地球科学进展 ›› 2016, Vol. 31 ›› Issue (10): 1047 -1055. doi: 10.11867/j.issn.1001-8166.2016.10.1047

研究论文 上一篇    下一篇

基于数值模拟的泥石流灾害定量风险评价
黄勋 1, 2, 3, 唐川 3*, *   
  1. 1.重庆市勘测院,重庆 401121;
    2.重庆市岩土工程技术研究中心,重庆 401121;
    3. 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2016-07-02 修回日期:2016-09-15 出版日期:2016-10-20
  • 通讯作者: 唐川(1961-),男,安徽合肥人,教授,主要从事地质灾害、地貌学与工程地质研究.E-mail: tangc707@gmail.com
  • 基金资助:
    重庆市社会民生科技创新专项项目“水文地质三维建模技术在越岭隧道规划建设中的应用研究”(编号:cstc2016shmszx30021); 国家科技支撑技术项目“地震扰动区重大滑坡泥石流等地质灾害防范与生态修复”(编号:2011BAK12B01)资助

Quantitative Risk Assessment of Catastrophic Debris Flows through Numerical Simulation

Huang Xun 1, 2, 3, Tang Chuan 3, *   

  1. 1.Chongqing Survey Institute, Chongqing 401121, China;
    2.Chongqing Engineering Research Center of Geotechnical Engineering, Chongqing 401121, China;
    3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
  • Received:2016-07-02 Revised:2016-09-15 Online:2016-10-20 Published:2016-10-20
  • About author:Huang Xun(1986-), male, Guangyuan City, Sichuan Province, Ph. D. Research areas include the assessment and prediction of the geologic hazard.E-mail:huangxun198671@163.com*Corresponding author:Tang Chuan(1961-), male, Hefei City, Anhui Province, Professor. Research areas include the geologic hazard, geomorphology and engineering geology.E-mail:tangc707@gmail.com
  • Supported by:
    Project supported by the Special Program for Social Technology Innovation of Chongqing “Application of 3D hydrogeological modeling method on the planning and construction of the long tunnel”(No; cstc2016shmszx30021); National Science and Technology Support Program “Geohazard prevention and geoenvironment protection in the meizoseismal area”(No.2011BAK12B01)
风险评价是灾害防治最有效的软措施之一,也是实现灾害风险管控的重要基础。针对承灾体类型和泥石流成灾方式的特殊性,以重要承灾体——建筑物和道路为研究对象,构建了一套适用于我国西南山地城镇的泥石流定量风险评价的理论体系和技术流程,主要分为3个步骤:①利用FLO-2D数值模型,以强度指数 IDF表达泥石流危险性;②利用汶川七盘沟7·11泥石流灾损数据,构建基于超越损失概率的物质易损性曲线;③在建立承灾体数据库的基础上,通过设置不同的未来泥石流情境,实现承灾体预期损失的定量表达。以汶川羊岭沟为例的模型验证和案例运用表明,构建的泥石流定量风险评价体系,能够很好地反映承灾体与泥石流的响应机制,可为泥石流威胁区的防灾减灾工作提供科学依据。
The risk assessment is not only the one of the most effective soft measures in natural hazard prevention, but also is the base of hazard risk management. On account of the specificity of various elements at risk and debris flow mechanism, the theoretical system and technical procedure of debris flow quantitative risk assessment for buildings and roads were established in the mountaineous area of Southwest China, which included three sections: ①To represent debris flow hazard quantitatively using the intensity index IDF through FLO-2D simulation; ②To build debris flow physical vulnerability curve based on the loss exceedance-probability from Qipan gully debris flow case; ③To quantify the expected loss of the important elements at risk based on their database after setting the future debris flow scenarios. The case study of Yangling catchment indicated that the responding mechanism between elements at risk and debris flow physical mechanism was described quantitatively by this quantitative risk assessment system, which can contribute to the construction planning and prevention measure making in the southwestern mountainous area.

中图分类号: 

