地球科学进展 ›› 2018, Vol. 33 ›› Issue (8): 842 -851. doi: 10.11867/j.issn.1001-8166.2018.08.0842

研究论文 上一篇    下一篇

急陡沟道物源起动模式及水土耦合破坏机制分析
龚凌枫( ), 唐川 *( ), 李宁, 陈明, 杨成长, 蔡英桦   
  1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2018-04-24 修回日期:2018-07-10 出版日期:2018-08-10
  • 通讯作者: 唐川 E-mail:308488910@qq.com;tangc@cdut.edu.cn
  • 基金资助:
    国家自然科学基金项目“急陡沟道泥石流起动—侵蚀—冲出模型研究”(编号:41672299);国家重点研发计划项目“强震区地质灾害动态演化机制与长期效应”(编号:2017YFC1501004)资助.

Source Inition Pattern and Coupling Mechanism of Granular Deposit and Seepage in Steep Longitudinal Gully,Wenchuan

Lingfeng Gong( ), Chuan Tang *( ), Ning Li, Ming Chen, Chengzhang Yang, Yinghua Cai   

  1. State Key Laboratory for Geo-Hazard Prevention and Geo-Environment Protection,Chengdu University of Technology,Chengdu 610059,China
  • Received:2018-04-24 Revised:2018-07-10 Online:2018-08-10 Published:2018-09-14
  • Contact: Chuan Tang E-mail:308488910@qq.com;tangc@cdut.edu.cn
  • About author:

    First author:Gong Lingfeng(1989-), male, Guangshui County, Hubei Province, Ph.D student. Research areas include geological hazard assessment and prediction. E-mail:308488910@qq.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Research of initiation, entrainment, and runout models of steep-channel debris flows” (No.41672299);The National Key Research and Development Program of China “The study on the disaster-causing mechanism and long-term effects of the heavy geological disasters in the strong earthquake mountainous zone” (No.2017YFC1501004).

急陡沟道泥石流物源主要来源是崩塌、滑坡堆积体,堆积体的起动是急陡沟道泥石流冲出量巨大的主要原因。堆积体的物质组成、赋存特征及渗透、径流状态是造成其起动模式不同的本质原因,而较大的纵坡降为其起动提供了良好的地形条件。根据汇水条件及渗透特性设计了2组模型箱试验,模拟坡体内不产生稳定渗透及有稳定渗透条件下的破坏模式。实验表明急陡沟道泥石流起动有“消防管效应”和“坡体流态化”2种基本的模式,前者出现在不饱和或高渗透系数坡体,后者出现在具有一定细颗粒物质的土体中。其中消防管效应仅沿径流路径形成深而窄的侵蚀沟道,且搬运距离与水动力的持续性有关,固体物质搬运作用弱;坡体流态化主要特征为初期的缓慢渗透破坏及后期瞬时流动剪切破坏,侵蚀形成较宽的沟道,且侵蚀量相对较大。

Generally, collapse and landslide are the main sources of granular deposits while the initiation of deposits is triggered by the tremendous runoff from steep longitudinal gully. Substance composition, topographic condition and catchment characteristics directly affect the models of deposits initiation, and larger longitudinal grade provides better topographic condition for the initiation. Several sets of experiments on model casing were designed to simulate the failure mode of slopes under the states of stable and unstable seepages according to catchment and penetration characteristics. It was revealed from the experiments that the initiation of granular deposits had two fundamental modes, that is, fire hose effect and static liquefaction. The former one generally happens at the unsaturated slope or the slope of high permeability while the latter case occurs at the soils containing fine particles. It was concluded that the fire hose effect could generate the deep and narrow eroded channel along with the runoff, the movement distance was related to the continuous hydrodynamic force, and the transporting capacity of solid substances was weak. In addition, slope fluidization was featured with slow seepage failure at the early stage, instantaneous shear failure at the late stage, and wider channel came out due to serious erosion.

