地球科学进展 ›› 2003, Vol. 18 ›› Issue (1): 85 -093. doi: 10.11867/j.issn.1001-8166.2003.01.0085

研究论文 上一篇    下一篇

草地植被盖度的多尺度遥感与实地测量方法综述
张云霞,李晓兵,陈云浩   
  1. 北京师范大学环境演变与自然灾害教育部重点实验室,北京师范大学资源科学研究所,北京 100875
  • 收稿日期:2001-02-04 修回日期:2002-09-02 出版日期:2003-02-10
  • 通讯作者: 张云霞 E-mail:koala_irs@hotmail.com
  • 基金资助:

    国家自然科学基金项目“基于‘3S’检测我国北方气候变化对植被的影响”(编号:30000027);国家“863”项目“多尺度生态资产遥感综合测量技术与示范应用”(编号:2001AA136060)联合资助.

OVERVIEW OF FIELD AND MULTI-SCALE REMOTE SENSING MEASUREMENT APPROACHES TO GRASSLAND VEGETATION COVERAGE

Zhang YunXia, Li Xiaobing, Chen Yunhao   

  1. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education of China, Beijing Normal University; Institute of Resources Science, Beijing Normal University, Beijing 100875, China
  • Received:2001-02-04 Revised:2002-09-02 Online:2003-02-10 Published:2003-02-01

植被盖度作为一个重要的生态学参数被用在许多气候模型和生态模型中。地表实测和遥感测量是获取植被盖度的两种基本途径。以草地植被盖度的测量为研究对象,综合讨论了目前地表实测和遥感测量常用的方法,分析了它们的优缺点,并对如何提高草地植被盖度的测量精度做出展望。数码相机、高光谱遥感以及多尺度遥感数据的综合使用可能是未来草地植被盖度测量发展的趋势。

     Vegetation coverage is an important ecology parameter and used in many climatic and ecological models. Field measurement and remote sensing measurement are rudimental approaches to get vegetation coverage. As far as field measurement, currently common methods include sampling, instruments and visible estimating. Field measurement plays a crucial role in ground vegetation investigation, which provides a background for interpreting and quantifying remote sensing data. However, field measurement has much self-limitation, which does not satisfy exhibiting vegetation features and variation in a large area.  Referring to remote sensing measurement, experiential models, sub-pixel models and vegetation indices approaches are three prime methods used for vegetation coverage estimation, which are restricted by some factors such as ground measurement precision and image spatial resolution. Vegetation indices mostly used in estimating vegetation coverage involve DVI,ARVI,ASVI,GEMI,SAVI,MSAVI and SAVI, which have various suitable conditions.  Corresponding to different spatial scales, actual remote sensing imagines can be divided into low spatial resolution images such as NOAA/AVHRR and MODIS, middling spatial resolution images such as TM,MSS and SPOT, and high spatial resolution images such as aerial photograph and IKONOS. Remote sensing measurement in grass vegetation coverage has close relation with field measurement data, so consummate design for field measurement is very essential for improving measuring precision of grassland vegetation coverage. Only fast combining these two kinds of data, we are having chances to get perfect grass vegetation coverage measuring results. 
    This article aims at analyzing and discussing measurement of grassland vegetation coverage, synthetically studying methods of filed measurement and remote sensing measurement, and prospecting possible methods to improve measuring precision of grassland vegetation coverage. Undoubtedly, with the development and mature of sensor technology and various mathematics models, it is possible for us to get remote sensing imagine of high spatial resolution, great spatial scales and credible performance.  Digital camera, hyperspectral remote sensing and comprehensive use of multi-scale remote sensing data are possible development trends for improving measurement precision to grassland vegetation coverage. It is true that remote sensing imagine will play more and more important role in studying vegetation characters in the future.

中图分类号: 

[1] Liu Huiping,Zhu QiJiang. Studies of methologies and their development on land-use/cover change detection by using high spatial resolution remote sensing data[J]. Resource Science,1999,21(3):23-27. [刘慧平,朱启疆. 应用高空间分辨率遥感数据进行土地利用与覆盖变化监测的方法及研究进展[J]. 资源科学,1999,21(3):23-27.]

[2] Purevdor J T S,Tateishi R,Ishiyama T,et al. Relationships between percent vegetation cover and vegetation indices[J]. International Journal of Remote Sensing,1998,19(18):3 519-3 535.

[3] Zhang Wenbo,Fu Suhua,Liu Baoyuan. Precision analysis of visual estimating grass vegetation coverage[J]. Journal of Beijing Normal University (Natural Science Edition),2001,37(3):402-408. [章文波,符素华,刘宝元. 目估法测量植被覆盖度的精度分析[J]. 北京师范大学学报(自然科学版),2001,37(3):402-408.]

