地球科学进展 ›› 2018, Vol. 33 ›› Issue (10): 1075 -1083. doi: 10.11867/j.issn.1001-8166.2018.10.1075.

联合国可持续发展目标 上一篇    下一篇

遥感与网络数据支撑的城市可持续性评价:进展与前瞻
宋晓谕 1( ), 高峻 2, 李新 3, 李巍岳 2, 张中浩 2, 王亮绪 2, 付晶 2, 黄春林 1, 高峰 1   
  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.上海师范大学城市发展研究院,上海 200234
    3.中国科学院青藏高原研究所,北京 100101
  • 收稿日期:2018-03-21 修回日期:2018-07-29 出版日期:2018-10-10
  • 基金资助:
    中国科学院战略性先导A类专项“地球大数据科学工程”(编号:XDA19040500);国家自然科学基金重点项目“遥感产品和网络大数据支持下的中国城市群可持续性评价”(编号:41730642)资助.

Urban Sustainability Evaluation Based on Remote Sensing and Network Data Support: Progress and Prospect

Xiaoyu Song 1( ), Jun Gao 2, Xin Li 3, Weiyue Li 2, Zhonghao Zhang 2, Liangxu Wang 2, Jing Fu 2, Chunlin Huang 1, Feng Gao 1   

  1. 1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,China
    2.Institute of Urban Study, Shanghai Normal University, Shanghai 200234,China
    3.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101,China
  • Received:2018-03-21 Revised:2018-07-29 Online:2018-10-10 Published:2018-11-16
  • About author:

    First author:Song Xiaoyu(1984-), male, Changchun City, Jilin Province, Assistant Professor. Research areas include ecological economic and environmental policy. E-mail:songxy@llas.ac.cn

  • Supported by:
    Project supported by the Strategic Leading Class A Special Project of the Chinese Academy of Sciences "Earth big data science engineering"(No.XDA19040500);The National Natural Science Foundation of China "Sustainability evaluation of China urban agglomeration supported by remote sensing products and network big data" (No.41730642).

城市可持续发展是关系全球可持续发展目标实现的重中之重,城市可持续性评价是度量城市可持续发展水平的标尺,是实现城市可持续发展的基础。当前的评价方法多以统计数据为基础,评价时空分辨率低、周期长、花费高。近年来,遥感数据、网络大数据等多元数据陆续被用于城市可持续性评价,相关研究案例大量涌现,这为快速、准确、廉价地开展高分辨率城市可持续性评价提供了新的思路与方法。回顾了遥感数据、网络大数据在城市可持续性评价中的应用进展,探讨了遥感和网络大数据相较于传统数据在评价客观性、准确性、时效性方面的优势。在此基础上,以联合国可持续发展目标(SDG)中城市可持续发展指标为导向,提出了基于遥感数据、网络大数据等地球大数据开展高时空分辨率城市可持续性评价的基本框架。遥感与网络大数据的引入将改变可持续性评价的固有范式,使高分辨率实时评价成为可能,进一步创新分析技术、提升数据精度、明确与传统数据的替代关系是遥感和网络大数据实现对传统数据替代的工作重点。

The sustainable development of the city is the key to the realization of the global sustainable development goals. Urban sustainability evaluation is a measure to the sustainable development of cities, and basis of sustainable urban development. The current evaluation method is based on statistical data which is low spatial resolution, long period and high cost. In recent years, remote sensing data, network data and the multivariate data have been used for the evaluation for the sustainable development of cities, and there have been many related research cases, which provides a new idea and method to carry out the high resolution evaluation of urban sustainable development rapidly, accurately and cheaply. This article reviewed the remote sensing data and network data in the progress of the application in the evaluation to the sustainable development of cities, and discussed the advantages of remote sensing and network big data in the objectivity, accuracy, and timeliness of evaluation compared with traditional data. Based on the sustainable urban development indicators of the United Nations Sustainable Development Goals (SDG), a basic framework for the evaluation of sustainable development of cities with high temporal and spatial resolution of big data such as remote sensing data and network big data was proposed. The introduction of remote sensing and network big data will change the inherent paradigm of sustainability assessment, make high-resolution real-time evaluation possible, further innovate analytical techniques, improve data accuracy, and make clear the alternative relationship with traditional data being the focus and the only way to realize the replacement of traditional data by remote sensing and network big data.

