Please wait a minute...
img img
高级检索
地球科学进展  2008, Vol. 23 Issue (5): 524-532    DOI: 10.11867/j.issn.1001-8166.2008.05.0524
地质灾害     
粘性泥石流的平均运动速度研究
余斌
成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
Study on the Mean Velocity of Viscous Debris Flows
Yu Bin
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
 全文: PDF(1688 KB)  
摘要:

粘性泥石流是泥石流类型中最常见也是危害最大的类型,泥石流的运动速度是泥石流的动力学参数中最重要的参数,因此准确而简洁地计算粘性泥石流的运动速度就显得非常重要。不同的泥石流地区的泥石流阻力有很大的不同:有的地区阻力较大,属于高阻力地区,泥石流运动速度较低;有的地区阻力较小,属于低阻力地区,泥石流运动速度较高。目前的粘性泥石流平均速度公式还不能兼顾计算所有地区的不同阻力类型的泥石流速度。泥石流的不均匀系数在不同的泥石流地区有很大的不同:不均匀系数小的地区阻力大,而不均匀系数大的地区阻力小,因此可以用不均匀系数划分泥石流沟的阻力特征,从而得到能兼顾所有不同地区的泥石流阻力规律。由一系列野外观测资料得到的由泥石流不均匀系数、泥石流运动底部纵比降和水力半径计算的粘性泥石流运动平均速度经验公式,能适应各种类型的泥石流沟,与其它系列的观测资料对比有很好的一致性,与粘性泥流的观测资料对比也很接近。由流体流动的福劳德数可以确定流动的缓急程度。一般的粘性泥石流都是急流,少数是缓流,极少数是运动速度非常缓慢的容重过大的粘性泥石流。粘性泥石流运动平均速度经验公式用于一般急流的粘性泥石流的速度计算结果很好,但不适用于容重过大的缓慢流动,对于缓流粘性泥石流速度计算偏大。在对泥石流的评估和治理中,平均速度公式可以用于泥石流堆积扇上游渠道中的粘性泥石流速度计算,对泥石流堆积扇上的粘性泥石流速度计算偏大,不适用于缓慢流动粘性泥石流,但在对泥石流的危害评估和治理中可以忽略缓慢流动的发生。

关键词: 泥石流平均速度粘性不均匀系数    
Abstract:

Viscous debris flows is the most regular and dangerous debris flows. The velocity of debris flow is the most important parameter in the dynamics parameter of debris flow. It is very important to calculate the velocity of viscous debris flow exactly and easily. The resistance of debris flow is quite different at different area: high resistance of debris flow area with low velocity; low resistance of debris flow area with high velocity. All equations of velocity of viscous debris flow at present are not good at all kinds of resistance area. The asymmetric coefficients of debris flows are quite different in different area: large asymmetric coefficients of debris flow with low resistance; small asymmetric coefficients of debris flow with high resistance. The asymmetric coefficients of debris flow could be used to classify resistance characteristics of debris flow accurately and the resistance law of viscous debris flows was got by asymmetric coefficients. By a series field observation data, an empirical equation of mean velocity of viscous debris flow was got. The velocity calculated by the asymmetric coefficients, bottom slope and hydraulic radius of flow. It is good at both high resistance and low resistance area of debris flows. It is good consistent for the measuring velocity of otherwise field observation data of debris flow and viscous mudflow by this empirical equation. The Froude number of flow is the factor of flow status: supercritical flow or subcritical flow. Ordinary viscous debris flows are supercritical flows, minorities are subcritical flows, and few are slow-motion debris flows which have too large density. The empirical equation is excellent at ordinary supercritical viscous debris flow, but it is bad for the slow-motion flow with large density of debris flow, and it is gentle large for the subcritical viscous debris flow. In the evaluation and prevention of debris flows, the mean velocity equation could be used for the velocity calculated of viscous debris flow in the channel at the upstream of the debris flow fans. At the same time, it is gentle large for the calculating the velocity of viscous debris flow on the debris flow fans. It is bad for the slow-motion debris flow, but the slow-motion could be ignored in the evaluation and prevention of debris flows.

Key words: Debris flows    Mean velocity    Viscous    Asymmetric coefficient.
收稿日期: 2008-04-14 出版日期: 2008-05-10
:  P642.23  
基金资助:

国土资源部科研专项“基于高精度遥感技术的冰湖溃决危险性评价和冰川泥石流灾害研究”(编号:20881106)资助.

通讯作者: 余斌     E-mail: drbinyu@yahoo.com
作者简介: 余斌(1966-), 男, 四川成都人,研究员, 博士,主要从事泥石流的形成、预报、运动和堆积,浊流在海底扇的沉积和海底河道研究.E-mail:drbinyu@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余斌

引用本文:

余斌. 粘性泥石流的平均运动速度研究[J]. 地球科学进展, 2008, 23(5): 524-532.

Yu Bin. Study on the Mean Velocity of Viscous Debris Flows. Advances in Earth Science, 2008, 23(5): 524-532.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2008.05.0524        http://www.adearth.ac.cn/CN/Y2008/V23/I5/524

[1] Wu JishanTian LianquanKang Zhichenget al. Debris Flow and Comprehensive Control [M]. Beijing: Science Press1993:99-102170-181.[吴积善,田连权,康志成,等.泥石流及其综合治理 [M]. 北京:科学出版社,1993:99-102170-181.]

