地球科学进展 ›› 2008, Vol. 23 ›› Issue (5): 517 -523. doi: 10.11867/j.issn.1001-8166.2008.05.0517

地质灾害 上一篇    下一篇

滚石在平台上的运动特征分析
黄润秋,刘卫华   
  1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
  • 收稿日期:2008-04-12 修回日期:2008-04-17 出版日期:2008-05-10
  • 通讯作者: 黄润秋 E-mail:hrq@cdut.edu.cn
  • 基金资助:

    国家自然科学基金雅砻江水电开发联合研究基金重点项目“雅砻江流域高边坡发育的动力过程及其工程适宜性评价”(编号:50539050)资助.

Study on the Movement Charateristics of Rolling Rock Blocks on Platform

Huang Runqiu,Liu Weihua   

  1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059,China
  • Received:2008-04-12 Revised:2008-04-17 Online:2008-05-10 Published:2008-05-10

平台对危岩体失稳后运动有很好的减速拦阻作用,是危岩体防治的有效措施。采用运动学和力学的方法推导了滚石与平台碰撞过程的速度计算公式;探讨了滚石在平台上运动的水平距离的计算方法;在此基础上通过现场滚石试验,分析了滚石形状对滚动摩擦系数的影响。结果表明:滚石与平台碰撞后的速度可由法向恢复系数、切向恢复系数和碰撞前滚石的运动速度确定;滚石在平台上运动的水平距离由第一次碰撞前在平台上飞跃的水平距离、两次碰撞之间水平距离和碰撞结束后滚动的距离3部分组成,其值可通过运动学分析确定,法向恢复系数、切向恢复系数和滚动摩擦系数是计算滚石在平台运动水平位移的重要参数;滚石与表面为块碎石的平台的滚动摩擦系数的值在0.19~1.05之间,按长条形、方形、球形和薄片状的顺序逐渐减小,滚石形状与表面为块碎石的平台之间滚动摩擦系数呈良好的直线关系。所得成果为将平台作为危岩体防治对策时确定平台的宽度提供理论依据,对危岩体与落石的防治有指导意义。

Platform has a good function to baffle potential unstable rock masses movement after their falling.. In this paper, using the kinematics and mechanics theoretical theories, the velocity calculation formula of collision process between rolling rock and platform were put forward, and the horizontal movement calculation method of rolling rock moving on platform was studied. Furthermore, the rolling friction coefficient was researched on the basis of the test and the shape analysis of rolling rock. The test result showed that, the rolling rock moving velocity after collided with platform was ascertained by the normal restitution coefficient, tangential restitution coefficient and the rolling rock moving velocity before collided. The horizontal displacements of the rolling rock on platform have three parts: the horizontal span displacement above the platform before collision, the horizontal displacement between two collisions with the platform, and the rolling displacement after final collision. The displacement value can be ensured with kinematics analysis. The normal restitution coefficient, tangential restitution coefficient and the rolling friction coefficient are the important parameters to calculate the horizontal displacement of the rolling rock movement on platform. The rolling friction coefficient value between rolling rock and platform with rock blocks and detritus surface is between 0.19 and 1.05, and the value is reduced in turn according to rolling rock shape of rectangle, square, spherical and slices shape. The relationship of the rolling friction coefficient between the rolling rock shape and the platform with rock blocks and detritus surface is a good linear relation. The rolling friction coefficient of others shape rolling rock can be confirmed by interpolation method or regression formula. Then the new feasible methods to prevent potential unstable rock masses are put forward. The results help us make out a draft of geohazards prevention.

中图分类号: 

[1] Chen HongkaiTang HongmeiHu Minget al. Research on anchorage calculation method for unstable rock [J]. Chinese Journal of Rock Mechanics and Engineering2005248):1 321-1 327.[陈洪凯,唐红梅,胡明,等.危岩锚固计算方法研究[J].岩石力学与工程学报,2005248:1 321-1 327.]

[2] Chen HongkaiWang RongTang Hongmei. Review on current situation to study and trend of dangerous rock mass [J]. Journal of Chongqing Jiaotong University2003223):18-22.[陈洪凯,王蓉,唐红梅.危岩研究现状及趋势综述[J].重庆交通学院学报,2003223:18-22.]

[3] Huang RunqiuWang XiannengTang Shengchuan. Thermal stress effect on near-surface failure of rock slopes [J]. Progress in Natural Science199998):716-722.[黄润秋,王贤能,唐胜传.热应力的交变作用对边坡危岩体形成的影响[J].自然科学进展,199998):716-722.]

[4] Huang RunqiuLiu WeihuaZhou Jiangpinget al. Rolling tests on movement characteristics of rock blocks [J]. Chinese Journal of Geotechnical Engineering2007299):1 296-1 302.[黄润秋,刘卫华,周江平,等.滚石运动特征试验研究[J].岩土工程学报,2007299):1 296-1 302.]

[5] Yang Ruiping. Application area about the definition of coefficient of restitution [J]. Journal of Heze Teachers College1999214):63-65.[杨瑞萍.关于恢复系数定义的适用范围[J].荷泽师专学报,1999214):63-65.]

[6] Day R W. Case studies of rockfall in soft versus hard rock [J]. Environmental and Engineering Geoscience199737:133-140.

[7] Hu Houtian. Collapse and Rock Fall [M]. BeijingChina Railway Publishing House1989:37-53.[胡厚田编著.崩塌与落石[M].北京:中国铁道出版社,1989:37-53.]

[8] Tang HongmeiYi Pengying. Research dangerous rock movement route [J]. Journal of Chongqing Jianzhu University2003251):17-23.[唐红梅,易朋莹.危岩落石运动特征研究[J].重庆建筑大学学报,2003251):17-23.]

[9] Lü QingSun HongyueZhai Sankouet al. Evaluation models of rockfall trajectory [J]. Journal of Natural Disasters2003122):79-84.[吕庆,孙红月,翟三扣,等.边坡滚石运动的计算模型[J].自然灾害学报,2003122):79-84.]

[10] Guzzetti FCrosta GDetti Ret al. STONE: A computer program for the three dimensional simulation of rockfalls [J] . Computers & Geosciences200228: 1 079-1 093.

 

[1] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[2] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[3] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[4] 刘波, 王晓蕾, 康钊菁, 苏腾, 翟东力, 袁靖. 降雨发生装置空间均匀性的研究[J]. 地球科学进展, 2016, 31(8): 820-828.
[5] 谢榕, 刘亚文, 李翔翔. 大数据环境下卫星对地观测数据集成系统的关键技术[J]. 地球科学进展, 2015, 30(8): 855-862.
[6] 张燕武. 自适应海洋观测[J]. 地球科学进展, 2013, 28(5): 537-541.
[7] 郭华东. 数字地球:10年发展与前瞻[J]. 地球科学进展, 2009, 24(9): 955-962.
[8] 陈洪滨,朱彦良. 大气下投探空技术的发展与应用[J]. 地球科学进展, 2008, 23(4): 337-341.
[9] 张耀南,程国栋,高美荣,韦五周. 适宜环境与生态研究的e-science探讨[J]. 地球科学进展, 2006, 21(10): 1083-1090.
[10] 张耀南;韦五周;程国栋;杨海;景通桥. 寒区旱区特色数据集管理与共享应用[J]. 地球科学进展, 2005, 20(7): 717-723.
[11] 廖顺宝. 资源环境科学多维信息平台研究[J]. 地球科学进展, 2002, 17(4): 502-507.
阅读次数
全文


摘要