1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室，四川 成都 610059
• 收稿日期:2008-04-14 修回日期:2008-04-17 出版日期:2008-05-10
• 通讯作者: 余斌 E-mail:drbinyu@yahoo.com
• 基金资助:

国土资源部科研专项“基于高精度遥感技术的冰湖溃决危险性评价和冰川泥石流灾害研究”(编号：20881106)资助.

### Study on the Mean Velocity of Viscous Debris Flows

Yu Bin

1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
• Received:2008-04-14 Revised:2008-04-17 Online:2008-05-10 Published:2008-05-10

Viscous debris flows is the most regular and dangerous debris flows. The velocity of debris flow is the most important parameter in the dynamics parameter of debris flow. It is very important to calculate the velocity of viscous debris flow exactly and easily. The resistance of debris flow is quite different at different area: high resistance of debris flow area with low velocity; low resistance of debris flow area with high velocity. All equations of velocity of viscous debris flow at present are not good at all kinds of resistance area. The asymmetric coefficients of debris flows are quite different in different area: large asymmetric coefficients of debris flow with low resistance; small asymmetric coefficients of debris flow with high resistance. The asymmetric coefficients of debris flow could be used to classify resistance characteristics of debris flow accurately and the resistance law of viscous debris flows was got by asymmetric coefficients. By a series field observation data, an empirical equation of mean velocity of viscous debris flow was got. The velocity calculated by the asymmetric coefficients, bottom slope and hydraulic radius of flow. It is good at both high resistance and low resistance area of debris flows. It is good consistent for the measuring velocity of otherwise field observation data of debris flow and viscous mudflow by this empirical equation. The Froude number of flow is the factor of flow status: supercritical flow or subcritical flow. Ordinary viscous debris flows are supercritical flows, minorities are subcritical flows, and few are slow-motion debris flows which have too large density. The empirical equation is excellent at ordinary supercritical viscous debris flow, but it is bad for the slow-motion flow with large density of debris flow, and it is gentle large for the subcritical viscous debris flow. In the evaluation and prevention of debris flows, the mean velocity equation could be used for the velocity calculated of viscous debris flow in the channel at the upstream of the debris flow fans. At the same time, it is gentle large for the calculating the velocity of viscous debris flow on the debris flow fans. It is bad for the slow-motion debris flow, but the slow-motion could be ignored in the evaluation and prevention of debris flows.

