excess in a dehydration system, 1, Experimental and micro-structural observation[J]. Journal of Geophysical Research, 1997, 102: 825-839.
[18]Miller S A, van der Zee W, Olgaard D L, et al. A fluid-pressure feedback model of dehydration reactions: Experiments, modelling, and application to subduction zones[J]. Tectonophysics, 2003, 370: 241-251.
[19]Jiao W, Silver P G, Fei Y, et al. Do intermediate- and deep-focus earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone[J]. Journal of Geophysical Research, 2000, 105: 28 125-28 138.
[20]Hubbert M K, Rubey W W. Role of fluid pressure in mechanics of overthrust faulting Ι: Mechanics of fluid-filled porous solids and its application to overthrust faulting[J]. Geological Society of American Bulletin, 1959, 70: 115-206.
[21]Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J]. Earth and Planetary Science Letters, 1998, 163: 361-379.
[22]Okamoto K, Maruyama S. The high-pressure synthesis of lawsonite in the MORB+H2O system[J]. American Mineralogist, 1999, 84: 362-373.
[23]Omori S, Kamiya S, Maruyama S, et al. Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite[J]. Bulletin of Earthquake Research Institute, 2002, 76: 455-478.
[24]Omori S, Komabayashi T, Maruyama S. Dehydration and earthquakes in the subducting slab: Empirical link in intermediate and deep seismic zones[J]. Physics of the Earth and Planetary Interiors, 2004, 146: 297-311.
[25]Yamasaki T, Seno T. Double seismic zone and dehydration embrittlement of the subducting slab[J]. Journal of Geophysical Research, 2003, 108, doi: 10.1029/2002JB001918.
[26]Peacock S M, Wang K. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan[J]. Science, 1999, 286: 937-939.
[27]Raleigh C B. Tectonic implications of serpentinite weakening[J]. Geophysical Journal of the Royal Astronomical Society, 1967, 14(14): 113-118.
[28]Murrell S A F, Ismail I A H. The effect of decomposition of hydrous minerals on the mechanical properties of rocks at high pressures and temperatures[J]. Tectonophysics, 1976, 31: 207-258.
[29]Kirby S H. Localized polymorphic phase transitions in high-pressure faults and applications to the physical mechanism of deep earthquakes[J]. Journal of Geophysical Research, 1987, 92: 13 789-13 800.
[30]Rutter E H, Brodie K. Experimental “syntectonic” dehydration of serpentinites under conditions of controlled pore water pressure[J]. Journal of Geophysical Research, 1988, 93: 4 907-4 932.
[31]Dobson D P, Meredith P G, Boon S A. Simulation of subduction zone seismicity by dehydration of serpentine[J]. Science, 2002, 298: 1 407-1 410.
[32]Hacker B R, Christie J M. Brittle/ductile and plastic/cataclastic transitions in experimentally deformed and metamorphosed amphibolite[M]∥Duba A G, Purham W B, Handin J W, et al, eds. The Brittle-Ductile Transition in Rock.Washington DC: American Geophysical Union, 2013.
[33]Heard H C, Rubey W W. Tectonic implication of gypsum dehydration[J]. Geological Society of American Bulletin, 1966, 77: 741-760.
[34]Zhang J F, Green H W, Bozhilov K. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust[J]. Nature, 2004, 428: 633-636.
[35]Austrheim H, Boundy T M. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust[J]. Science, 1994, 265: 82-83.
[36]Liu Jianmin, Dong Shuwen. Advance and status quo of the research on pseudotachylytes[J]. Geological Review, 2001, 47(1): 64-69.[刘建民, 董树文. 假玄武玻璃的研究进展与现状[J]. 地质评论,2001,47(1):64-69.]
[37]Lund M G, Austrheim H. High-pressure metamorphism and deep-crustal seismicity: Evidence from contemporaneous formation of pseudotachylytes and eclogite facies coronas[J]. Tectonophysics, 2003, 372: 59-83.
[38]John T, Schenk V. Interrelations between intermediate-depth earthquakes and fluid flow within subducting oceanic plates: Constraints from eclogite facies pseudotachylytes[J]. Geological Society of America, 2006, 34: 557-560.
[39]Angiboust S, Agard P, Yamato P, et al. Eclogite breccias in a subducted ophiolite: A record of intermediate-depth earthquakes[J]. Geology, 2012, 40: 707-710.
[40]Francis T J G. Serpentinization faults and their role in the tectonics of slow spreading ridges[J]. Journal of Geophysical Research, 1981, 86: 11 616-11 622.
[41]Seno T, Yamanaka Y. Double Seismic zones, compressional deep trench-outerrise events, and superplumes[C]∥Bebout G E, Scholl D W, Kirby S H,et al, eds.Subduction: Top to Bottom. Washington DC: American Geophysical Union, 1996, 96: 347-355.
[42]King S D. Subduction zones: Observations and geodynamic models[J]. Physics of the Earth and Planetary Interiors, 2001, 127: 9-24.
[43]Peacock S M. The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust[J]. Geological Society of America Bulletin, 1993, 105: 684-694.
[44]Hacker B R, Abers G A, Peacock S M. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents[J]. Journal of Geophysical Research, 2003, 108,(B1): 2 029, doi: 10. 1029/2001JB001127. |