[1] Vapnik V N. The Nature of Statistical Learning Theory\[M\]. New York: Springer-Verlag,1995. [2] Hughes G. On the mean accuracy of statistical pattern recognizers[J].IEEE Transactions on Information Theory,1968,14(1):55-63. [3] Vapnik V N. Statistical Learning Theory[M]. New York: Wiley,1998. [4] Burges C J C. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. [5] Cristianini N,Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M]. Cambrideg: Cambridge University Press,2000. [6] Mazzoni D, Garay M J, Davies R, et al. An operational MISR pixel classifier using support vector machines[J]. Remote Sensing of Environment, 2007,107(1/2):149-158. [7] Mitra P, Shankar B U, Pal S K. Segmentation of multispectral remote sensing images using active support vector machines[J].Pattern Recognition Letters, 2004, 25(9):1 067-1 074. [8] Song M J,Civco D. Road extraction using SVM and image segmentation[J].Photogrammetric Engineering and Remote Sensing, 2004, 70(12):1 365-1 371. [9] Camps-Valls G, Gomez-Chova L, Munoz-Mari J, et al. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1 822-1 835. [10] Bovolo F, Bruzzone L, Marconcini M. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2 070-2 082. [11] Inglada J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features[J].International Journal of Photogrammetry and Remote Sensing, 2007, 62(3):236-248. [12] Brown M, Lewis H G, Gunn S R. Linear spectral mixture models and support vector machines for remote sensing[J].IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2 346-2 360. [13] Hsu C W,Lin C J. A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks, 2002, 13(2):415-425. [14] Rifkin R,Klautau A. In defense of one-vs-all classification[J].Journal of Machine Learning Research, 2004, 5:101-141. [15] Melgani F,Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1 778-1 790. [16] Mathur A,Foody G M. Multiclass and binary SVM classification: Implications for training and classification users[J].IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):241-245. [17] Huang C, Davis L S, Townshend J R G. An assessment of support vector machines for land cover classification[J].International Journal of Remote Sensing, 2002, 23(4):725-749. [18] Dixon B,Candade N. Multispectral landuse classification using neural networks and support vector machines: One or the other, or both?[J].International Journal of Remote Sensing, 2008, 29(4):1 185-1 206. [19] Zhu G B,Blumberg D G. Classification using ASTER data and SVM algorithms; The case study of Beer Sheva, Israel[J].Remote Sensing of Environment, 2002, 80(2):233-240. [20] Foody G M,Mathur A. A relative evaluation of multiclass image classification by support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6):1 335-1 343. [21] Foody G M,Mathur A D. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification[J].Remote Sensing of Environment, 2004, 93(1/2):107-117. [22] Foody G M,Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM[J].Remote Sensing of Environment, 2006, 103(2):179-189. [23] Zhang L P, Huang X, Huang B, et al. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2 950-2 961. [24] Bruzzone L,Carlin L. A multilevel context-based system for classification of very high spatial resolution images[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2 587-2 600. [25] Camps-Valls G, Gomez-Chova L, Calpe-Maravilla J, et al. Robust support vector method for hyperspectral data classification and knowledge discovery[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1 530-1 542. [26] Camps-Valls G,Bruzzone L. Kernel-based methods for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1 351-1 362. [27] Zhang Youjing, Gao Yunxiao, Huang Hao, et al. Research on remote sensing classification of urban vegetation species based on SVM decision-making tree[J].Journal of remote sensing,2006,10(2):191-196.[张友静,高云霄,黄浩,等.基于SVM决策支持树的城市植被类型遥感分类研究[J]. 遥感学报,2006,10(2):191-196.] [28] Xu Fang, Mei Wensheng, Zhang Zhihua. Least squares support vector machines for aerial images segmentation[J].Geomatics and Information Science of Wuhan University,2005,30(8):694-698.[徐芳,梅文胜,张志华. 航空影像分割的最小二乘支持向量机方法[J]. 武汉大学学报:信息科学版,2005,30(8):694-698.] [29] Waske B,Benediktsson J A. Fusion of support vector machines for classification of multisensor data[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12):3 858-3 866. [30] Waske B,van der Linden S. Classifying multilevel imagery from SAR and optical sensors by decision fusion[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(5):1 457-1 466. [31] Dalponte M, Bruzzone L, Gianelle D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5):1 416-1 427. [32] Zhang Jinshui, He Chunyang, Pan Yaozhong, et al. The high spatial resolution RS image classification based on SVM method with the multi-source data[J].Journal of Remote Sensing, 2006, 10(1):49-57.[张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006, 10(1):49-57.] [33] Huang Xin, Zhang Liangpei, Li Pingxiang. Classification of high spatial resolution remotely sensed imagery based upon fusion of multiscale features and SVM[J].Journal of Remote Sensing, 2007, 11(1):48-54.[黄昕,张良培,李平湘. 基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J]. 遥感学报,2007,11(1):48-54.] [34] He Lingmin, Shen Zhangquan, Kong Fansheng,et al. Study on multi-source remote sensing images classification with SVM[J].Journal of Image and Graphics, 2007, 12(4):648-654.[何灵敏,沈掌泉,孔繁胜,等. SVM在多源遥感图像分类中的应用研究[J].中国图象图形学报,2007, 12(4):648-654.] [35] Dash J, Mathur A, Foody G M, et al. Land cover classification using multi-temporal MERIS vegetation indices[J].International Journal of Remote Sensing, 2007,28(6):1 137-1 159. [36] Huang C Q, Song K, Kim S, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J].Remote Sensing of Environment,2008,112(3):970-985. [37] Mantero P, Moser G, Serpico S B. Partially supervised classification of remote sensing images through SVM-based probability density estimation[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):559-570. [38] Bruzzone L, Chi M M, Marconcini M. A novel transductive SVM for semisupervised classification of remote-sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2006, 44(11):3 363-3 373. [39] Chi M M,Bruzzone L.Semisupervised classification of hyperspectral images by SVMs optimized in the primal[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1 870-1 880. [40] Demir B,Erturk S. Hyperspectral image classification using relevance vector machines[J].IEEE Geoscience and Remote Sensing Letters, 2007, 4(4):586-590. [41] Foody G M. RVM-based multi-class classification of remotely sensed data[J].International Journal of Remote Sensing, 2008, 29(6):1 817-1 823. [42] Munoz-Mari J, Bruzzone L, Camps-Valls G. A support vector domain description approach to supervised classification of remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2 683-2 692. [43] Tax D M J,Duin R P W. Support vector domain description[J].Pattern Recognition Letters, 1999, 20(11/13):1 191-1 199. [44] Foody G M, Mathur A, Sanchez-Hernandez C, et al. Training set size requirements for the classification of a specific class[J].Remote Sensing of Environment, 2006, 104(1):1-14. [45] Tax D M J,Duin R P W. Support vector data description[J].Machine Learning, 2004, 54(1):45-66. [46] Blanzieri E,Melgani F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1 804-1 811. [47] Chen J, Wang C, Wang R S. Combining support vector machines with a pairwise decision tree[J].IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):409-413. [48] Ghoggali N,Melgani F. Genetic SVM approach to semisupervised multitemporal classification[J].IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):212-216. [49] Gomez-Chova L, Camps-Valls G, Munoz-Mari J, et al. Semisupervised image classification with Laplacian support vector machines[J].IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):336-340. [50] Zhang R,Ma J. An improved SVM method P-SVM for classification of remotely sensed data[J].International Journal of Remote Sensing,2008,29(20):6 029-6 036. |