中图分类号: 

图1 面向SDG的高分辨率城市可持续性评价框架
Fig.1 Framework of SDG oriented high resolution urban sustainable development assessment
图1 面向SDG的高分辨率城市可持续性评价框架
Fig.1 Framework of SDG oriented high resolution urban sustainable development assessment
[1] UNDESA (United Nations Department of Economic and Social Affairs). World Urbanization Prospects the 2011 Revision[R]. New York: United Nations, 2012.
UNDESA (United Nations Department of Economic and Social Affairs). World Urbanization Prospects the 2011 Revision[R]. New York: United Nations, 2012.
[2] Fang Chuanglin, Zhou Chenghu, Gu Chaolin, et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations[J]. Acta Geographica Sinica, 2016, 71(4):531-550.
doi: 10.11821/dlxb201604001     URL    
Fang Chuanglin, Zhou Chenghu, Gu Chaolin, et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations[J]. Acta Geographica Sinica, 2016, 71(4):531-550.
[方创琳, 周成虎, 顾朝林,等.特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 2016, 71(4): 531-550.]
doi: 10.11821/dlxb201604001     URL    
[方创琳, 周成虎, 顾朝林,等.特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 2016, 71(4): 531-550.]
doi: 10.11821/dlxb201604001     URL    
[3] Fang Chuanglin, Qi Weifeng, Song Jitao.Researches on comprehensive measurement of compactness of urban agglomerations in China[J]. Acta Geographica Sinica, 2008, 63(10):1 011-1 021.
doi: 10.3321/j.issn:0375-5444.2008.10.001     URL    
Fang Chuanglin, Qi Weifeng, Song Jitao.Researches on comprehensive measurement of compactness of urban agglomerations in China[J]. Acta Geographica Sinica, 2008, 63(10):1 011-1 021.
[方创琳,祁巍锋,宋吉涛. 中国城市群紧凑度的综合测度分异[J].地理学报, 2008, 63(10): 1 011-1 021.]
doi: 10.3321/j.issn:0375-5444.2008.10.001     URL    
[方创琳,祁巍锋,宋吉涛. 中国城市群紧凑度的综合测度分异[J].地理学报, 2008, 63(10): 1 011-1 021.]
doi: 10.3321/j.issn:0375-5444.2008.10.001     URL    
[4] Fang Chuanglin, Song Jitao, Zhang Qiang, et al. The formation, development and spatial heterogeneity patternsfor the structures system of urban agglomerations in China[J]. Acta Geographica Sinica, 2005, 60(5):827-840.
doi: 10.3321/j.issn:0375-5444.2005.05.014     URL    
Fang Chuanglin, Song Jitao, Zhang Qiang, et al. The formation, development and spatial heterogeneity patternsfor the structures system of urban agglomerations in China[J]. Acta Geographica Sinica, 2005, 60(5):827-840.
[方创琳,宋吉涛,张蔷,等. 中国城市群结构体系的组成与空间分异格局[J]. 地理学报,2005, 60(5): 827-840.]
doi: 10.3321/j.issn:0375-5444.2005.05.014     URL    
[方创琳,宋吉涛,张蔷,等. 中国城市群结构体系的组成与空间分异格局[J]. 地理学报,2005, 60(5): 827-840.]
doi: 10.3321/j.issn:0375-5444.2005.05.014     URL    
[5] United Nations.Transforming Our World: The 2030 Agenda for Sustainable Development A[Z]. 2015.
United Nations.Transforming Our World: The 2030 Agenda for Sustainable Development A[Z]. 2015.
[联合国. 改变我们的世界:2030年可持续发展议程[Z]. 2015.]
[联合国. 改变我们的世界:2030年可持续发展议程[Z]. 2015.]
[6] Lehtonen M, Sébastien L, Bauler T.The multiple roles of sustainability indicators in informational governance: Between intended use and unanticipated influence[J]. Current Opinion in Environmental Sustainability, 2016, 18: 1-9.
doi: 10.1016/j.cosust.2015.05.009     URL    
Lehtonen M, Sébastien L, Bauler T.The multiple roles of sustainability indicators in informational governance: Between intended use and unanticipated influence[J]. Current Opinion in Environmental Sustainability, 2016, 18: 1-9.
doi: 10.1016/j.cosust.2015.05.009     URL    
[7] Gomes C P.Computational sustainability: Computational methods for a sustainable environment, economy, and society[J]. The Bridge, 2009, 39(4): 5-13.
Gomes C P.Computational sustainability: Computational methods for a sustainable environment, economy, and society[J]. The Bridge, 2009, 39(4): 5-13.
[8] Zhou Qifeng, Li Tao.From policy-driven to technical practice: Big data opens up new avenues for sustainable development research[J]. Big Data Research, 2016, 2(1): 115-119.
URL    
Zhou Qifeng, Li Tao.From policy-driven to technical practice: Big data opens up new avenues for sustainable development research[J]. Big Data Research, 2016, 2(1): 115-119.
