地球科学进展 ›› 2018, Vol. 33 ›› Issue (10): 1058 -1074. doi: 10.11867/j.issn.1001-8166.2018.10.1058.

研究论文 上一篇    下一篇

岩浆混合作用的识别:以义敦岛弧稻城岩体为例
张瑞刚( ), 高雪, 杨立强 *( )   
  1. 中国地质大学地质过程与矿产资源国家重点实验室,北 京 100083
  • 收稿日期:2018-04-18 修回日期:2018-08-13 出版日期:2018-10-10
  • 通讯作者: 杨立强 E-mail:1374113069@qq.com;lqyang@cugb.edu.cn
  • 基金资助:
    国家重点基础研究发展计划项目“中国西南特提斯典型复合成矿系统及深部驱动机制”(编号:2015CB452605);高等学校学科创新引智计划“成矿作用动力学”(编号:B07011)资助.

Identification of Magma Mixing: A Case Study of the Daocheng Batholith in the Yidun Arc

Ruigang Zhang( ), Xue Gao, Liqiang Yang *( )   

  1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
  • Received:2018-04-18 Revised:2018-08-13 Online:2018-10-10 Published:2018-11-16
  • Contact: Liqiang Yang E-mail:1374113069@qq.com;lqyang@cugb.edu.cn
  • About author:

    First author:Zhang Ruigang (1993-), male, Qingyang City, Gansu Province, Master student. Research areas include deposits and geochemistry of mineral deposits. E-mail:1374113069@qq.com

  • Supported by:
    Project supported by the National Key Basic Research and Development Plans "Typical composite metallogenic system and deep drive mechanism of southwest Tethys, in China"(No.2015CB452605);The Program of Academic Innovation and Intelligence Introduction in Iinstitutions of Higher Learning "Dynamics of ore-forming processes"(No.B07011).

义敦岛弧稻城岩体由花岗岩、花岗闪长岩和钾长花岗岩组成。大量暗色镁铁质微粒包体发育于花岗闪长岩和钾长花岗岩中,且其与寄主岩石的接触界线截然。暗色镁铁质微粒包体具有细粒结构,发育石英眼构造、针状磷灰石和具环带结构的斜长石斑晶。通过暗色镁铁质微粒包体与寄主岩石的岩相学、斜长石环带和主微量稀土元素特征的研究,识别出稻城岩体的岩浆混合作用,并结合前人对该岩体Sr-Nd-Hf同位素的研究成果,对稻城岩体的岩石成因进行了讨论。暗色镁铁质微粒包体中斜长石牌号为29~44,寄主岩石中斜长石牌号为21~50,斜长石斑晶的成分突变和熔蚀结构与岩浆混合作用有关。暗色镁铁质微粒包体的SiO2质量分数较低(56.34%~60.91%),Al2O3质量分数较高(16.06%~17.98%)、富镁铁,具有准铝质特征(A/CNK=0.82~0.98);而寄主岩石属于高钾钙碱性系列,富碱(Na2O+K2O的质量分数为6.25%~7.79%)、贫钙(CaO质量分数为1.40%~3.22%)。暗色镁铁质微粒包体与寄主岩石均富集大离子亲石元素(Rb,K和Pb)和轻稀土元素,亏损高场强元素(Nb,Ta,Zr,Hf,P和Ti),与典型岛弧岩浆岩的微量元素特征一致。但与寄主岩石相比,暗色镁铁质微粒包体具有近平坦的稀土配分曲线((La/Yb)N=1.99~2.46)和较明显的Eu负异常(Eu/Eu*=0.30~0.50)。寄主岩石Rb/Sr值范围为1.0~1.9,与壳源(Rb/Sr>0.5)的物质范围一致;Zr/Hf值范围为27.5~36.9,与地壳和幔源岩石之间Zr/Hf值(33.0~36.3)接近,表明稻城岩体的成因与幔源物质和壳源物质的混合有关。暗色镁铁质微粒包体具有较低Si含量和较高Mg#,Nb/Ta值范围为11.0~14.5,且包体和寄主岩石的主要氧化物与其SiO2呈线性分布,表明暗色镁铁质微粒包体的形成与岩浆混合作用有关。稻城花岗质岩体的母岩浆起源于晚三叠世岛弧下地壳的部分熔融,且源区有少量幔源物质的加入;暗色镁铁质微粒包体是由镁铁质岩浆与长英质岩浆混合形成的。

The Daocheng batholiths, located in the east of the Yidun arc, consist of granite, granodiorite and K-feldspar granite. Abundant massive mafic microgranular enclaves (MMEs) mainly developed within the granodiorite and K-feldspar granite, and they have clear contacts with the hosted granites. The MMEs are characterized by the quartz eye structure, quenched apatite, and plagioclases phenocrysts with obvious oscillatory zones. Petrographical studies on MMEs and host granites, zoned plagioclase and whole-rock geochemical analysis were carried out to identify the presence of magma mixing. Combined with the previous studies on the whole-rock Sr-Nd-Hf isotopic signatures, the petrogenesis of Daocheng batholith was discussed. The zoned plagioclases from MMEs have An contents varying between 29 and 44, while those from the host granites have An contents of 21~50. The compositional variations and corrosion structure of plagioclase are probably related to magma mixing. Geochemically, the MMEs have relatively low SiO2 contents (56.34~60.91wt%), high Al2O3 contents of 16.06~17.98wt%, and are enriched in magnesium and iron, belonging to metalumnious series (A/CNK=0.82~0.98). The Daocheng batholith belongs to high-K calc-alkaline series, which have high alkaline contents (Na2O+K2O=6.25~7.79wt%) and low CaO contents (1.40~3.22wt%). Furthermore, both the MMEs and hosted granites are enriched in LILEs (K, Rb and Pb) and LREEs and depleted in HFSEs (Nb, Ta, Zr, Hf, P and Ti), showing affinities of typical arc magmas. Compared with the host granites, the MMEs are characterized by lower (La/Yb)N ratios of 1.99 to 2.46, and much more obvious Eu depletions (Eu/Eu*=0.30~0.50). The host granites have Rb/Sr ratios ranging from 1.0 to 1.9, and they are consistent with the crust-derived materials (Rb/Sr>0.5). Their Zr/Hf ratios range from 27.5 to 36.9, which are close to the transitional Zr/Hf ratios between mantle-and crust-derived materials. This indicates that the formation of Daocheng batholith is genetically related to the mixing between mantle-and crust-derived materials. In addition, the relatively low silica contents and high Mg# values, and the linear patterns of MgO, Al2O3 and Fe2O3 with SiO2 contents from the MMEs and host granites, show that the formation of MMEs is genetically related to magma mixing. Overall, the parent magmas of Daocheng granites are derived from the partial melting of Late Triassic arc lower crust, with the input of minor mantle-derived materials. The MMEs are generated by the mixing of the mafic magma with felsic magma.

