地球科学进展 ›› 2018, Vol. 33 ›› Issue (6): 606 -613. doi: 10.11867/j.issn.1001-8166.2018.06.0606

研究论文 上一篇    下一篇

泥石流次声警报研究进展
胡雨豪 1, 2( ), 袁路 1, 2, 马东涛 1, *( ), 李梅 3   
  1. 1.中国科学院山地灾害与地表过程重点实验室,中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
    2.中国科学院大学,北京 100049
    3.中国地质大学(北京),北京 100083
  • 收稿日期:2018-01-16 修回日期:2018-04-05 出版日期:2018-06-20
  • 通讯作者: 马东涛 E-mail:huyuhao@imde.ac.cn;dtma@imde.ac.cn
  • 基金资助:
    *国家自然科学基金项目“泥石流次声预警机制及降低误报率的算法研究”(编号:41572347)资助.

Research Progress on Debris Flow Infrasound Warning

Yuhao Hu 1, 2( ), Lu Yuan 1, 2, Dongtao Ma 1, *( ), Mei Li 3   

  1. 1.Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.China University of Geosciences, Beijing 100083, China
  • Received:2018-01-16 Revised:2018-04-05 Online:2018-06-20 Published:2018-07-23
  • Contact: Dongtao Ma E-mail:huyuhao@imde.ac.cn;dtma@imde.ac.cn
  • About author:

    First author:Hu Yuhao(1992-),male,Meishan City,Sichuan Province,Master student. Research areas include disaster reduction engineering and technology. E-mail:huyuhao@imde.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Research of infrasound early-warning mechanism and false-alarm rate reduction algorithm for debris flows”(No. 41572347).

在对国内外泥石流次声产生机理、信号处理和分析、警报仪器、次声特征、警报实现等分析研究的基础上,对泥石流次声警报研究中的关键科学和技术问题进行了综述。泥石流次声在峰值频率、主频范围和时频变化方面具有其鲜明特点,可以和其他自然灾害的次声加以判别与区分。泥石流次声信号分析主要采取短时傅里叶变换、小波变换、Wigner-Ville分布和希尔伯特黄变换(HHT)等,分析发现HHT更适合用于泥次声信号的处理。泥石流次声警报可划分为发生警报、类型和规模警报及定位警报等3类,发生警报识别算法应立足于SON部分信号,类型和规模警报的算法研究应立足于SBO部分信号,发生警报与类型和规模警报不能同步实现,传感器阵列的布设、定位算法的适用性和山区环境是定位警报精度的主要影响因素。受泥石流运动机理和次声观测对比研究的限制,次声机理的理论分析和数值计算处于探索阶段,次声特征与泥石流形成、运动要素之间尚未建立起可靠的数值关系。未来应开展模拟实验和数值模拟,并结合泥石流预警系统的同步监测,实现泥石流次声的定量化警报。

Based on comprehensive research and analysis of the generation mechanism, instrument, signal processing and characteristics of debris flow infrasound, the key scientific and technical problems of debris flow infrasound warning were reviewed. The debris flow infrasound has its distinct characteristics in peak frequency, frequency range and time-frequency variation, which can be identified from the infrasound of other natural hazards. The short-time Fourier transform(STFT), wavelet transform (CWT), Wigners-Ville distribution (WVD) and the Hilbert Huang transform (HHT), etc. for analyzing methods of infrasound signals are usually used, and the HHT is more suitable for the processing of debris flow infrasound signal. The infrasound warning of debris flow can be divided into occurrence warning, type and scale warning and position warning, etc. The occurrence warning recognition algorithm is based on the SON part signal, and the classification warning algorithm is based on the SBO part signal, and the occurrence warning and type and scale warning cannot be realized simultaneously. Sensor array setting, applicability of location algorithm and mountain environment are the main influencing factors of position warning precision. By limitation of the mechanism of debris flow and field infrasound observation, the theoretical analysis and numerical calculation of debris flow infrasound mechanism are in the exploratory stage. There are no accurate and reliable numerical relationships between the infrasound characteristics and formation, movement elements of debris flow. In the future, the simulation experiment and numerical simulation should be carried out, combined with the synchronous monitoring of the debris flow warning system, to realize the quantitative infrasound warning of debris flow.