[周绮凤, 李涛. 从政策驱动到技术践行: 大数据开辟可持续发展研究新途径[J]. 大数据, 2016, 2(1): 115-119. ]
URL    
[周绮凤, 李涛. 从政策驱动到技术践行: 大数据开辟可持续发展研究新途径[J]. 大数据, 2016, 2(1): 115-119. ]
URL    
[9] Costa C, Santos M Y.Improving cities sustainability through the use of data mining in a context of big city data[J]. Proceedings of the World Congress on Engineering, 2015,1: 320-325.
Costa C, Santos M Y.Improving cities sustainability through the use of data mining in a context of big city data[J]. Proceedings of the World Congress on Engineering, 2015,1: 320-325.
[10] Khan Z, Anjum A, Soomro K, et al. Towards cloud based big data analytics for smart future cities[J]. Journal of Cloud Computing, 2015, 4(1): 1-11.
doi: 10.1186/s13677-014-0025-1     URL    
Khan Z, Anjum A, Soomro K, et al. Towards cloud based big data analytics for smart future cities[J]. Journal of Cloud Computing, 2015, 4(1): 1-11.
doi: 10.1186/s13677-014-0025-1     URL    
[11] Glaeser E L, Kerr S P, Kerr W R.Entrepreneurship and urban growth: An empirical assessment with historical mines[J]. Review of Economics and Statistics, 2015, 97(2): 498-520.
doi: 10.1162/REST_a_00456     URL    
Glaeser E L, Kerr S P, Kerr W R.Entrepreneurship and urban growth: An empirical assessment with historical mines[J]. Review of Economics and Statistics, 2015, 97(2): 498-520.
doi: 10.1162/REST_a_00456     URL    
[12] Lepri B, Antonelli F, Pianesi F,et al . Making big data work: Smart, sustainable, and safe cities[J]. EPJ Data Science, 2015, 4(1): 1-4.
doi: 10.1140/epjds/s13688-015-0038-0     URL    
Lepri B, Antonelli F, Pianesi F,et al . Making big data work: Smart, sustainable, and safe cities[J]. EPJ Data Science, 2015, 4(1): 1-4.
doi: 10.1140/epjds/s13688-015-0038-0     URL    
[13] Curtis L H, Brown J, Platt R.Four health data networks illustrate the potential for a shared national multipurpose big-data network[J]. Health Affairs, 2014, 33(7): 1 178-1 186.
doi: 10.1377/hlthaff.2014.0121     URL     pmid: 25006144
Curtis L H, Brown J, Platt R.Four health data networks illustrate the potential for a shared national multipurpose big-data network[J]. Health Affairs, 2014, 33(7): 1 178-1 186.
doi: 10.1377/hlthaff.2014.0121     URL     pmid: 25006144
[14] Durahim A O, Co?kun M. # iamhappybecause: Gross National Happiness through Twitter analysis and big data[J]. Technological Forecasting and Social Change, 2015, 99: 92-105.
doi: 10.1016/j.techfore.2015.06.035     URL    
Durahim A O, Coᶊkun M. # iamhappybecause: Gross National Happiness through Twitter analysis and big data[J]. Technological Forecasting and Social Change, 2015, 99: 92-105.
doi: 10.1016/j.techfore.2015.06.035     URL    
[15] OECD (Organization for Economic Cooperation and Development). How's Life? 2013: Measuring Well-Being[R]. Paris: OECD Publishing, 2013.
OECD (Organization for Economic Cooperation and Development). How's Life? 2013: Measuring Well-Being[R]. Paris: OECD Publishing, 2013.
[16] Preis T, Moat H S, Stanley H E, et al.Quantifying the advantage of looking forward[J]. Social Science Electronic Publishing, 2012, 2(4):40-41.
Preis T, Moat H S, Stanley H E, et al.Quantifying the advantage of looking forward[J]. Social Science Electronic Publishing, 2012, 2(4):40-41.
[17] Wang Yifan, Xu Xiaobing.Application of Baidu Map API in gravity accessibility model[J]. Software Guide, 2015, 14(12): 94-96.
Wang Yifan, Xu Xiaobing.Application of Baidu Map API in gravity accessibility model[J]. Software Guide, 2015, 14(12): 94-96.
[王一凡, 许晓兵. 百度地图API 在引力可达性模型中的应用[J]. 软件导刊, 2015, 14(12): 94-96.]
[王一凡, 许晓兵. 百度地图API 在引力可达性模型中的应用[J]. 软件导刊, 2015, 14(12): 94-96.]
[18] Weiss D J, Nelson A, Gibson H S, et al. A global map of travel time to cities to assess inequalities in accessibility in 2015[J]. Nature, 2018, 553(7 688): 333-336.
Weiss D J, Nelson A, Gibson H S, et al. A global map of travel time to cities to assess inequalities in accessibility in 2015[J]. Nature, 2018, 553(7 688): 333-336.