中图分类号: 

图1 义敦岛弧地质简图
(a)义敦岛弧及邻区大地构造图(据参考文献[ 32 ]修改);(b)义敦岛弧地质简图(据参考文献[ 29 ]修改)
Fig.1 Geological sketch map of the Yidun Arc
(a)Geotectonic map of the Yidun Arc and adjacent areas (modified after reference[32]);(b)Geological sketch map of the Yidun Arc area (modified after reference[29])
图2 稻城岩体手标本及显微镜下照片
(a)花岗岩,MMEs中有团块状石英、黄铁矿;(b)花岗闪长岩;(c)钾长花岗岩;(d)石英眼构造、斜长石斑晶(-);(e)包体中针状磷灰石,淬火结构(-);(f)角闪石包裹斜长石,不平衡结构(+);(g)显微石英包裹块状石英(+);(h)斜长石环带(+);(i)花岗结构(+);Ap:磷灰石;Bi:黑云母;Hb:角闪石;Pl:斜长石;Q:石英
Fig.2 Photographs of hand specimens and photomicrographs of the granite and MMEs in Daocheng batholith
(a)MMEs with cloudy quartz and pyrite hosted by granite;(b)Granodiorite; (c)K-feldspar granite; (d)Quartz eye and plagioclase phenocryst (-);(e)Quench texture of apatite in MMEs (-); (f)Plagioclase wrapped by hornblende with disequilibrium texture (+); (g)Two-stages quartz (+);(h)The zoned plagioclase (+); (i)Granitic texture (+); Ap. Apatite; Bi. Biotite; Hb. Hornblende; Pl. Plagioclase; Q. Quartz
表1 义敦岛弧稻城岩体与MMEs特征
Table 1 Summary of the hosting granite and MMEs of Daocheng batholith in the Yidun Arc
表2 义敦岛弧稻城岩体与MMEs的斜长石化学成分(单位:质量分数,%)
Table 2 Major elements (wt%) of plagioclase of the hosted granite and MMEs of Daocheng batholith in the Yidun Arc
样品
点号
DC16-3(花岗岩) DC16-6(花岗闪长岩)
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10
SiO2 60.76 58.57 59.43 59.33 59.49 58.79 59.29 58.64 59.46 57.08 59.91 58.06 58.74 57.93 59.20 56.64 54.80 59.04 60.49
TiO2 0.06 0.02 0.01 0.01 0.10 0.06 0.09 0.00 0.15 0.00 0.21
Al2O3 23.97 25.40 24.80 25.16 24.75 25.31 24.07 25.04 24.79 26.21 24.07 25.47 24.83 25.34 24.82 25.91 27.53 24.84 23.97
FeO 0.09 0.13 0.10 0.06 0.01 0.05 0.19 0.19 0.15 0.07 0.10 0.04
MnO 0.07 0.19 0.08 0.14 0.14 0.00 0.01 0.01 0.17 0.09
MgO 0.04 0.02 0.02 0.03 0.09 0.02 0.06 0.06 0.02 0.03
CaO 5.52 7.35 6.70 6.86 6.39 7.10 6.12 6.93 6.75 7.92 5.99 7.14 6.85 7.50 6.78 8.13 9.86 6.58 5.67
Na2O 9.28 8.05 8.53 8.45 8.63 8.29 8.74 8.22 8.28 7.53 8.92 7.98 8.46 8.00 8.12 7.51 6.37 8.31 9.05
K2O 0.05 0.07 0.20 0.27 0.27 0.22 0.23 0.18 0.26 0.23 0.42 0.28 0.31 0.28 0.30 0.31 0.20 0.39 0.30
P2O5 0.11 0.16 0.09 0.12 0.12 0.14 0.26 0.09 0.13 0.23 0.23 0.13 0.10 0.21 0.09 0.20 0.08 0.22 0.03
合计 99.77 99.69 99.94 100.38 99.85 100.01 98.85 99.34 99.74 99.35 99.73 99.17 99.36 99.65 99.56 98.93 99.22 99.59 99.79
Si 2.72 2.64 2.67 2.65 2.67 2.64 2.69 2.65 2.67 2.59 2.70 2.63 2.65 2.62 2.67 2.59 2.50 2.66 2.71
Al 1.26 1.35 1.31 1.33 1.31 1.34 1.29 1.33 1.31 1.40 1.28 1.36 1.32 1.35 1.32 1.39 1.48 1.32 1.27
Ca 0.26 0.35 0.32 0.33 0.31 0.34 0.30 0.34 0.32 0.38 0.29 0.35 0.33 0.36 0.33 0.40 0.48 0.32 0.27
Na 0.80 0.70 0.74 0.73 0.75 0.72 0.77 0.72 0.72 0.66 0.78 0.70 0.74 0.70 0.71 0.66 0.56 0.73 0.79
K 0.00 0.00 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02
An 24.67 33.41 29.95 30.53 28.62 31.75 27.56 31.47 30.62 36.30 26.47 32.58 30.41 33.62 31.06 36.81 45.60 29.80 25.31
Ab 75.06 66.21 68.99 68.04 69.94 67.08 71.21 67.55 67.97 62.45 71.32 65.90 67.96 64.89 67.31 61.52 53.3 68.10 73.10
Or 0.27 0.38 1.06 1.43 1.44 1.17 1.23 0.97 1.40 1.26 2.21 1.52 1.64 1.49 1.64 1.67 1.10 2.10 1.59