中图分类号: 

表1 不同类型泥石流的次声特性 [ 14 ]
Table 1 Characteristics of different types of debris flow infrasound [ 14 ]
表1 不同类型泥石流的次声特性 [ 14 ]
Table 1 Characteristics of different types of debris flow infrasound [ 14 ]
表2 时频分析方法对比 [ 24 ]
Table 2 The comparison of time-frequency analysis methods [ 24 ]
表2 时频分析方法对比 [ 24 ]
Table 2 The comparison of time-frequency analysis methods [ 24 ]
表3 几种常见自然现象的次声特征 [ 12 ]
Table 3 The characteristics of several common natural phenomena infrasound [ 12 ]
表3 几种常见自然现象的次声特征 [ 12 ]
Table 3 The characteristics of several common natural phenomena infrasound [ 12 ]
表4 泥石流次声特征研究成果一览表
Table 4 A list of research results of debris flow infrasound characteristics
表4 泥石流次声特征研究成果一览表
Table 4 A list of research results of debris flow infrasound characteristics
表5 泥石流流量与次声声压值关系 [ 5 ]
Table 5 The relationship between discharge and infrasound pressure value [ 5 ]
表5 泥石流流量与次声声压值关系 [ 5 ]
Table 5 The relationship between discharge and infrasound pressure value [ 5 ]
图1 蒋家沟泥石流峰值频率与流量的关系 [ 6 ]
Fig.1 The relationship between peak frequency and discharge of the debris flow in Jiangjiagou [ 6 ]
图1 蒋家沟泥石流峰值频率与流量的关系 [ 6 ]
Fig.1 The relationship between peak frequency and discharge of the debris flow in Jiangjiagou [ 6 ]
图2 泥石流次声监测点一维线性布置示意图 [ 15 ]
Fig.2 Schematic diagram of monitoring point of debris flow infrasound [ 15 ]
图2 泥石流次声监测点一维线性布置示意图 [ 15 ]
Fig.2 Schematic diagram of monitoring point of debris flow infrasound [ 15 ]
[1] Liu Xilin, Miao Cheng, Tian Chunshan, et al. Comparative analysis of risk assessment of landslides and debris flows of China in 2000 and 2010[J]. Advances in Earth Science, 2016, 31(9):926-936.
[刘希林, 庙成, 田春山,等. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9):926-936.]
doi: 10.11867/j.issn.1001-8166.2016.09.0926     URL    
[2] Zhang Jinshan, Cui Peng.Research on and implementation of debris-flow forecast and warning[J]. Journal of Hydraulic Engineering, 2012, 43(Suppl.2):174-180.
[张金山, 崔鹏. 泥石流预警及其实施方法[J]. 水利学报, 2012, 43(增刊2): 174-180.]
URL    
[3] Cui Peng, Gao Kechang, Wei Fangqiang.The forecasting of debris flow[J]. Bulletin of the Chinese Academy of Sciences, 2005, 20(5): 363-369.
[崔鹏, 高克昌, 韦方强. 泥石流预测预报研究进展[J]. 中国科学院院刊, 2005, 20(5): 363-369.]
doi: 10.3969/j.issn.1000-3045.2005.05.006     URL    
[4] Shi Zhe.Monitoring and Early-Warning Technology of Debris Flow[M].Wuhan:Changjiang Press, 2012.
[师哲. 泥石流监测预警技术[M]. 武汉:长江出版社, 2012.]
[5] Zhang Shucheng, Yu Nanyang.Debris flow infrasound alarm DFW-ⅠⅢ type profile[J]. Journal of Mountain Science, 2008, 26(4): 2.
[章书成, 余南阳. 泥石流次声波警报器DFW-ⅠⅢ型简介[J]. 山地学报, 2008, 26(4): 2.]
[6] Zhou Xiande, Zhang Shucheng.Calibration of infrasound monitoring system and acoustic characteristics of debris-flow movement by field studies[C]//International Conference on Debeis-Flow Hazards Mitigation: Mechanics. Institute of Mountain Hazards and Environment, 2007:571-580.