中图分类号: 

图1 高家沟泥石流流域图
Fig.1 Watershed map of Gaojia gully
图1 高家沟泥石流流域图
Fig.1 Watershed map of Gaojia gully
图2 高家沟7·3泥石流后堵塞点液化破坏
(a)典型堵塞点(A-A’)剖面图;(b)南天门支沟出口处堵塞体(B-B’)起动后深切沟槽
Fig.2 Liquefaction destruction in Gaojia gully(July 3,2011)
(a)Profile of typical accumulation, A-A’;(b)Barrier failure of profile B-B’
图2 高家沟7·3泥石流后堵塞点液化破坏
(a)典型堵塞点(A-A’)剖面图;(b)南天门支沟出口处堵塞体(B-B’)起动后深切沟槽
Fig.2 Liquefaction destruction in Gaojia gully(July 3,2011)
(a)Profile of typical accumulation, A-A’;(b)Barrier failure of profile B-B’
图3 实验系统示意图
Fig.3 Experimental system diagram
图3 实验系统示意图
Fig.3 Experimental system diagram
表1 支沟及主沟上游沟段特征参数
Table 1 Channel characteristic parameters of main gully and tributary gullies
表1 支沟及主沟上游沟段特征参数
Table 1 Channel characteristic parameters of main gully and tributary gullies
表2 堆积体原型及模型参数对照表
Table 2 Physical and mechanics parameters of barrier dam prototype and experimental models
表2 堆积体原型及模型参数对照表
Table 2 Physical and mechanics parameters of barrier dam prototype and experimental models
图4 模型一坡表变形图
Fig.4 Slope deformation of experimental modelⅠ
图4 模型一坡表变形图
Fig.4 Slope deformation of experimental modelⅠ
图5 模型二坡表变形图
Fig.5 Slope deformation of experimental modelⅡ
图5 模型二坡表变形图
Fig.5 Slope deformation of experimental modelⅡ
图6 模型一降雨时间序列及孔隙水压力曲线
Fig.6 Curve of rainfall time versus pore water pressure in experimental model Ⅰ
图6 模型一降雨时间序列及孔隙水压力曲线
Fig.6 Curve of rainfall time versus pore water pressure in experimental model Ⅰ
图7 模型二降雨时间序列及孔隙水压力曲线
Fig.7 Curve of rainfall time versus pore water pressure in experimental model Ⅱ
图7 模型二降雨时间序列及孔隙水压力曲线
Fig.7 Curve of rainfall time versus pore water pressure in experimental model Ⅱ
图8 坡体流态化破坏过程
(a) 局部液化;(b) 底部流态化;(c) 流态化扩大;(d) 自下而上流态化破坏
Fig.8 Failure process of slope liquefied experimental model Ⅱ
(a)Partial liquefaction; (b)Fluidization at the bottom; (c)Fluidization expansion; (d)Fluidization failure from bottom to top
图8 坡体流态化破坏过程
(a) 局部液化;(b) 底部流态化;(c) 流态化扩大;(d) 自下而上流态化破坏
Fig.8 Failure process of slope liquefied experimental model Ⅱ
(a)Partial liquefaction; (b)Fluidization at the bottom; (c)Fluidization expansion; (d)Fluidization failure from bottom to top
[1] Yang Zhihua, Lan Hengxing, Liu Hongjiang, et al. Post-earthquake rainfall-triggered slope stability analysis in the Lushan area[J]. Journal of Mountain Science, 2015, 12(1):232-242.
doi: 10.1007/s11629-013-2839-6     URL    
Yang Zhihua, Lan Hengxing, Liu Hongjiang, et al. Post-earthquake rainfall-triggered slope stability analysis in the Lushan area[J]. Journal of Mountain Science, 2015, 12(1):232-242.
doi: 10.1007/s11629-013-2839-6     URL    
[2] Zhang Yongshuang, Cheng Yuliang, Yin Yueping, et al. High-position debris flow: A long-term active geohazard after the Wenchuan earthquake[J]. Engineering Geology, 2014,180:45-54.
doi: 10.1016/j.enggeo.2014.05.014     URL    
Zhang Yongshuang, Cheng Yuliang, Yin Yueping, et al. High-position debris flow: A long-term active geohazard after the Wenchuan earthquake[J]. Engineering Geology, 2014,180:45-54.
doi: 10.1016/j.enggeo.2014.05.014     URL    
[3] Tang Chuan, Zhu Jing, Li Weile, et al. Rainfall-triggered debris flows following the Wenchuan earthquake[J]. Bulletin of Engineering Geology & the Environment, 2009, 68(2):187-194.
doi: 10.1007/s10064-009-0201-6     URL    