样品
点号
DC16-8(MMEs) DC16-9(花岗闪长岩)
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
SiO2 59.25 55.63 57.28 55.91 58.32 57.46 57.59 55.26 57.25 53.87 55.70 57.84 58.04 58.06 61.47
TiO2 0.06 0.00 0.14 0.01 0.02 0.04 0.07 0.04 0.05 0.00 0.06 0.00
Al2O3 25.17 26.86 26.22 26.68 25.04 25.97 25.63 27.18 26.25 28.26 26.87 25.64 25.30 25.40 23.38
FeO 0.10 0.08 0.02 0.16 0.16 0.24 0.06 0.02 0.25 0.17 0.11 0.09 0.18 0.06
MnO 0.03 0.05 0.03 0.02 0.07 0.08 0.05 0.10 0.07
MgO 0.02 0 0.05 0
CaO 6.46 9.27 7.75 8.78 7.32 7.91 7.48 9.53 7.97 10.92 8.85 7.57 7.42 7.48 4.73
Na2O 8.43 6.87 7.62 7.05 8.02 7.74 7.97 6.64 7.62 5.93 6.63 7.69 7.94 7.95 9.61
K2O 0.25 0.17 0.16 0.11 0.22 0.26 0.06 0.11 0.13 0.28 0.16 0.21 0.19 0.32
P2O5 0.18 0.19 0.19 0.30 0.13 0.1 0.29 0.22 0.24 0.18 0.08 0.26 0.18 0.15 0.16
合计 99.95 99.12 99.64 99.06 99.24 99.73 99.10 99.12 99.60 99.63 98.75 99.37 99.36 99.46 99.79
Si 2.66 2.54 2.59 2.55 2.64 2.60 2.61 2.52 2.59 2.46 2.55 2.62 2.63 2.63 2.75
Al 1.33 1.44 1.40 1.44 1.34 1.38 1.37 1.46 1.40 1.52 1.45 1.37 1.35 1.35 1.23
Ca 0.31 0.45 0.38 0.43 0.36 0.38 0.36 0.47 0.39 0.53 0.43 0.37 0.36 0.36 0.23
Na 0.73 0.61 0.67 0.62 0.70 0.68 0.70 0.59 0.67 0.52 0.59 0.68 0.70 0.70 0.83
K 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.02
An 29.35 42.32 35.67 40.52 33.13 35.59 34.04 44.23 36.41 50.08 41.78 34.92 33.67 33.86 21.02
Ab 69.30 56.76 63.46 58.88 65.68 63.02 65.63 55.77 62.99 49.21 56.64 64.20 65.20 65.12 77.29
Or 1.35 0.92 0.88 0.60 1.19 1.39 0.33 0.00 0.60 0.71 1.57 0.88 1.13 1.02 1.69
表3 义敦岛弧稻城岩体与MMEs的主量(质量分数,%)和微量元素(×10 -6)分析表
Table 3 Major(wt%) and trace elements(×10 -6) compositions for the hosted rock and MMEs of Daocheng batholith in the Yidun Arc
样品 DC16-1 DC16-3 DC16-4 DC16-6 DC16-7 DC16-9 DC16-5 DC16-8
岩性 花岗岩 花岗岩 花岗岩 花岗闪长岩 钾长花岗岩 花岗闪长岩 MMEs MMEs
SiO2 72.44 73.40 73.73 67.90 75.41 70.54 56.34 60.91
TiO2 0.34 0.38 0.26 0.41 0.12 0.42 0.62 0.72
Al2O3 13.79 13.00 13.69 15.66 13.11 14.41 17.98 16.06
FeO 2.13 2.28 1.50 2.33 0.95 2.55 5.05 5.30
TFe2O3 2.71 3.12 2.13 3.11 1.32 3.27 6.76 6.55
MnO 0.05 0.06 0.04 0.07 0.03 0.06 0.20 0.17
MgO 0.69 0.83 0.41 1.29 0.23 1.08 3.20 2.89
CaO 2.61 2.52 1.68 3.02 1.40 3.22 6.09 6.18
Na2O 3.19 2.93 3.40 3.20 3.46 3.18 3.80 3.50
K2O 3.60 3.32 4.05 4.59 4.27 3.28 3.93 2.31
P2O5 0.07 0.07 0.05 0.16 0.03 0.09 0.40 0.13
烧失量 0.50 0.34 0.53 0.57 0.59 0.43 0.64 0.57
合计 99.99 99.97 99.98 99.98 99.96 99.98 99.96 99.98
K2O+Na2O 6.79 6.25 7.45 7.79 7.73 6.46 7.73 5.81
K2O/Na2O 1.13 1.13 1.19 1.43 1.23 1.03 1.03 0.66
A/CNK 0.99 1.00 1.05 1.00 1.02 0.98 0.83 0.82
A/NK 1.51 1.55 1.37 1.53 1.27 1.64 1.71 1.95
Mg# 33.00 34.00 28.00 45.00 25.00 39.00 48.00 46.00
DI 81.00 81.00 87.00 77.00 90.00 76.00 57.00 56.00
Li 36.50 35.80 43.30 30.50 34.60 30.40 32.50 40.50
Be 1.86 1.72 2.43 2.11 2.25 2.02 3.68 2.39
Sc 8.52 9.72 6.40 8.65 3.28 9.84 22.50 24.20
V 27.00 30.80 13.80 59.00 6.93 37.00 154.00 91.90
Cr 8.78 9.14 4.24 12.70 2.31 16.80 13.20 46.10
Co 4.58 6.14 2.72 6.10 1.32 6.35 14.20 14.90
Ni 3.07 3.70 2.11 6.16 0.46 5.19 12.90 11.60
Cu 2.12 4.85 1.77 8.22 0.80 4.38 20.60 16.00