[2] Chen GuangxiWang JikangWang Linhai. The Prevention of Debris Flows [M]. Beijing: Railway Press of China1983:71-77. [陈光曦,王继康,王林海.泥石流防治[M].北京:中国铁道出版社,1983:71-77.]

[3] Hong Zhengxiu. Discussion on the velocity of debris flows [J]. The Chinese Journal of Geological Hazard and Control199671:26-33. [洪正修.泥石流流速公式探讨 [J].中国地质灾害与防治学报,199671: 26-33.]

[4] Qi Long. A comparison and analysis of resistancelaw of viscous debris flow [J]. Journal of Mountain Science2000186: 508-513. [祁龙.粘性泥石流阻力规律初探[J].山地学报,2000186:508-513.]

[5] Yu B. Velocity of viscous debris flow [C]Proceedings for Eight international Symposinm on River Sedimentation. EgyptCario:NWRC Headquarters2001:39-41.

[6] Xu YongnianKuang ShangfuShu Anping. Average Velocity and acceleration effects of intermittent debris flows [J]. Journal of Sediment Research2001,(6: 8-13. [徐永年,匡尚富,舒安平.阵性泥石流的平均流速与加速效应 [J].泥沙研究,2001,(6:8-13.]

[7] Wang YuyiZhan QiandengHan Wenlianget al. Stress-strain properties of viscous debris flow and determination of velocity parameter [J]. The Chinese Journal of Geological Hazard and Control2003141: 9-13.[王裕宜,詹钱登,韩文亮,等.粘性泥石流体的应力应变特征和流速参数的确定 [J]. 中国地质灾害与防治学报,2003141: 9-13.]

[8] Fei XiangjunShu Anping. Movement Mechanism and Disaster Control for Debris Flow [M]. Beijing: Press of University Tsinghua2004:12-1549-61.[费祥俊,舒安平,泥石流运动机理与灾害防治 [M]. 北京:清华大学出版社,2004: 12-1549-61.]

[9] Compile Group of Manual of Geology Engineering. Manual of Geology Engineering [M]. Beijing: Architecture Press of China1975: 135-136. [《工程地质手册》编写组,工程地质手册 [M].北京:中国建筑工业出版社,1975135-136.]

[10] Zhang XinbaoLiu Jiang. Debris Flows in the Basin of DayinjiangYunnanChina [M]. Chengdu: Map Press of Chengdu1989: 35-64.[张信保,刘江.云南大盈江流域泥石流[M]. 成都:成都地图出版社,1989:35-64.]

[11] IGCInstitute of Glaciology and CryopedologyCAS),ISDCGInstitution of Sciences of Department of CommunicationsGansuChina.Debris Flow in Gansu Province [M]. Beijing: Communications Press1982:11-43109-110.[中国科学院兰州冰川冻土研究所,甘肃省交通科学研究所.甘肃泥石流[M].北京: 人民交通出版社,1982:11-43109-110.]

[12] Du RonghuanLi HongliangWang Lilunet al. The formation and developing of glacial debris flow at Guxiang GullyTibetChinaMemoirs of Lanzhou Institute of Glaciology and Cryopedology [C]Chinese Academy of Sciences. Beijing: Science Press19844:1-18.[杜榕桓,李鸿涟,王立伦,等. 西藏古乡沟冰川泥石流的形成与发展[C]中国科学院兰州冰川冻土研究所集刊. 北京: 科学出版社,19844:1-18.]

[13] Wang WenruiZhang ShuchengWang Jiayiet al. The characteristics of glacial debris flow at Guxiang GullyTibetChina [C]Memoirs of Lanzhou Institute of Glaciology and CryopedologyChinese Academy of Sciences. Beijing: Science Press19854:19-35.[王文濬,章书成,王家义,等.西藏古乡沟冰川泥石流特征[C]中国科学院兰州冰川冻土研究所集刊.北京: 科学出版社,19844:19-35.]

[14] Yu Bin.Experimental study on the velocity of subaqueous debris flows with no-hydroplaning [J]. Advances in Water Science2007185: 641-647. [余斌.无水滑的水下泥石流运动速度的实验研究[J].水科学进展,2007185):641-647.]

[15] Marr J GHarff P AShanmugam Get al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures [J]. Bulletin of the Geological Society of America2001113:1 377-1 386.

 

[1] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[2] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[3] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[4] 刘清华,余斌,唐川,李丽. 四川省都江堰市龙池地区泥石流危险性评价研究[J]. 地球科学进展, 2012, 27(6): 670-677.
[5] 曾 超,贺 拿,宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220.
[6] 鲁科,余斌,韩林,谢洪. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990.
[7] 张康,王兆印,余国安,韩鲁杰. 城市泥石流沟的治理启示——以深沟为例[J]. 地球科学进展, 2011, 26(12): 1269-1275.
[8] 安培浚,李栎,张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10): 1116-1124.
[9] 唐川,章书成. 水力类泥石流起动机理与预报研究进展与方向[J]. 地球科学进展, 2008, 23(8): 787-793.
[10] 唐川. 城市泥石流灾害预警问题探讨[J]. 地球科学进展, 2008, 23(5): 546-552.
[11] 武红岭,董树文. 大别造山带构造超压形成的碰撞力学机理[J]. 地球科学进展, 2001, 16(4): 478-483.
[12] 崔鹏; 唐邦兴. 泥石流学科的发展和对策[J]. 地球科学进展, 1993, 8(2): 14-18.