[19] Abel G J, Sander N.Quantifying global international migration Flows[J]. Science, 2014, 343(6 178): 1 520-1 522.
Abel G J, Sander N.Quantifying global international migration Flows[J]. Science, 2014, 343(6 178): 1 520-1 522.
[20] Weiss D J, Nelson A, Gibson H S, et al. A global map of travel time to cities to assess inequalities in accessibility in 2015[J]. Nature, 2018, 553: 333-336.
Weiss D J, Nelson A, Gibson H S, et al. A global map of travel time to cities to assess inequalities in accessibility in 2015[J]. Nature, 2018, 553: 333-336.
[21] Sobolevsky S, Bojic I, Belyi A, et al. Scaling of city attractiveness for foreign visitors through big data of human economical and social media activity[C]∥IEEE International Congress on Big Data. IEEE Computer Society, 2015:600-607.
Sobolevsky S, Bojic I, Belyi A, et al. Scaling of city attractiveness for foreign visitors through big data of human economical and social media activity[C]∥IEEE International Congress on Big Data. IEEE Computer Society, 2015:600-607.
[22] Gao Jun, Han Dong.A research on the image of historic urban blocks based on content analysis: A case study of Hengshan and fuxing roads in Shanghai[J]. Tourism Science, 2014,28(6):1-12.
Gao Jun, Han Dong.A research on the image of historic urban blocks based on content analysis: A case study of Hengshan and fuxing roads in Shanghai[J]. Tourism Science, 2014,28(6):1-12.
[高峻, 韩冬. 基于内容分析法的城市历史街区意象研究——以上海衡山路—复兴路历史街区为例[J]. 旅游科学, 2014, 28(6): 1-12.]
[高峻, 韩冬. 基于内容分析法的城市历史街区意象研究——以上海衡山路—复兴路历史街区为例[J]. 旅游科学, 2014, 28(6): 1-12.]
[23] Groves P, Kayyali B, Knott D, et al. The 'big data' revolution in healthcare[J]. McKinsey Quarterly, 2013, 2: 1-22.
Groves P, Kayyali B, Knott D, et al. The 'big data' revolution in healthcare[J]. McKinsey Quarterly, 2013, 2: 1-22.
[24] Shin S J, Woo J, Rachuri S.Predictive analytics model for power consumption in manufacturing[J]. Procedia CIRP, 2014, 15: 153-158.
Shin S J, Woo J, Rachuri S.Predictive analytics model for power consumption in manufacturing[J]. Procedia CIRP, 2014, 15: 153-158.
[25] Jean N, Burke M, Xie M, et al. Combining satellite imagery and machine learning to predict poverty[J]. Science, 2016, 353(6 301): 790-794.
Jean N, Burke M, Xie M, et al. Combining satellite imagery and machine learning to predict poverty[J]. Science, 2016, 353(6 301): 790-794.
[26] Wang J, Christopher S A.Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21): 267-283.
Wang J, Christopher S A.Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21): 267-283.
[27] Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental Science & Technology,2005, 39: 3 269-3 278.
Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environmental Science & Technology,2005, 39: 3 269-3 278.
[28] Lee H, Liu Y, Coull B, et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmospheric Chemistry and Physics Discussions, 2011, 11:9 769-9 795.
Lee H, Liu Y, Coull B, et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmospheric Chemistry and Physics Discussions, 2011, 11:9 769-9 795.
[29] Liu Y, Paciorek C J, Koutrakis P.Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information[J]. Environmental Health Perspectives, 2009, 117: 886.
Liu Y, Paciorek C J, Koutrakis P.Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information[J]. Environmental Health Perspectives, 2009, 117: 886.
[30] Ma Z, Hu X, Huang L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014, 48: 7 436-7 444.
Ma Z, Hu X, Huang L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014, 48: 7 436-7 444.
[31] Koelemeijer R, Homan C, Matthijsen J.Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe[J]. Atmospheric Environment, 2006, 40: 5 304-5 315.
Koelemeijer R, Homan C, Matthijsen J.Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe[J]. Atmospheric Environment, 2006, 40: 5 304-5 315.
[32] Zheng Y, Zhang Q, Liu Y, et al. Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements[J]. Atmospheric Environment, 2016, 124: 232-242.