[7] Zhou Xiande, Zhang Youlong, Zhang Shucheng.Acoustic signals and geophone response induced by stony-type debris flows[J]. Journal- Chinese Institute of Engineers, 2013, 36(3):335-347.
doi: 10.1080/02533839.2012.730269     URL    
[8] He Dewei.Infrasonic Characteristics of the Debris Flow and the Application of the Warning[D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2008.
[何德伟. 泥石流次声特性及在警报中的应用[D]. 成都:中国科学院·水利部成都山地灾害与环境研究所, 2008.]
[9] Kogelnig A, Hübl J, Suriñach E, et al. Infrasound produced by debris flow: Propagation and frequency content evolution[J]. Natural Hazards, 2014, 70(3):1 713-1 733.
doi: 10.1007/s11069-011-9741-8     URL    
[10] Kogelnig A, Hübl J, Suriñach E, et al. A study of infrasonic signals of debris flows[C]//International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 2011:563-572.
[11] Hübl J, Zhang S C, Kogelnig A.Infrasound measurements of debris flow[C]//WIT Transactions on Engineering Sciences, Second International Conference on Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows II. 2008, 60: 3-12.
[12] Liu Dunlong, Leng Xiaopeng, Wei Fangqiang, et al. Monitoring and recognition of debris flow infrasonic signals[J]. Journal of Mountain Science, 2015, 12(4): 797-815.
doi: 10.1007/s11629-015-3471-4     URL    
[13] Schimmel A,Hübl J.Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals[J]. Landslides, 2015, 13(5): 1 181-1 196.
[14] Zhou Ming.Research on the Characteristic of Ground Vibrations and Infrasound Produced by Different Types of Debris Flows[D]. Nanning: Guangxi University, 2014.
[周铭. 不同形态泥石流地声与次声特性比较研究[D].南宁:广西大学, 2014.]
[15] Li Chaoan, Hu Xiewen, Wang Liangwei.Infrasound monitoring and early warning of debris flow along montanic railway line[J]. Technical Acoustics, 2012, 31(4): 351-356.
[李朝安, 胡卸文, 王良玮. 山区铁路沿线泥石流次声监测预警方法[J]. 声学技术, 2012, 31(4): 351-356.]
[16] Liu Dunlong.Debris Flow Positioning and Real-time Monitoring Based on Infrasound Monitoring[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[刘敦龙. 基于次声监测的泥石流定位与实时监控方法[D]. 北京:中国科学院大学, 2015.]
[17] Fei Xiangjun, Shu Anping.Movement Mechanism and Disaster Control for Debris Flow[M]. Beijing:Tsinghua University Press,2004.
[费祥俊,舒安平. 泥石流运动机理与灾害防治[M]. 北京:清华大学出版社,2004.]
[18] Qin Fei, Zheng Fei, Li Junzhi, et al. A mechanism model for infrasound emission during earthquake incubation[J]. Journal of Beijing University of Technology, 2006, 32(6):568-572.
[秦飞, 郑菲, 李均之,等.孕震过程中次声波的产生机理[J]. 北京工业大学学报, 2006, 32(6): 568-572.]
doi: 10.3969/j.issn.0254-0037.2006.06.020     URL    
[19] Ma Dayou.Theoretical Basis of Modern Acoustic[M]. Beijing: Science Press,2005.
[马大猷. 现代声学理论基础[M]. 北京:科学出版社, 2005.]
[20] Hu Kaiheng, Cui Peng, Tian Mi, et al. A review of the debris flow dynamic models and numerical simulation[J]. Journal of Hydraulic Engineering, 2012, 43(Suppl.2):79-84.
[胡凯衡, 崔鹏, 田密,等.泥石流动力学模型和数值模拟研究综述[J]. 水利学报, 2012, 43(增刊2): 79-84.]