Tang Chuan, Zhu Jing, Li Weile, et al. Rainfall-triggered debris flows following the Wenchuan earthquake[J]. Bulletin of Engineering Geology & the Environment, 2009, 68(2):187-194.
doi: 10.1007/s10064-009-0201-6     URL    
[4] Zhou Hongjian.Hot-topics and prospects of global platform for disaster risk reduction: Based on 2017 global platform for disaster risk reduction in Cancun, Mexico[J]. Advances in Earth Science, 2017, 32(7):688-695.
Zhou Hongjian.Hot-topics and prospects of global platform for disaster risk reduction: Based on 2017 global platform for disaster risk reduction in Cancun, Mexico[J]. Advances in Earth Science, 2017, 32(7):688-695.
[周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J].地球科学进展,2017,32(7):688-695.]
[周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J].地球科学进展,2017,32(7):688-695.]
[5] Huang Xun, Tang Chuan.Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science, 2016, 31(10): 1 047-1 055.
Huang Xun, Tang Chuan.Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science, 2016, 31(10): 1 047-1 055.
[黄勋,唐川.基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10):1 047-1 055.]
[黄勋,唐川.基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10):1 047-1 055.]
[6] Li Wenxin, Wang Zhaoyin, Wang Xuzhao, et al. Secondary mountain disaster chain induced by the Wenchuan earthquake and the result of Chain—Cutting engineering in the Xiaogangjian Gully[J]. Journal of Mountain Science, 2014, 32(3):336-344.
Li Wenxin, Wang Zhaoyin, Wang Xuzhao, et al. Secondary mountain disaster chain induced by the Wenchuan earthquake and the result of Chain—Cutting engineering in the Xiaogangjian Gully[J]. Journal of Mountain Science, 2014, 32(3):336-344.
[李文鑫, 王兆印, 王旭昭, 等. 汶川地震引发的次生山地灾害链及人工断链效果——以小岗剑泥石流沟为例[J]. 山地学报, 2014,32(3):336-344.]
[李文鑫, 王兆印, 王旭昭, 等. 汶川地震引发的次生山地灾害链及人工断链效果——以小岗剑泥石流沟为例[J]. 山地学报, 2014,32(3):336-344.]
[7] Yang Dongxu, Chen Xiaoqing, You Yong, et al. The debris flow development trend of in Xiaogangjian gully in Mianzhu County, Wenchuan earthquake zone[J]. Journal of Mountain Science, 2012, 30(6):701-708.
doi: 10.3969/j.issn.1008-2786.2012.06.010     URL    
Yang Dongxu, Chen Xiaoqing, You Yong, et al. The debris flow development trend of in Xiaogangjian gully in Mianzhu County, Wenchuan earthquake zone[J]. Journal of Mountain Science, 2012, 30(6):701-708.
[杨东旭, 陈晓清, 游勇, 等. 汶川地震区绵竹小岗剑沟泥石流发展趋势[J]. 山地学报, 2012,30(6):701-708.]
doi: 10.3969/j.issn.1008-2786.2012.06.010     URL    
[杨东旭, 陈晓清, 游勇, 等. 汶川地震区绵竹小岗剑沟泥石流发展趋势[J]. 山地学报, 2012,30(6):701-708.]
doi: 10.3969/j.issn.1008-2786.2012.06.010     URL    
[8] Yang Dongxu, Wang Weiguo, Chen Xiaoqing, et al. Steel pipe piles used for countermeasures in narrow-steep debris flow gullies: A case study of Xiaogangjian debris flow control[J]. Journal of Mountain Science, 2014, 32(1):74-80.
Yang Dongxu, Wang Weiguo, Chen Xiaoqing, et al. Steel pipe piles used for countermeasures in narrow-steep debris flow gullies: A case study of Xiaogangjian debris flow control[J]. Journal of Mountain Science, 2014, 32(1):74-80.
[杨东旭, 王伟国, 陈晓清, 等. 用于狭陡沟谷泥石流防治的坝基钢管桩初探——以小岗剑沟泥石流治理工程为例[J]. 山地学报, 2014,32(1):74-80.]
[杨东旭, 王伟国, 陈晓清, 等. 用于狭陡沟谷泥石流防治的坝基钢管桩初探——以小岗剑沟泥石流治理工程为例[J]. 山地学报, 2014,32(1):74-80.]