Zheng Y, Zhang Q, Liu Y, et al. Estimating ground-level PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements[J]. Atmospheric Environment, 2016, 124: 232-242.
[33] Van Donkelaar A, Martin R V, Brauer M, et al. Global fine particulate matter concentrations from satellite for long-term exposure assessment[J]. Environmental Health Perspectives, 2015, 3: 135-143.
Van Donkelaar A, Martin R V, Brauer M, et al. Global fine particulate matter concentrations from satellite for long-term exposure assessment[J]. Environmental Health Perspectives, 2015, 3: 135-143.
[34] Peng J, Chen S, Lü H, et al. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011[J]. Remote Sensing of Environment, 2016, 174: 109-121.
Peng J, Chen S, Lü H, et al. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011[J]. Remote Sensing of Environment, 2016, 174: 109-121.
[35] Bagan H, Yamagata Y.Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data[J]. GIScience & Remote Sensing, 2015, 52(6): 765-780.
Bagan H, Yamagata Y.Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data[J]. GIScience & Remote Sensing, 2015, 52(6): 765-780.
[36] Peng J, Xie P, Liu Y, et al. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016, 173: 145-155.
Peng J, Xie P, Liu Y, et al. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016, 173: 145-155.
[37] Shen H, Huang L, Zhang L, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172: 109-125.
Shen H, Huang L, Zhang L, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172: 109-125.
[38] Wan Z.New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140: 36-45.
Wan Z.New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140: 36-45.
[39] Chithra S, Nair M H, Amarnath A, et al. Impacts of impervious surfaces on the environment[J]. International Journal of Engineering Science Invention, 2015, 4: 27-31.
Chithra S, Nair M H, Amarnath A, et al. Impacts of impervious surfaces on the environment[J]. International Journal of Engineering Science Invention, 2015, 4: 27-31.
[40] Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7): 2 607-2 654.
Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7): 2 607-2 654.
[41] Elvidge C D, Baugh K E, Anderson S J, et al. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data[J]. Social Geography, 2012, 7(1): 23-35.
Elvidge C D, Baugh K E, Anderson S J, et al. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data[J]. Social Geography, 2012, 7(1): 23-35.
[42] Elvidge C D, Cinzano P, Pettit D R, et al. The Nightsat mission concept[J]. International Journal of Remote Sensing, 2007, 28(12): 2 645-2 670.
Elvidge C D, Cinzano P, Pettit D R, et al. The Nightsat mission concept[J]. International Journal of Remote Sensing, 2007, 28(12): 2 645-2 670.
[43] Hillger D, Kopp T, Lee T, et al. First-light imagery from Suomi NPP VIIRS[J]. Bulletin of the American Meteorological Society, 2013, 94(7): 1 019-1 029.
Hillger D, Kopp T, Lee T, et al. First-light imagery from Suomi NPP VIIRS[J]. Bulletin of the American Meteorological Society, 2013, 94(7): 1 019-1 029.
[44] Che Pinjue.The Essence of Data[M]. Beijing: Beijing United Publishing Co., Ltd., 2017.
Che Pinjue.The Essence of Data[M]. Beijing: Beijing United Publishing Co., Ltd., 2017.
[车品觉. 数据的本质[M]. 北京:北京联合出版有限公司,2017.]
[车品觉. 数据的本质[M]. 北京:北京联合出版有限公司,2017.]
[1] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[2] 魏彦强, 李新, 高峰, 黄春林, 宋晓谕, 王宝, 马瀚青, 王鹏龙. 联合国2030年可持续发展目标框架及中国应对策略[J]. 地球科学进展, 2018, 33(10): 1084-1093.
[3] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[4] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[5] 张睿,马建文. 支持向量机在遥感数据分类中的应用新进展[J]. 地球科学进展, 2009, 24(5): 555-562.
[6] 柏延臣;王劲峰. 遥感数据专题分类不确定性评价研究:进展、问题与展望[J]. 地球科学进展, 2005, 20(11): 1218-1225.
[7] 李晓兵;陈云浩;喻锋. 基于遥感数据的全球及区域土地覆盖制图———现状、战略和趋势[J]. 地球科学进展, 2004, 19(1): 71-080.
[8] 张云霞,李晓兵,陈云浩. 草地植被盖度的多尺度遥感与实地测量方法综述[J]. 地球科学进展, 2003, 18(1): 85-093.
[9] . 遥感岩石学的研究及其进展[J]. 地球科学进展, 1996, 11(3): 252-258.
阅读次数
全文


摘要