Zn 39.70 43.60 40.20 39.70 21.00 46.8 74.00 85.50
Ga 16.90 16.50 18.20 17.20 15.10 16.10 21.00 18.10
Rb 135.00 129.00 157.00 168.00 178.00 121.00 177.00 125.00
Sr 133.00 121.00 116.00 457.00 63.90 144.00 379.00 131.00
Y 28.50 29.20 35.90 19.30 38.90 25.10 63.00 36.70
Zr 179.00 193.00 253.00 224.00 118.00 186.00 233.00 240.00
Nb 11.20 12.10 19.70 16.60 8.55 11.50 25.60 15.20
Cs 3.41 4.61 4.33 4.02 4.70 4.48 5.23 6.13
Ba 665.00 610.00 780.00 1 516.00 508.00 562.00 834.00 522.00
La 40.30 43.20 32.40 51.80 33.00 30.30 22.50 12.00
Ce 73.40 83.30 97.90 87.40 58.30 54.40 57.20 26.30
Pr 8.08 9.07 6.71 9.24 6.69 6.13 9.08 3.92
Nd 29.40 31.80 23.20 32.20 23.70 24.60 41.80 17.70
Sm 5.46 5.71 4.69 5.47 4.93 4.72 11.80 5.33
Eu 0.83 0.78 0.70 1.12 0.40 0.97 1.14 0.88
Gd 4.85 5.30 4.62 4.26 4.88 4.29 10.90 5.27
Tb 0.83 0.91 0.94 0.68 0.92 0.80 2.00 1.06
Dy 4.79 5.02 5.76 3.54 5.33 4.43 11.00 6.16
Ho 0.88 0.94 1.10 0.63 1.08 0.85 2.03 1.23
Er 2.67 2.85 3.48 1.90 3.45 2.56 6.12 3.77
Tm 0.45 0.44 0.60 0.30 0.58 0.428 0.98 0.64
Yb 2.87 2.85 3.90 1.96 3.78 2.58 6.56 4.33
Lu 0.42 0.42 0.57 0.31 0.57 0.40 0.92 0.65
样品 DC16-1 DC16-3 DC16-4 DC16-6 DC16-7 DC16-9 DC16-5 DC16-8
岩性 花岗岩 花岗岩 花岗岩 花岗闪长岩 钾长花岗岩 花岗闪长岩 MMEs MMEs
Mo 0.28 0.27 0.19 0.39 0.21 0.46 1.41 0.65
W 0.19 0.40 0.20 0.32 0.45 0.19 0.40 0.32
Hf 5.09 5.37 6.99 6.07 4.29 5.69 6.60 6.82
Ta 0.95 1.02 1.85 1.17 1.12 1.05 1.76 1.38
Pb 17.00 15.40 25.50 20.90 20.30 20.10 22.60 17.00
Th 17.40 16.00 19.20 44.30 19.50 12.60 14.80 10.90
U 2.59 1.69 2.85 8.14 3.20 2.59 6.99 3.59
ΣREE 203.73 221.79 222.47 220.11 186.50 162.55 247.02 125.94
LREE/HREE 3.40 3.63 2.91 5.70 2.14 2.92 1.39 1.11
(La/Yb)N 10.07 10.87 5.96 18.96 6.26 8.42 2.46 1.99
(Gd/Yb)N 1.40 1.54 0.98 1.80 1.07 1.38 1.37 1.01
Eu/Eu* 0.48 0.42 0.45 0.68 0.25 0.65 0.30 0.50
Sr/Y 4.67 4.14 3.23 23.68 1.64 5.74 6.02 3.57
Rb/Sr 1.02 1.07 1.35 0.37 2.79 0.84 0.47 0.95
Nb/Ta 11.80 11.86 10.65 14.19 7.63 10.95 14.55 11.01
Zr/Hf 35.17 35.94 36.19 36.90 27.51 32.69 35.30 35.19
TZr/℃ 790.00 800.00 830.00 803.00 761.00 790.00 755.00 769.00
图3 稻城岩体与MMEs地球化学分类图解
(a)据参考文献[ 44 ]修改;(b)据参考文献[ 45 ]修改; (c)据参考文献[ 46 ]修改
Fig.3 Geochemical classification diagrams of host granites and MMEs in Daocheng batholith
(a) Modified after reference[44]; (b) Modified after reference[45]; (c) Modified after reference[46]
图4 稻城岩体与MMEs的稀土元素配分图及微量元素蛛网图
(a)稻城岩体与MMEs稀土元素配分曲线图;(b)微量元素蛛网图
Fig.4 Chondrite-normalized REE patterns and primary mantle-normalized trace element spider diagram for the Dacocheng batholith
(a)Chondrite-normalized REEs patterns in Dacocheng batholith; (b)Primitive mantle-normalized trace element patterns for the MMEs and intrusion in Dacocheng batholith
图5 稻城岩体成因类型与微量元素图解
(a)据参考文献[ 50 ]修改
Fig.5 The diagrams of petrogenesis discrimination and structural setting for Daocheng intrusion and MMEs
(a) Modified after reference[50]
图6 义敦岛弧稻城岩体锆石Hf同位素
Fig.6 Zircon Hf isotopic compositions of Daocheng batholith
图7 MMEs与花岗闪长岩中斜长石环带与成分变化
(a)MMEs;(b)花岗闪长岩
Fig.7 The oscillatory zoning and compositional variation of plagioclase phenocrysts from the MMEs and granodiorite
(a) MMEs; (b) Granodiorite