[9] Han Mei, Hu Tao, Wang Yan, et al. Dynamics character and river-blocking analysis of narrow-steep channels debris flow in Wenchuan earthquake region—Illustrated with case of Mozi gully along Duwen freeway[J]. Journal of Engineering Geology, 2016, 24(4):559-568.
doi: 10.13544/j.cnki.jeg.2016.04.010     URL    
Han Mei, Hu Tao, Wang Yan, et al. Dynamics character and river-blocking analysis of narrow-steep channels debris flow in Wenchuan earthquake region—Illustrated with case of Mozi gully along Duwen freeway[J]. Journal of Engineering Geology, 2016, 24(4):559-568.
[韩玫, 胡涛, 王严, 等. 汶川震区窄陡沟道型泥石流动力学特性及堵江分析——以都汶高速沿线磨子沟为例[J]. 工程地质学报, 2016,24(4):559-568.]
doi: 10.13544/j.cnki.jeg.2016.04.010     URL    
[韩玫, 胡涛, 王严, 等. 汶川震区窄陡沟道型泥石流动力学特性及堵江分析——以都汶高速沿线磨子沟为例[J]. 工程地质学报, 2016,24(4):559-568.]
doi: 10.13544/j.cnki.jeg.2016.04.010     URL    
[10] Cannon S H, Kirkham R M, Parise M.Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado[J]. Geomorphology, 2001, 39(3/4):171-188.
doi: 10.1016/S0169-555X(00)00108-2     URL    
Cannon S H, Kirkham R M, Parise M.Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado[J]. Geomorphology, 2001, 39(3/4):171-188.
doi: 10.1016/S0169-555X(00)00108-2     URL    
[11] Godt J W, Coe J A.Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado[J]. Geomorphology, 2007, 84(1):80-97.
doi: 10.1016/j.geomorph.2006.07.009     URL    
Godt J W, Coe J A.Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado[J]. Geomorphology, 2007, 84(1):80-97.
doi: 10.1016/j.geomorph.2006.07.009     URL    
[12] Tang Chuan, Zhang Shucheng.Study progress and expectation for initiation mechanism and prediction of hydraulic-driven debris flows[J]. Advances in Earth Science, 2008, 23(8):787-793.
doi: 10.3321/j.issn:1001-8166.2008.08.001     URL    
Tang Chuan, Zhang Shucheng.Study progress and expectation for initiation mechanism and prediction of hydraulic-driven debris flows[J]. Advances in Earth Science, 2008, 23(8):787-793.
[唐川,章书成.水力类泥石流起动机理与预报研究进展与方向[J].地球科学进展,2008,23(8):787-793.]
doi: 10.3321/j.issn:1001-8166.2008.08.001     URL    
[唐川,章书成.水力类泥石流起动机理与预报研究进展与方向[J].地球科学进展,2008,23(8):787-793.]
doi: 10.3321/j.issn:1001-8166.2008.08.001     URL    
[13] Yu Bin, Li Li, Wu Yufu, et al. A formation model for debris flows in the Chenyulan River Watershed, Taiwan[J]. Natural Hazards, 2013, 68(2):745-762.
doi: 10.1007/s11069-013-0646-6     URL    
Yu Bin, Li Li, Wu Yufu, et al. A formation model for debris flows in the Chenyulan River Watershed, Taiwan[J]. Natural Hazards, 2013, 68(2):745-762.
doi: 10.1007/s11069-013-0646-6     URL    
[14] Au S W C. Rainfall and slope failure in Hong Kong[J]. Engineering Geology, 1993, 36(1/2):141-147.
doi: 10.1016/0013-7952(93)90026-9     URL    
Au S W C. Rainfall and slope failure in Hong Kong[J]. Engineering Geology, 1993, 36(1/2):141-147.
doi: 10.1016/0013-7952(93)90026-9     URL    
[15] Chen H X, Zhang L M, Chang D S, et al. Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China[J]. Natural Hazards, 2012, 62(3):1 037-1 057.
doi: 10.1007/s11069-012-0133-5     URL    
Chen H X, Zhang L M, Chang D S, et al. Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China[J]. Natural Hazards, 2012, 62(3):1 037-1 057.
doi: 10.1007/s11069-012-0133-5     URL    
[16] Chen H X, Zhang L M, et al. Simulation of interactions among multiple debris flows[J]. Landslides, 2017, 14(2):595-615.
doi: 10.1007/s10346-016-0710-x     URL    