[4] Sutherland W J. Manual of Ecology Survey Methods[M]. Beijing:Scientific and Technical Documents Publishing House,1999. [Sutherland W J. 生态学调查方法手册 [M]. 北京:科学技术文献出版社,1999.]

[5] Zhou Q,Robson M,PilesJo P. On the ground estimation of vegetation cover in Australian rangelands[J]. International Journal of Remote Sensing,1998,9:1 815-1 820.

[6] Wilson A D,Abraham N A,Barratt R,et al. Evaluation of methods of assessing vegetation change in the semi-arid rangelands of southern Australia [J]. Australian Rangeland Journal,1987,9:5-13.

[7] Curran P J,Williamson H D. Sample size for ground and remotely sensed data[J]. Remote Sensing of Environment,1986, 20:31-41.

[8] Chen Jin,Chen Yunhao,He Chunyang,et al. Sub-pixel model for vegetation fraction estimation based on land cover classification[J]. Journal of Remote Sensing,2001,5(6):416-422. [陈晋,陈云浩,何春阳,. 基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J]. 遥感学报, 2001,5(6):416-422.]

[9] Gutman G,Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing,1998,19(8):1 533-1 543.

[10] Liu YuJie,Yang Zhongdong,et al. MODIS Remote Sensing Information Process Theory and Arithmetic[M]. Beijing:Science Publishing House,2001. [刘玉洁,杨忠东,. MODIS遥感信息处理原理与算法[M]. 北京:科学出版社,2001.]

[11] Kaufman Y,Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS [J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30:261-270.

[12] Huete A R. A soil-adJusted vegetation index (SAVI) [J]. Remote Sensing of Environment,1988,25:295-309.

[13] Qi J,Chehbouni A,Huete A R,et al. Modified soil adJusted vegetation index (MSAVI) [J]. Remote Sensing of Environment,1994,48:119-126.

[14] Qi J,Kerr J,Chehbouni A. External factor consideration in vegetation index development[A]. In:6th International Symposium on Physical Measurements and Signatures in Remote Sensing,held in Val d'Isere,France,on 17-21 January 1994 (Toulouse,France:CNES)[C].1994.723-730.

[15] Pinty B,Verstraete M M. GEMI:A non-linear index to monitor global vegetation from satellites [J]. Vegetatio,1992,101:15-20.

[16] Eastwood J A,Yates M G,Thomson A G,et al. The reliability of vegetation indices for monitoring saltmarsh vegetation cover[J]. International Journal of Remote Sensing,1997,18(18): 3 901-3 907.

[17] Gutman G,Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing,1998,19(8):1 533-1 543.

[18] XuBin Zeng,Robert E,Dickinson Alison Walker,et al. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling[J]. Journal of Applied Meteorology,2000,39(6): 826-839.

[19] Defries R S,Townshend J R G,Hansen M C. Continuous fields of vegetation characteristics at the global scale[J]. Journal Geophysical Research,1999,104:16 911-16 923.

[20] Wittich,Hansing. Area-averaged vegetative cover fraction estimated from satellite data[J]. International Journal of Biometereology,1995,38(3):209-215.

[21] Dymond J R,Stephens P R,Newsome P F,et al. Percent vegetation cover of a degrading rangeland from SPOT[J].  International Journal of Remote Sensing,1992,13(11):1 999-2 007.

[22] Duncan J,Stow D,Franklin J,et al. Assessing the relationship between spectral vegetation indices and shrub cover in the Jornada Basin,New Mexico[J]. International Journal of Remote Sensing,1993,14(18):3 395-3 416 . 

[23] Shoshany M,Kutiel P,Lavee H. Monitoring temporal vegetation cover changes in Mediterranean and arid ecosystems using a remote sensing technique:Case study of the Judean Mountain and the Judean Desert[J]. Journal of Arid Environments,1996,33:9-21.

[24] Chen Yunhao,Li Xiaobing,Shi PeiJun. Estimation vegetation coverage change using remote sensing data in haidian district,Beijing[J]. Acta Phytoecologica Sinica,2001,25(5):588-593. [陈云浩,李晓兵,史培军. 北京海淀区植被覆盖的遥感动态研究[J]. 植物生态学报,2001,25(5):588-593.]

[25] Graetz Pech. The assessment and monitoring of sparsely vegetated rangelands using calibrated Landsat data[J]. International Journal of Remote Sensing,1988,9(7):1 201-1 222.

[26] Yang,Prince. Remote sensing of savanna vegetation changes in Eastern Zambia 1972-1989[J]. International Journal of Remote Sensing,2000,21(2):301-322.