图8 稻城岩体与MMEs哈克图解
Fig.8 Harker diagrams of MMEs and intrusion in Daocheng
图9 稻城岩体大地构造环境判别图解(据参考文献[ 76 ]修改)
Fig.9 Discrimination diagrams for the tectonic setting of Daocheng granites and MMEs (modified after reference[76])
[1] Anderson A T.Oscillatory zoning of plagioclase: Nomarski interference contrast microscopy of etched polished sections[J]. American Mineralogist, 1983, 68(1/2):125-129.
[2] Vernon Ron.Microgranitoid enclaves in granites globules of hybrid magma quenched in a plutonic environment[J]. Nature, 1984, 309(5 967): 438-439.
doi: 10.1038/309438a0     URL    
[3] Barbarin Bernard.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, origin, and relations with the hosts[J]. Lithos, 2005, 80(1/4):155-177.
doi: 10.1016/j.lithos.2004.05.010     URL    
[4] Humphreys Madeleine.Chemical evolution of intercumulus liquid, as recorded in plagioclase overgrowth rims from the Skaergaard Intrusion[J]. Journal of Petrology, 2009, 50(1):127-145.
doi: 10.1093/petrology/egn076     URL    
[5] Akihiko Tomiya, Isoji Miyagi, Genji Saito, et al. Short time scale of magma mixing processes prior to the eruption of shinmoedake volcano, Kirishima volcanic group, Japan[J]. Bulletin of Volcanology, 2013, 75(10): 731-750.
doi: 10.1007/s00445-013-0731-4     URL    
[6] Fiona Foley, Norman Pearson, Tracy Rushmer, et al. Magmatic evolution and magma mixing of Quaternary adakites at Solander and Little Solander Island, New Zealand[J]. Journal of Petrology, 2013, 54(4): 703-744.
doi: 10.1093/petrology/egs082     URL    
[7] He Wenyan, Mo Xuanxue, Yang Liqiang, et al. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization[J]. Gondwana Research, 2016, 40:230-248.
doi: 10.1016/j.gr.2016.09.004     URL    
[8] Yang Liqiang, Deng Jun, Qiu Kunfeng, et al. Magma mixing and crust-mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: Constraints from petrology, geochemistry, and zircon U-Pb-Hf isotopic systematics[J]. Journal of Asian Earth Sciences, 2015, 98:320-341.
doi: 10.1016/j.jseaes.2014.11.023     URL    
[9] Yang Liqiang, Deng Jun, Dilek Yildirim, et al. Structure, geochronology, and petrogenesis of the Late Triassic Puziba Granitoid Dikes in the Mianlue Suture Zone, Qinling Orogen, China[J]. The Geological Society of America Bulletin, 2015, 127(11/12):1 831-1 854.
[10] He Wenyan, Yang Liqiang, Brugger Joel, et al. Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H-O-S-Pb isotopes[J]. Ore Geology Reviews, 2017, 90:847-862.
[11] Hou Zengqian, Zhang Honghui, Pan Xiaofei, et al. Porphyry (Cu-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1/2):21-45.
[12] Deng Jun, Wang Qingfei, Li Gongjian, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299.
[13] Deng Jun, Hou Zengqian, Mo Xuanxue, et al. Superimposed orogenesis and metallogenesis in Sanjiang Tethys[J]. Mineral Deposits, 2010, 29(1): 37-42.
[邓军,侯增谦,莫宣学,等.三江特提斯复合造山与成矿作用[J].矿床地质, 2010,29(1): 37-42.]
[14] Deng Jun, Wang Qingfei, Li Gongjian.Superimposed orogeny and composite metallogenic system: Case study from the Sanjiang Tethyan belt, SW China[J]. Acta Petrologica Sinica, 2016, 32(8): 2 225-2 247.
