地球科学进展 2016, Vol. 31 Issue (10): 1041-1046 DOI: 10.11867/j.issn.1001-8166.2016.10.1041 |
研究论文 |
|
|
|
|
基于支持向量机的川中杂卤石分类识别研究 |
陈科贵1, 吴刘磊1*, *, 陈愿愿2, 王刚3 |
1.西南石油大学地球科学与技术学院,四川 成都 610500; 2.川庆钻探工程有限公司地球物理勘探公司,四川 成都 610213; 3.中国石油新疆油田分公司勘探开发研究院,新疆 克拉玛依 834000 |
|
Classification and Recognition of Polyhalite in Chuanzhong Based on Support Vector Machine |
Chen Kegui1, Wu Liulei1, *, Chen Yuanyuan2, Wang Gang3 |
1.School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China; 2.Geophysical Exploration Company, Chuanqing Drilling Engineering Company Limited, Chengdu 610213, China; 3.Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000,China |
引用本文:
陈科贵, 吴刘磊, 陈愿愿, 王刚. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016, 31(10): 1041-1046.
Chen Kegui, Wu Liulei, Chen Yuanyuan, Wang Gang. Classification and Recognition of Polyhalite in Chuanzhong Based on Support Vector Machine. Advances in Earth Science, 2016, 31(10): 1041-1046.
链接本文:
http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.10.1041
或
http://www.adearth.ac.cn/CN/Y2016/V31/I10/1041
|
[1] Huang Xuanzhen. Polyhalite—An ideal potash[C]∥Non-metallic Mineral Materials, Environmental Protection, Ecology, Health and Symposium.Chinese Ceramic Society Professional Committee of Non-metallic Minerals and National Building Materials Industry Committee on Science and Technology Education,2003:7. ∥非金属矿物材料与环保、生态、健康研讨会论文集.中国硅酸盐学会非金属矿专业委员会、国家建材工业科技教育委员会,2003:7.] [2] Chen Kegui, Li Chunmei, Li Li, et al . Geophysical logging criteria and discriminant model for the potassium-rich strata and their application to Sichuan Basin: A case study of Guang’an area of central Sichuan[J]. Acta Geoscientica Sinica ,2013,31(5):623-630. . 地球学报,2013,34(5): 623-630.] [3] Chen Kegui, Li Chunmei, Zhang Jie, et al .Calculating the apparent content of K 2 O with logging data[J]. Journal of Oil and Gas Technology ,2012,34(3):96-100,167. . 石油天然气学报,2012,34(3):96-100,167.] [4] Pu Jie, Wu Xia, Li Hang.Reseach of the solid potash salts logging method in Sichuan Basin[J]. Computer Applications of Petroleum ,2013,(1):31-34. . 石油工业计算机应用,2013,(1):31-34.] [5] Chen Kegui,Li Li,Li Chunmei, et al . Exolution of the potash-rich areas in evaporation baisn during the epigenetic stage with continental block being active[J]. Advances in Earth Science ,2014,29(4):515-522. . 地球科学进展,2014,29(4):515-522.] [6] Song Yanjie, Zhang Jianfeng, Yan Weilin, et al . A new identification method for complex lithology with support vector machine[J]. Journal of Daqing Petroleum Institute ,2007,31(5):18-20. . 大庆石油学院学报,2007,31(5):18-20.] [7] Liang Ya’na. Support Vector Machine in Logging Curve Hierarchical Application[D].Chengdu:Chengdu University of Technology,2012. .成都:成都理工大学,2012.] [8] Chen Kegui, Chen Xu, Zhang Jiahao. Combined methods of permeability logging evaluate in glutenite reservoirs—A case study of Badaowan Formation in Karamay Oilfield[J]. Advances in Earth Science ,2015,30(7):773-779. . 地球科学进展,2015,30(7):773-779.] [9] Chen Kegui, Li Li, Wang Gang, et al . Analysis of logging response characteristics and potassium-forming conditions of early and middle Triassic Strata in Nanchong Basin[J]. Mineral Deposits ,2014,33(5):1 069-1 080. . 矿床地质,2014,33(5):1 069-1 080.] [10] Huang Xi.The Enrichment Regularity of Triassic Potassium-rich Brines of the Salt-bearing Sichuan Basin[D].Beijing:China University of Geosciences(Beijing),2013. .北京:中国地质大学(北京),2013.] [11] Huang Xuanzhen.The first polyhalite deposit of China[J]. Yunnan Geology ,1996,15(1):52-61. . 云南地质,1996,15(1):52-61.] [12] Liu Dejun, Ran Qunying, Wang Bin.Application of support vector machine in logging analysis of Qijia sagin Daqing Oilfiel[J]. Geophysical Prospecting for Petroleum ,2007, 46(2):156-161. . 石油物探,2007,46(2):156-161.] [13] Li Xinhu. Lithology identification methods contrast based on support vector machines at different well logging parameter[J]. Coalgeology & Exploration ,2007,35(3):72-76,80. . 煤田地质与勘探,2007,35(3):72-76,80.] [14] Zhang Ying, Pan Baozhi. The application of SVM and FMI to the lithologic identification of volcanic rocks[J]. Geophysical and Geochemical Exploration ,2011,35(5):634-638,642. . 物探与化探,2011,35(5):634-638,642.] [15] Yexin Liu. Support Vector Machine (SVM)-based geostatistical inversion: An integrated solution to honor well-log data and seismic attributes[C]∥CSPG CSEG CWLS Convention.Alberta,Canada,2009: 309-312. [16] Wang Guochang, Carr T R, Ju Yiwen, et al. Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian Basin[J]. Computers & Geosciences , March ,2014, 64: 52-60,doi:10.1016/j.caqeo.2013.12.002. [17] Hassan S M, Soliman O S, Mahmoud A S. Optimized data input for the support vector machine classifier using ASTER data. Case study: Wadi Atalla area, Eastern Desert, Egypt[J]. Carpathian Journal of Earth and Environmental Sciences ,2015,10(1): 15-26. [18] Yu Daiguo, Sun Jianmeng,Wang Huanzeng, et al . A new method for logging lithology identification—SVM[J]. Petroleum Geology & Oilfield Development ,2005,24(5):93-95,110. . 大庆石油地质与开发,2005,24(5):93-95,110.] [19] Shu Shiyu. SVM Predictive Optimizationalgorithm and Application Based Onensemble Learning[D].Shanghai:Donghua University,2015. .上海:东华大学,2015.] |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|