URL    
[21] Ni Jinren, Wang Guangqian.Conceptual two phase flow model of debris flow: Ⅰ. Theory[J]. Acta Geographica Sinica, 1998, 26(1):77-85.
[倪晋仁, 王光谦. 泥石流的结构两相流模型:I.理论[J]. 地理学报, 1998, 26(1): 77-85.]
[22] Shu Anping, Wang Le, Yang Kai.Investigation on movement characteristics for non-homogeneous and solid-liquid two-phase debris flow[J]. Chinese Science Bulletin, 2010, 55(31):3 006-3 012.
[舒安平, 王乐, 杨凯. 非均质泥石流固液两相运动特征探讨[J]. 科学通报, 2010, 55(31): 3 006-3 012.]
doi: 10.1360/972010-741     URL    
[23] Xu Wenjie, Guan Hongyun, Wu Xiaolin.Analysis of debris flow infrasound signal based on time-frequency analysis methods[J]. Computer & Modernization, 2013, 1(4):36-39.
[许文杰, 官洪运, 邬晓琳. 泥石流次声信号时频分析方法的应用研究[J]. 计算机与现代化, 2013, 1(4):36-39.]
doi: 10.3969/j.issn.1006-2475.2013.04.009     URL    
[24] Alan V O, Alan S.Signals and Systems (Second Edition)[M]. London: Publishing House of Electronics Industry, 2013.
[25] Li Mei, Chen Liang, Wei Gaorong, ,et al. One kind of debris flow infrasound monitoring system and method gprs-based communication: CN 106197654 A[P].2016-12-07.
[李梅, 陈亮, 魏高荣, 等. 一种基于gprs通信的泥石流次声监测系统及其方法: CN 106197654 A[P].2016-12-07.]
[26] Zhou Xiande.Infrasound monitoring and analysis of debris-flow movement[J].Journal of Chinese Soil and Water Conservation, 2005, 36(3): 233-238.
[周宪德. 土石流运动时之次声特性监测及分析[J]. 中华水土保持学报, 2005, 36(3): 233-238.]
[27] Liu Dunlong, Leng Xiaopeng, Wei Fangqiang, et al. Visualized localization and tracking of debris flow movement based on infrasound monitoring[J]. Landslides, 2017, 3(B): 1-15.
doi: 10.1007/s10346-017-0898-4     URL    
[28] Zhou Hongjian.Hot-topics and prospects of global platform for disaster risk Reduction: Based on 2017 global platform for disaster risk reduction in Cancun, Mexico[J]. Advances in Earth Science, 2017, 32(7):688-695.
[周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7):688-695.]
[1] 时连强,郭俊丽,刘海江,叶清华. Argus系统在我国海滩研究中的应用进展与展望[J]. 地球科学进展, 2019, 34(5): 552-560.
[2] 李文龙,高燕. MEMS传感器在锚杆加固边坡监测中的应用研究[J]. 地球科学进展, 2019, 34(4): 439-448.
[3] 江笑薇, 白建军, 刘宪锋. 基于多源信息的综合干旱监测研究进展与展望[J]. 地球科学进展, 2019, 34(3): 275-287.
[4] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[5] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[6] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[7] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[8] 邵全琴, 樊江文, 刘纪远, 杨帆, 刘华, 杨秀春, 许明祥, 侯鹏, 郭兴健, 黄麟, 李愈哲. 重大生态工程生态效益监测与评估研究[J]. 地球科学进展, 2017, 32(11): 1174-1182.
[9] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[10] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[11] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[12] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[13] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[14] 王江海, 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.
[15] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
阅读次数
全文


摘要