[邓军,王庆飞,李龚健.复合造山和复合成矿系统:三江特提斯例析[J].岩石学报, 2016,32(8): 2 225-2 247.]
[15] Deng Jun, Wang Qingfei.Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274.
[16] Deng Jun, Wang Changming, Zi Jianwei, et al. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture: New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith[J]. Gondwana Research, 2018, 62:75-92.
[17] Deng Jun, Wang Qingfei, Li Gongjian.Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, 50:216-266.
[18] Yang Liqiang, Gao Xue, He Wenyan.Late Cretaceous porphyry metallogenic system of the Yidun Arc,SW China[J]. Acta Petrologica Sinica, 2015, 31(11): 3 155-3 170.
[杨立强,高雪,和文言.义敦岛弧晚白垩世斑岩成矿系统[J].岩石学报, 2015,31(11):3 155-3 170.]
[19] Yang Liqiang, Deng Jun, Dilek Yildirim, et al. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics[J]. Lithos, 2016, 245: 258-273.
[20] Yang Liqiang, Gao Xue, Shu Qihai.Multiple Mesozoic porphyry-skarn Cu (Mo-W) systems in Yidun Terrane, east Tethys: Constraints from zircon U-Pb and molybdenite Re-Os geochronology[J]. Ore Geology Reviews, 2017,90:813-826.
[21] Yang Liqiang, Dilek Yildirim, Wang Zhongliang, et al. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: Lower crustal melting products in the Eastern North China Craton[J]. Geological Magazine, 2018, 155(5): 1 040-1 062.
[22] Yang Liqiang, Deng Jun, Gao Xue, et al. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit: Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau[J]. Ore Geology Reviews, 2017, 81: 1 015-1 032.
[23] He Wenyan, Mo Xuanxue, He Zhonghua, et al. The geology and mineralogy of the Beiya Skarn Gold Deposit in Yunnan, Southwest China[J]. Economic Geology, 2015, 110(6):1 625-1 641.
[24] Gao Xue, Yang Liqiang, Orovan E A.The lithospheric architecture of two subterranes in the eastern Yidun Terrane, East Tethys: Insights from Hf-Nd isotopic mapping[J]. Gondwana Research, 2018, 62:127-143.
[25] Li Wenchang, Yu Haijun, Yin Guanghou.Porphyry metallogenic system of Geza arc in the Sanjiang region, Southwestern China[J]. Acta Petrologica Sinica, 2013, 29(4):1 129-1 144.
[李文昌,余海军,尹光候.西南“三江”格咱岛弧斑岩成矿系统[J].岩石学报, 2013,29(4):1 129-1 144.]
[26] Gao Xue, Deng Jun, Meng Jianyin, et al. Characteristics of garnet in the Hongniu skarn copper deposit, western Yunnan[J]. Acta Petologica Sinica, 2014, 30(9):2 695-2 708.
[高雪,邓军,孟健寅,等.滇西红牛矽卡岩型铜矿床石榴子石特征[J].岩石学报, 2014,30(9):2 695-2 708.]
[27] Deng Jun, Wang Qingfei, Li Gongjian, et al. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 2015, 70(3):457-485.
[28] Deng Jun, Wang Qingfei, Li Gongjian, et al. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China[J], Ore Geology Reviews, 2015, 65:42-54.
[29] He Defeng, Zhu Weiguang, Zhong Hong, et al. Zircon U-Pb geochronology. Zircon U-Pb geochronology and elemental and Sr-Nd-Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc, SW China[J]. Journal of Asian Earth Sciences, 2013, 67/68:1-17.
[30] Peng Touping, Zhao Guochun, Fan Weiming, et al. Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane, eastern Tibetan Plateau: Petrogenesis and their bearings with Cu mineralization[J]. Journal of Asian Earth Sciences, 2014, 80:18-33.
[31] Wang Nan, Wu Cailai, Qin Haipeng, et al. Zircon U-Pb geochronology and Hf isotopic characteristics of the Daocheng granite and Haizishan granite in the Yidun Arc, Western Sichuan, and their geological significance[J]. Acta Geologica Sinica, 2016, 90(11):3 227-3 245.
[王楠,吴才来,秦海鹏,等.川西义敦岛弧稻城花岗岩体和海子山花岗岩体锆石U-Pb年代学、Hf同位素特征及地质意义[J].地质学报, 2016,90(11):3 227-3 245.]
[32] Hou Zengqian, Qu Xiaoming, Zhou Jirong, et al. Collision-orogenic processes of the Yidun Arc in the Sanjiang region: Record of granites[J]. Acta Geologica Sinica, 2001, 75(4):484-497.
[侯增谦,曲晓明,周继荣,等.三江地区义敦岛弧碰撞造山过程:花岗岩记录[J].地质学报, 2001,75(4):484-497.]
[33] Reid Anthony, Wilson Christopher, Liu Shun, et al. Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature[J]. Ore Geology Reviews, 2007, 31: 88-106.
[34] Cao Dianhua, Wang Anjian, Li Wenchang, et al. Magma mixing in the Pulang Copper Deposit: Evidence from petrology and element geochemistry[J]. Acta Petrologica Sinica, 2009,83(2): 166-175.
[曹殿华,王安建,李文昌,等.普朗斑岩铜矿岩浆混合作用岩石学及元素地球化学证据[J].岩石学报, 2009,83(2):166-175.]
[35] Wang Peng, Dong Guochen, Dong Meiling, et al. Magma mixing of the Cuojiaoma Batholith in the Yindun Arc: Evidence from mafic microgranular enclaves[J]. Acta Petologica Sinica, 2017, 33(8):2 535-2 547.