Chen H X, Zhang L M, et al. Simulation of interactions among multiple debris flows[J]. Landslides, 2017, 14(2):595-615.
doi: 10.1007/s10346-016-0710-x     URL    
[17] Crosta G B, Frattini P.Rainfall-induced landslides and debris flows[J]. Hydrological Processes, 2008, 22(4):473-477.
doi: 10.1002/hyp.6885     URL    
Crosta G B, Frattini P.Rainfall-induced landslides and debris flows[J]. Hydrological Processes, 2008, 22(4):473-477.
doi: 10.1002/hyp.6885     URL    
[18] Iverson R M, Reid M E, LaHusen R G. Debris-flow mobilization from landslides[J]. Annual Review of Earth & Planetary Sciences, 1997, 25(1):85-138.
Iverson R M, Reid M E, LaHusen R G. Debris-flow mobilization from landslides[J]. Annual Review of Earth & Planetary Sciences, 1997, 25(1):85-138.
[19] Chen Xiaoqing.Experiment of Initiation Mechanism of Landslide Translation to Debris Flow[D]. Chengdu: Southwest Jiaotong University, 2006.
Chen Xiaoqing.Experiment of Initiation Mechanism of Landslide Translation to Debris Flow[D]. Chengdu: Southwest Jiaotong University, 2006.
[陈晓清. 滑坡转化泥石流起动机理试验研究[D].成都:西南交通大学,2006.]
[陈晓清. 滑坡转化泥石流起动机理试验研究[D].成都:西南交通大学,2006.]
[20] Chen Xizhe.Research on the strength of the coarse grained soil and the interlocking force[J].Engineering Mechanics, 1994 ,11(4):56-63.
URL    
Chen Xizhe.Research on the strength of the coarse grained soil and the interlocking force[J].Engineering Mechanics, 1994 ,11(4):56-63.
[陈希哲. 粗粒土的强度与咬合力的试验研究[J].工程力学,1994,11(4):56-63.]
URL    
[陈希哲. 粗粒土的强度与咬合力的试验研究[J].工程力学,1994,11(4):56-63.]
URL    
[21] Li Zhenlin.The Wenchuan Earthquake Landslide Accumulation Substance Pile Repose Angle of Simulation on Relations[D]. Chengdu:Southwest University, 2013.
Li Zhenlin.The Wenchuan Earthquake Landslide Accumulation Substance Pile Repose Angle of Simulation on Relations[D]. Chengdu:Southwest University, 2013.
[李振林. 汶川震区滑坡堆积体物质组成与堆积体休止角关系模拟研究[D]. 成都:西南大学,2013.]
[李振林. 汶川震区滑坡堆积体物质组成与堆积体休止角关系模拟研究[D]. 成都:西南大学,2013.]
[22] Yang Shun, Ou Guoqiang, Wang Jun, et al. Experimental analysis of scouring of debris flow initiation process under steady seepage condition[J]. Rock and Soil Mechanics, 2014, 35(12):3 489-3 495.
URL    
Yang Shun, Ou Guoqiang, Wang Jun, et al. Experimental analysis of scouring of debris flow initiation process under steady seepage condition[J]. Rock and Soil Mechanics, 2014, 35(12):3 489-3 495.
[杨顺, 欧国强, 王钧,等. 恒定渗流作用下泥石流起动过程冲刷试验分析[J]. 岩土力学, 2014, 35(12):3 489-3 495.]
URL    
[杨顺, 欧国强, 王钧,等. 恒定渗流作用下泥石流起动过程冲刷试验分析[J]. 岩土力学, 2014, 35(12):3 489-3 495.]
URL    
[23] Shu Anping, Yang Kai, Li Fanghua, et al. Characteristics of grain size processes for and grain order distribution in the deposition non-homogeneous debris flow[J]. Journal of Hydraulic Engineering, 2012, 43(11):1 322-1 327.
Shu Anping, Yang Kai, Li Fanghua, et al. Characteristics of grain size processes for and grain order distribution in the deposition non-homogeneous debris flow[J]. Journal of Hydraulic Engineering, 2012, 43(11):1 322-1 327.
[舒安平, 杨凯, 李芳华, 等. 非均质泥石流堆积过程粒度与粒序分布特征[J]. 水利学报, 2012,43(11):1 322-1 327.]
[舒安平, 杨凯, 李芳华, 等. 非均质泥石流堆积过程粒度与粒序分布特征[J]. 水利学报, 2012,43(11):1 322-1 327.]
[24] Wang Yufeng, Cheng Qiangong, Zhu Qi.Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6):1 089-1 106.