[27] McDaniel. Assessing mesquite-grass vegetation condition from Landsat[J]. Photogrammetric Engineering and Remote Sensing,1982,48:441-450.

[28] White Michael A,Asner Gregory P,Nemani Ramakrishna R,et al. Measuring fractional cover and leaf area index in arid ecosystem:Digital camera,radiation transmittance,and laser altimetry methods[J]. Remote Sensing of Environment,2000,74:45-57.

[29] Fang Hongliang,Tian QingJiu. Are view of hyperspectral remote sensing in vegetation monitoring[J]. Remote Sensing Technology and Application,1998,13(1):62-69. [方红亮,田庆久. 高光谱遥感在植被监测中的研究综述[J]. 遥感技术与应用,1998,13(1):62-69.]

[30] Kenneth McGwire,Timothy Minor,Lynn Fenstermaker. Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environment[J]. Remote Sensing of Environment,2000,72:360-374.

[31] Qi J,Marsett R C,Moran M S,et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area[J]. Agricultural and Forest Meteorology,2000,105:55-68.

[32] Leprieur C,Kerr Y H,Mastorchio S,et al. Monitoring vegetation cover across semi-arid regions:Comparison of remote observations from various scales[J]. International Journal of Remote Sensing,2000,21(2):281-300.

[33] Shi PeiJun,Liu Baoyuan,Zhang Keli,et al. Soil erosion process and model studies[J]. Resource Science,1999,21(5):9-18. [史培军,刘宝元,张科利,. 土壤侵蚀过程与模型研究[J]. 资源科学,1999,21(5):9-18.]

[34] Guo Zhongsheng. Three coverages of vegetation construct in the water and soil conservation[J]. Soil and Water Conservation in China,2000,4:30-31.[郭忠升. 水土保持植被建设中的三个盖度:潜势盖度、临界盖度和有效盖度[J]. 中国水土保持, 2000,4:30-31.]

[35] Shi Shengxin. A testing study of factors affecting infiltration rate under artificial rainfall with high intensity[J]. Bulletin of Soil and Water Conservation,1992,12(2):49-54. [石生新. 高强度人工降雨入渗规律[J]. 水土保持通报,1992,12(2):49-54.]

[36] Luo Weixiang,Bai Liqiang,Song Xide,et al. Runoff and scouring amount in forest and grass land with different cover rate[J]. Journal of Soil and Water Conservation,1990,4(1):30-35. [罗伟祥,白立强,宋西德,. 不同覆盖度林地和草地的径流量与冲刷量[J]. 水土保持学报,1990,4(1):30-35.]

[37] Chen Yunhao,Li Xiaobing,Shi PeiJun. Regional evapotranspiration estimation over Northwest China using remote sensing[J]. Acta Geographica Sinica,2001,56(3):261-268.[陈云浩,李晓兵,史培军. 中国西北地区蒸发散量计算的遥感研究[J]. 地理学报,2001,56(3):261-268.]

[38] Liu Shuhua. Numerical simulation of the evapotranspiration process in the soil-vegetation-atmosphere continuum[J]. Acta Science,1996,32(3): 361-378.

[39] Owen T W,Carlson T N,Gillies R R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization[J]. International Journal of Remote Sensing,1998,19(9):1 663-1 681.

[40] Carlson T N,Gillies R R,Perry E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Review,1994,9:161-173.

[1] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[2] 赵哈林, 李玉强, 周瑞莲, 赵学勇, 张铜会, 王进. 内蒙古东部两大沙地土壤理化特性沙漠化演变规律的比较[J]. 地球科学进展, 2011, 26(7): 779-786.
[3] 何亚婷,齐玉春,董云社,彭琴,肖胜生,刘欣超. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885.
[4] 肖胜生,董云社,齐玉春,彭琴,何亚婷,杨智杰. 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展[J]. 地球科学进展, 2009, 24(10): 1138-1148.
[5] 赵哈林,大黑俊哉,周瑞莲,李玉霖,左小安,黄刚. 人类活动与气候变化对科尔沁沙质草地植被的影响[J]. 地球科学进展, 2008, 23(4): 408-414.
[6] 杨凯,高清竹,李玉娥,林而达,盛文萍,江村旺扎,王宝山,李文福. 藏北地区草地退化空间特征及其趋势分析[J]. 地球科学进展, 2007, 22(4): 410-416.
[7] 任继周,侯扶江,张自和. 发展草地农业推进我国西部可持续发展[J]. 地球科学进展, 2000, 15(1): 19-24.
阅读次数
全文


摘要