[王鹏,董国臣,董美玲,等.义敦岛弧措交玛岩体岩浆混合成因:镁铁质微粒包体的证据[J].岩石学报,2017,33(8):2 535-2 547.]
[36] Yang Liqiang, Liu Jiangtao, Zhang Chuang, et al. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China[J]. Acta Petrologica Sinica, 2010, 26(6): 1 723-1 739.
[杨立强,刘江涛,张闯,等.哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探[J].岩石学报, 2010,26(6): 1 723-1 739.]
[37] Yang Liqiang, Deng Jun, Zhao Kai, et al. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints[J]. Acta Petrologica Sinica, 2011, 15(9): 2 519-2 532.
[杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及其动力学背景探讨[J].岩石学报, 2011,15(9): 2 519-2 532.]
[38] Deng Jun, Yang Liqiang, Wang Changming.Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9): 2 501-2 509.
[邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展[J].岩石学报, 2011,27(9): 2 501-2 509.]
[39] Deng Jun, Ge Liangsheng, Yang Liqiang.Tectonic dynamic system and compound orogeny: Additionally discussing the temporal-spatial evolution of Sanjiang orogeny, Southwest China[J]. Acta Petrologica Sinica, 2013, 29(4):1 099-1 114.
[邓军,葛良胜,杨立强.构造动力体制与复合造山作用:兼论三江复合造山带时空演化[J].岩石学报, 2013,29(4): 1 099-1 114.]
[40] Deng Jun, Yang Liqiang, Ge Liangsheng, et al. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China[J]. Acta Petrologica Sinica, 2010, 26(6): 1 633-1 645.
[邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存[J].岩石学报, 2010,26(6): 1 633-1 645.]
[41] Deng Jun, Wang Changming, Li Gongjian.Style and process of the superimposed mineralization in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 2012, 28(5):1 349-1 361.
[邓军,王长明,李龚健.三江特提斯叠加成矿作用样式及过程[J].岩石学报, 2012,28(5): 1 349-1 361.]
[42] Deng Jun, Wang Qingfei, Li Gongjian, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437.
[43] Wang Nan, Wu Cailai, Qin Haipeng.Mineralogical, geochemical features of typical mesozoic granites in the Yidun Arc, Western Sichuan and a discussion on the magma origin[J]. Geological Review, 2017, 63(4):981-1 000.
[王楠,吴才来,秦海鹏.川西义敦岛弧中生代典型花岗岩体矿物学、地球化学特征及岩浆来源探讨[J].地质论评, 2017,63(4):981-1 000.]
[44] Middlemost Eric.Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4):215-224.
[45] Maniar Papu D, Piccoli Philip M.Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[46] Peccerillo Angelo, Taylor S.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81.
[47] Gao Xue, Yang Liqiang, Zhang Ruigang, et al. Nature and origin of Mesozoic granitoids and associated mineralization in the Sanjiang Tethys Orogeny, SW China: The Xiuwacu complex example[J]. International Geology Reviews, 2018:1-26.DOI: 10.1080/00206814.2018:1464405.
[48] Hu Fangfang, Fan Hongrui, Yang Jinhui, et al. Magma mixing for the origin of granodirote: Geochemical, Sr-Nd isotope and zircon Hf isotopic evidence of dioritic enclaves and host rocks from Changshannan granodirote in the Jiaodong Peninusula, eastern China[J]. Acta Petrologica Sinica, 2005, 21(3):569-586.
[胡芳芳,范宏瑞,杨进辉,等.胶东文登长山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据[J].岩石学报, 2005,21(3):569-586.]
[49] Zhang Wenhui, Wang Cuizhi, Li Xiaomin, et al. Zircon SIMS U-Pb age, Hf and O isotopes of mafic dikes, southwest Fujian Province[J]. Advances in Earth Science, 2016, 31(3): 320-334.
[张文慧,王翠芝,李晓敏,等.闽西南基性岩脉中捕获锆石SIMS U-Pb年龄及 Hf、O 同位素特征[J].地球科学进展,2016,31(3):320-334.]
[50] Whalen Joseph, Currie Kenneth, Chappell Bruce.A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419.
[51] Chiaradia Massimo.Adakite-like magmas from fractional crystallization and melting assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador)[J]. Chemical Geology, 2009, 265:468-487.
[52] Turner S P, Foden J D, Morrison R S.Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28:151-179.
[53] Metcalfe Rodney V, Smith Eugene I, Walker J Douglas, et al. Isotopic disequilibrium among commingled hybrid magmas: Evidence for two-stage magma mixing-commingling processes in the Mt. Perkins pluton, Arizona[J]. Geology, 1995, 103:509-527.
[54] Zorpi M J, Coulon C, Orsini J B, et al. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons[J]. Tectonophysics, 1989,157(4):315-329.
[55] Chappell B W, White A J R, Wyborn D. The importance of residual source marerial (restite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28:1 111-1 138.
[56] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64:133-147.
[57] Green T H.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4) :347-359.
[58] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985.
[59] Wu Tao, Xiao Long, Wilde Simon, ,et al. A mixed source for the Late Triassic Garzê-Daocheng granitic belt. A mixed source for the Late Triassic Garzê-Daocheng granitic belt and its implications for the tectonic evolution of the Yidun arc belt, eastern Tibetan Plateau[J].Lithos, 2017, 288/289:214-230.