Wang Yufeng, Cheng Qiangong, Zhu Qi.Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6):1 089-1 106.
[王玉峰, 程谦恭, 朱圻. 汶川地震触发高速远程滑坡—碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 2012,31(6):1 089-1 106.]
[王玉峰, 程谦恭, 朱圻. 汶川地震触发高速远程滑坡—碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 2012,31(6):1 089-1 106.]
[25] Yang Hongjuan, Wei Fangqiang, Hu Kaiheng, et al. Experimental study on vertical sorting of particles in debris flow with impact signals[J]. Journal of Catastrophology, 2011, 26(4):29-34.
doi: 10.3969/j.issn.1000-811X.2011.04.006     URL    
Yang Hongjuan, Wei Fangqiang, Hu Kaiheng, et al. Experimental study on vertical sorting of particles in debris flow with impact signals[J]. Journal of Catastrophology, 2011, 26(4):29-34.
[杨红娟, 韦方强, 胡凯衡, 等. 利用冲击力信号判断泥石流颗粒垂向分选的试验研究[J]. 灾害学, 2011,26(4):29-34.]
doi: 10.3969/j.issn.1000-811X.2011.04.006     URL    
[杨红娟, 韦方强, 胡凯衡, 等. 利用冲击力信号判断泥石流颗粒垂向分选的试验研究[J]. 灾害学, 2011,26(4):29-34.]
doi: 10.3969/j.issn.1000-811X.2011.04.006     URL    
[26] Coe J A, Glancy P A, Whitney J W.Volumetric analysis and hydrologic characterization of a modern debris flow near Yucca Mountain, Nevada[J]. Geomorphology, 1997, 20(1/2):11-28.
doi: 10.1016/S0169-555X(97)00008-1     URL    
Coe J A, Glancy P A, Whitney J W.Volumetric analysis and hydrologic characterization of a modern debris flow near Yucca Mountain, Nevada[J]. Geomorphology, 1997, 20(1/2):11-28.
doi: 10.1016/S0169-555X(97)00008-1     URL    
[27] Griffiths P G, Webb R H, Melis T S.Initiation and Frequency of Debris Flows in Grand Canyon, Arizona[R]. U.S. Geological Survey,1996.
Griffiths P G, Webb R H, Melis T S.Initiation and Frequency of Debris Flows in Grand Canyon, Arizona[R]. U.S. Geological Survey,1996.
[28] Melis T S, Webb R H, Griffiths P G, et al. Magnitude and Frequency Data for Historic Debris Flows in Grand Canyon National Park and Vicinity, Arizona[R]. U.S. Geological Survey, 1995.
Melis T S, Webb R H, Griffiths P G, et al. Magnitude and Frequency Data for Historic Debris Flows in Grand Canyon National Park and Vicinity, Arizona[R]. U.S. Geological Survey, 1995.
[29] White S E.Alpine mass movement forms (Noncatastrophic): Classification, description, and significance[J]. Arctic & Alpine Research, 1981, 13(2):127-137.
doi: 10.2307/1551190     URL    
White S E.Alpine mass movement forms (Noncatastrophic): Classification, description, and significance[J]. Arctic & Alpine Research, 1981, 13(2):127-137.
doi: 10.2307/1551190     URL    
[1] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613.
[2] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[3] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[4] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[5] 刘清华,余斌,唐川,李丽. 四川省都江堰市龙池地区泥石流危险性评价研究[J]. 地球科学进展, 2012, 27(6): 670-677.
[6] 曾 超,贺 拿,宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220.
[7] 鲁科,余斌,韩林,谢洪. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990.
[8] 张康,王兆印,余国安,韩鲁杰. 城市泥石流沟的治理启示——以深沟为例[J]. 地球科学进展, 2011, 26(12): 1269-1275.
[9] 安培浚,李栎,张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10): 1116-1124.
[10] 唐川,章书成. 水力类泥石流起动机理与预报研究进展与方向[J]. 地球科学进展, 2008, 23(8): 787-793.
[11] 余斌. 粘性泥石流的平均运动速度研究[J]. 地球科学进展, 2008, 23(5): 524-532.
[12] 唐川. 城市泥石流灾害预警问题探讨[J]. 地球科学进展, 2008, 23(5): 546-552.
[13] 崔鹏; 唐邦兴. 泥石流学科的发展和对策[J]. 地球科学进展, 1993, 8(2): 14-18.
阅读次数
全文


摘要