[1] Shi Peijun, Kong Feng, Ye Qian, et al . Disaster risk science development and disaster risk reduction using science and technology[J]. Advances in Earth Science ,2014,29(11):1 205-1 211.
.地球科学进展, 2014, 29(11): 1 205-1 211.]
[2] Peng Jian, Liu Yanxu, Pan Yajing, et al . Study on the correlation between ecological risk due to natural disaster and landscape pattern-process: Review and prospect[J]. Advances in Earth Science , 2014, 29(10): 1 186-1 196.
. 地球科学进展, 2014, 29(10): 1 186-1 196.]
[3] Fuchs S, Heiss K, Hübl J. Towards an empirical vulnerability function for use in debris flow risk assessment[J]. Natural Hazards and Earth System Science , 2007, 7(5): 495-506.
[4] Akbas S O, Blahut J, Sterlacchini S. Critical assessment of existing physical vulnerability estimation approaches for debris flows[C]∥Landslide Processes: From Geomorphological Mapping to Dynamic Modelling. Strasbourg:CERG Editions, 2009: 229-233.
[5] Leone F, Lavigne F, Paris R, et al . A spatial analysis of the December 26th, 2004 tsunami-induced damages: Lessons learned for a better risk assessment integrating buildings vulnerability[J]. Applied Geography ,2011, 31(1): 363-375.
[6] Lo W C, Tsao T C, Hsu C H. Building vulnerability to debris flows in Taiwan: A preliminary study[J]. Natural Hazards ,2012, 64(3): 2 107-2 128.
[7] Zeng Chao, He Na, Song Guohu. Analysis and assessment of methods to assess vulnerability of building in debris flow hazard[J]. Advances in Earth Science , 2012, 27(11): 1 211-1 220.
. 地球科学进展, 2012, 27(11): 1 211-1 220.]
[8] Jakob M, Stein D, Ulmi M. Vulnerability of buildings to debris flow impact[J]. Natural Hazards , 2012, 60(2): 241-261.
[9] Luna B Q, Blahut J, Camera C, et al . Physically based dynamic run-out modelling for quantitative debris flow risk assessment: A case study in Tresenda, northern Italy[J]. Environmental Earth Sciences ,2014, 72(3): 645-661.
[10] O’ Brien J S, Julien P Y, Fullerton W T. Two-dimensional water flood and mudflow simulation[J]. Journal of Hydraulic Engineering ,1993, 119(2): 244-261.
[11] Jakob M, Holm K, Weatherly H, et al . Debris flood risk assessment for Mosquito Creek, British Columbia, Canada[J]. Natural Hazards ,2013, 65(3):1 653-1 681.
[12] Lin J Y, Yang M D, Lin B R, et al . Risk assessment of debris flows in Songhe Stream, Taiwan[J]. Engineering Geology ,2011, 123(1): 100-112.
[13] Huang Xun, Tang Chuan, Zhou Wei. Occurrence frequency estimation model for debris flow using numerical simulation[J]. Journal of Engineering Geology ,2014,(6):1 271-1 278.
. 工程地质学报, 2014, (6): 1 271-1 278.]
[14] Zhang Peng, Ma Jinzhu, Shu Heping, et al . Numerical simulation of erosion and deposition debris flow based on FLO-2D model[J]. Journal of Lanzhou University ( Natural Sciences ),2014, 50(3): 363-368.
. 兰州大学学报: 自然科学版, 2014, 50(3): 363-368.]
[15] Scheidl C, Rickenmann D. Empirical prediction of debris-flow mobility and deposition on fans[J]. Earth Surface Processes and Landforms ,2010, 35(2): 157-173.
[16] Bell R, Glade T. Quantitative risk analysis for landslides-Examples from Bíldudalur, NW-Iceland[J]. Natural Hazards and Earth System Science , 2004, 4(1): 117-131.
[17] Zeng Chao, Cui Peng, Ge Yonggang, et al . Characteristics and mechanism of buildings damaged by debris flows on 11 July, 2013 in Qipangou of Wenchuan, Sichuan[J]. Journal of Earth Sciences and Environment ,2014, 36(2): 81-91.
. 地球科学与环境学报, 2014, 36(2): 81-91.]
[18] Xiang Lingzhi, Cui Peng, Zhong Dunlun, et al . Quantitative hazard assessment of road debris flow in Wenchuan earthquake area: A case study of Xiaojia Ravine in Wenchuan County[J]. Journal of Southwest Jiaotong University ,2012, 47(3): 387-393.
. 西南交通大学学报, 2012, 47(3): 387-393.]
[19] Cui P, Xiang L, Zou Q. Risk assessment of highways affected by debris flows in Wenchuan earthquake area[J]. Journal of Mountain Science ,2013, 10(2): 173-189.
[20] Han Y, Dong S, Chen Z, et al . Assessment of secondary mountain hazards along a section of the Dujiangyan-Wenchuan highway[J]. Journal of Mountain Science ,2014, 11(1): 51-65.
[21] Xu Linrong, Chen Shuyang, Cao Lulai. Engineering vulnerability assessment for bridges and tunnels harmed by debris flow hazards[J]. Rock and Soil Mechanics ,2014, 35(9): 2 642-2 650.
. 岩土力学, 2014, 35(9): 2 642-2 650.]
[22] Winter M G, Smith J T, Fotopoulou S, et al . An expert judgement approach to determining the physical vulnerability of roads to debris flow[J]. Bulletin of Engineering Geology and the Environment ,2014, 73(2): 291-305.
[1] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[2] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613.
[3] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[4] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[5] 刘清华,余斌,唐川,李丽. 四川省都江堰市龙池地区泥石流危险性评价研究[J]. 地球科学进展, 2012, 27(6): 670-677.
[6] 曾 超,贺 拿,宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220.
[7] 鲁科,余斌,韩林,谢洪. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990.
[8] 张康,王兆印,余国安,韩鲁杰. 城市泥石流沟的治理启示——以深沟为例[J]. 地球科学进展, 2011, 26(12): 1269-1275.
[9] 安培浚,李栎,张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10): 1116-1124.
[10] 唐川,章书成. 水力类泥石流起动机理与预报研究进展与方向[J]. 地球科学进展, 2008, 23(8): 787-793.
[11] 余斌. 粘性泥石流的平均运动速度研究[J]. 地球科学进展, 2008, 23(5): 524-532.
[12] 唐川. 城市泥石流灾害预警问题探讨[J]. 地球科学进展, 2008, 23(5): 546-552.
[13] 崔鹏; 唐邦兴. 泥石流学科的发展和对策[J]. 地球科学进展, 1993, 8(2): 14-18.
阅读次数
全文


摘要