[60] Wu Tao, Xiao Long, Wilde Simon,et al. Zircon U-Pb age. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Ganluogou dioritic complex in the northern Triassic Yidun arc belt, Eastern Tibetan Plateau: Implications for the closure of the Garzê-Litang Ocean[J]. Lithos,2016, 248/251:94-108.
[61] Ilbeyli Nurdane, Pearce Julian A.Petrogenesis of igneous enclaves in plutonic rocks of the Central Anatolian Massif, Turkey[J]. International Geology Review, 2005, 47:1 011-1 034.
[62] Barbarin Bernard.Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California[J]. Journal of Geophysical Research, 1990, 95(B11):17 747-17 756.
[63] Liu Yixin, Hou Kexuan, Sha Xin, et al. Geochemical characteristics and tectonic significance of Aoyougou Group Basalts in Western North Qilian[J]. Advances in Earth Science, 2018, 33(2):189-205.
[刘懿馨,侯克选,沙鑫,等.北祁连西段熬油沟组玄武岩地球化学特征及构造意义[J].地球科学进展,2018,33(2):189-205.]
[64] Zhang Xiangfei, Li Wenchang, Yin Guanghou, et al. Geological and mineralized characteristics of the composite complex in Xiuwacu W-Mo mining district, NW Yunnan, China: Constraints by geochronology, oxygen fugacity and geochemistry[J]. Acta Petrologica Sinica, 2017, 33(7): 2 018-2 036.
[张向飞,李文昌,尹光候,等.滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束[J].岩石学报, 2017,33(7):2 018-2 036.]
[65] He Wenyan.The Beiya Giant Gold-polymetallic Deposit: Magmatism and Metallogenic Model[D]. Beijing: China University of Geosciences (Beijing), 2014.
[和文言. 滇西北衙超大型金多金属矿床岩浆作用与成矿模式[D].北京:中国地质大学(北京), 2014.]
[66] Yang Liqiang, Deng Jun, Dilek Yildirim, et al. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogeny, China[J]. Geological Society of America Bulletin, 2015, 127(11/12):1 831-1 854.
[67] Slaby Ewa, Martin Herve.Mafic and felsic magma interaction in granites: The Hercynian Karkonosze pluton (Sudetes, Bohemian Massif)[J]. Journal of Petrology, 2008, 49(2):353-391.
[68] Browne Brandon, Eichelberger J, Patino Lina, et al. Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen Volcano, Japan[J]. Journal of Petrology, 2006, 47(2):301-328.
[69] Pietranik Anna, Koepke Juergen, Puziewicz Jacek.Crystallization and resorption in plutonic plagioclase: Implications on the evolution of granodiorite magma (Gęsiniec granodiorite, Strzelin Crystalline Massif, SW Poland)[J]. Lithos, 2006, 86:260-280.
[70] Bateman Roger.The interplay between crystallization, replenishmentand hybridization in large felsic magma chambers[J]. Earth-Science Reviews, 1995, 39(1/2): 91-106.
[71] Izbekov Pavel, Eichelberger J, Patino Lina, et al. Calcic cores of plagioclase phenocrysts in andesite from Karymsky Volcano: Evidence for rapid introduction by basaltic replenishment[J]. Geology, 2002, 30(9):799-802.
[72] Tepley F, Davidson Jon, Tilling Robert, et al. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano, Mexico[J]. Contributions to Mineralogy and Petrology, 2000, 41: 1 397-1 411.
[73] Gao Xue, Meng Jianyin.The source of ore-forming fluids and materials in the Tongchanggou Mo-Cu deposit, northwestern Yunnan, China: Constrains from skarn mineralogy and stable isotopes[J]. Acta Petologica Sinica, 2017, 33(7):2 161-2 174.
[高雪,孟健寅.滇西北铜厂沟Mo-Cu矿床成矿流体和成矿物质来源:矽卡岩矿物学与稳定同位素证据[J].岩石学报,2017,33(7):2 161-2 174.]
[74] Gao Xue, Yang Liqiang, Meng Jianyin, et al. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, Northwest Yunnan, China[J]. Ore Geology Reviews, 2017, 91: 945-962.
[75] Hou Zengqian, Yang Yueqing, Qu Xiaoming, et al. Tetonic evolution and Mineralization systems of the Yidun arc orogeny in Sanjiang region, China[J]. Acta Geologica Sinica, 2004, 78(1):109-120.
[侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报, 2004,78(1):109-120.]
[76] Liu Jiangtao, Yang Liqiang, Lü Liang.Pulang reduced porphyry copper deposit in the Zhongdian area, Southwest China: Constrains by the mineral assemblages and the ore-forming fluid compositions[J]. Acta Petrologica Sinica, 2013, 29(11):3 914-3 924.
[刘江涛,杨立强,吕亮.中甸普朗还原性斑岩型铜矿床:矿物组合与流体组成约束[J].岩石学报, 2013,29(11) : 3 914-3 924.]
[1] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[2] 余星. 海底岩石地球化学研究中的“大数据”——PetDB及其应用[J]. 地球科学进展, 2014, 29(2): 306-314.
[3] 王翠芝. 紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8): 897-912.
[4] 李艳青,佘振兵,马昌前. 石英SEM-CL微结构及其在岩石学中的应用[J]. 地球科学进展, 2011, 26(3): 325-331.
[5] 李文渊. Re-Os同位素体系及其在岩浆Cu-Ni-PGE矿床研究中的应用[J]. 地球科学进展, 1996, 11(6): 580-584.
阅读次数
全文


摘要