 [1] Wu Jishan，Tian Lianquan，Kang Zhicheng，et al. Debris Flow and Comprehensive Control [M]. Beijing: Science Press，1993:99-102，170-181.[吴积善，田连权，康志成，等.泥石流及其综合治理 [M]. 北京:科学出版社，1993:99-102，170-181.] [2] Chen Guangxi，Wang Jikang，Wang Linhai. The Prevention of Debris Flows [M]. Beijing: Railway Press of China，1983:71-77. [陈光曦，王继康，王林海.泥石流防治[M].北京:中国铁道出版社，1983:71-77.] [3] Hong Zhengxiu. Discussion on the velocity of debris flows [J]. The Chinese Journal of Geological Hazard and Control，1996，7（1）:26-33. [洪正修.泥石流流速公式探讨 [J].中国地质灾害与防治学报，1996，7（1）: 26-33.] [4] Qi Long. A comparison and analysis of resistancelaw of viscous debris flow [J]. Journal of Mountain Science，2000，18（6）: 508-513. [祁龙.粘性泥石流阻力规律初探[J].山地学报，2000，18（6）:508-513.] [5] Yu B. Velocity of viscous debris flow [C]∥Proceedings for Eight international Symposinm on River Sedimentation. Egypt，Cario:NWRC Headquarters，2001:39-41. [6] Xu Yongnian，Kuang Shangfu，Shu Anping. Average Velocity and acceleration effects of intermittent debris flows [J]. Journal of Sediment Research，2001，（6）: 8-13. [徐永年，匡尚富，舒安平.阵性泥石流的平均流速与加速效应 [J].泥沙研究，2001，（6）:8-13.] [7] Wang Yuyi，Zhan Qiandeng，Han Wenliang，et al. Stress-strain properties of viscous debris flow and determination of velocity parameter [J]. The Chinese Journal of Geological Hazard and Control，2003，14（1）: 9-13.[王裕宜，詹钱登，韩文亮，等.粘性泥石流体的应力应变特征和流速参数的确定 [J]. 中国地质灾害与防治学报，2003，14（1）: 9-13.] [8] Fei Xiangjun，Shu Anping. Movement Mechanism and Disaster Control for Debris Flow [M]. Beijing: Press of University Tsinghua，2004:12-15，49-61.[费祥俊，舒安平，泥石流运动机理与灾害防治 [M]. 北京:清华大学出版社，2004: 12-15，49-61.] [9] Compile Group of Manual of Geology Engineering. Manual of Geology Engineering [M]. Beijing: Architecture Press of China，1975: 135-136. [《工程地质手册》编写组，工程地质手册 [M].北京：中国建筑工业出版社，1975：135-136.] [10] Zhang Xinbao，Liu Jiang. Debris Flows in the Basin of Dayinjiang，Yunnan，China [M]. Chengdu: Map Press of Chengdu，1989: 35-64.[张信保，刘江.云南大盈江流域泥石流[M]. 成都:成都地图出版社，1989:35-64.] [11] IGC（Institute of Glaciology and Cryopedology，CAS），ISDCG（Institution of Sciences of Department of Communications，Gansu，China）.Debris Flow in Gansu Province [M]. Beijing: Communications Press，1982:11-43，109-110.[中国科学院兰州冰川冻土研究所，甘肃省交通科学研究所.甘肃泥石流[M].北京: 人民交通出版社，1982:11-43，109-110.] [12] Du Ronghuan，Li Hongliang，Wang Lilun，et al. The formation and developing of glacial debris flow at Guxiang Gully，Tibet，China，Memoirs of Lanzhou Institute of Glaciology and Cryopedology [C]∥Chinese Academy of Sciences. Beijing: Science Press，1984，4:1-18.[杜榕桓，李鸿涟，王立伦，等. 西藏古乡沟冰川泥石流的形成与发展[C]∥中国科学院兰州冰川冻土研究所集刊. 北京: 科学出版社，1984，4:1-18.] [13] Wang Wenrui，Zhang Shucheng，Wang Jiayi，et al. The characteristics of glacial debris flow at Guxiang Gully，Tibet，China [C]∥Memoirs of Lanzhou Institute of Glaciology and Cryopedology，Chinese Academy of Sciences. Beijing: Science Press，1985，4:19-35.[王文濬，章书成，王家义，等.西藏古乡沟冰川泥石流特征[C]∥中国科学院兰州冰川冻土研究所集刊.北京: 科学出版社，1984，4:19-35.] [14] Yu Bin.Experimental study on the velocity of subaqueous debris flows with no-hydroplaning [J]. Advances in Water Science，2007，18（5）: 641-647. [余斌.无水滑的水下泥石流运动速度的实验研究[J].水科学进展，2007，18（5）：641-647.] [15] Marr J G，Harff P A，Shanmugam G，et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures [J]. Bulletin of the Geological Society of America，2001，113:1 377-1 386.
 [1] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851. [2] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613. [3] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936. [4] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055. [5] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818. [6] 刘清华,余斌,唐川,李丽. 四川省都江堰市龙池地区泥石流危险性评价研究[J]. 地球科学进展, 2012, 27(6): 670-677. [7] 曾 超,贺 拿,宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220. [8] 鲁科，余斌，韩林，谢洪. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990. [9] 张康，王兆印，余国安，韩鲁杰. 城市泥石流沟的治理启示——以深沟为例[J]. 地球科学进展, 2011, 26(12): 1269-1275. [10] 安培浚,李栎,张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10): 1116-1124. [11] 唐川，章书成. 水力类泥石流起动机理与预报研究进展与方向[J]. 地球科学进展, 2008, 23(8): 787-793. [12] 唐川. 城市泥石流灾害预警问题探讨[J]. 地球科学进展, 2008, 23(5): 546-552. [13] 武红岭，董树文. 大别造山带构造超压形成的碰撞力学机理[J]. 地球科学进展, 2001, 16(4): 478-483. [14] 崔鹏; 唐邦兴. 泥石流学科的发展和对策[J]. 地球科学进展, 1993, 8(2): 14-18.