[1] |
Hoinkes H.Glaciology in the international hydrological decade[R]∥IAHS Commission of Snow and Ice, Reports and Discussion. IUGG General Assembly,Bern, 1967, 79: 7-16.
|
[2] |
Winther J G, Hall D K.Satellite-derived snow coverage related to hydropower production in Norway: Present and future[J]. International Journal of Remote Sensing, 1999, 20(16): 2 991-3 008.
doi: 10.1080/014311699211570
URL
|
[3] |
Frei A, Robinson D A.Northern Hemisphere snow extent: Regional variability 1972-1994[J]. International Journal of Climatology, 1999, 19(14): 1 535-1 560.
doi: 10.1002/(ISSN)1097-0088
URL
|
[4] |
Zhang T.Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4): 589-590.
doi: 10.1029/2004RG000157
URL
|
[5] |
Schimel J P, Bilbrough C, Welker J M.Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities[J]. Soil Biology and Biochemistry, 2004, 36(2): 217-227.
doi: 10.1016/j.soilbio.2003.09.008
URL
|
[6] |
Tape K, Sturm M, Racine C.The evidence for shrub expansion in northern Alaska and the Pan-Arctic[J]. Global Change Biology, 2006, 12(4): 686-702.
doi: 10.1111/j.1365-2486.2006.01128.x
URL
|
[7] |
Goodison B, Walker A.Use of snow cover derived from satellite passive microwave data as an indicator of climate change[J]. Annals of Glaciology, 1993, 17(1): 137-142.
doi: 10.1017/S0260305500012738
URL
|
[8] |
Josberger E G, Mognard N M.A passive microwave snow depth algorithm with a proxy for snow metamorphism[J]. Hydrological Processes, 2002, 16(8): 1 557-1 568.
doi: 10.1002/hyp.1020
URL
|
[9] |
Gao Feng, Li Xin, Armstrong R L, et al. Preliminary application of passive microwave data to operational snow monitoring in Tibetan Plateau[J]. Remote Sensing Technology and Application, 2003, 18(6): 360-363.
|
|
[高峰,李新,ARMSTRONG R L,等.被动微波遥感在青藏高原积雪业务监测中的初步应用[J].遥感技术与应用,2003,18(6):360-363.]
doi: 10.3969/j.issn.1004-0323.2003.06.002
URL
|
[10] |
Tedesco M, Miller J.Observations and statistical analysis of combined active-passive microwave space-borne data and snow depth at large spatial scales[J]. Remote Sensing of Environment, 2007, 111(2): 382-397.
doi: 10.1016/j.rse.2007.04.019
URL
|
[11] |
Shi Jiancheng, Xiong Chuan, Jiang Lingmei.Review of snow water equivalent microwave remote sensing[J]. Science in China (Series D), 2016,46(4):529-543.
|
|
[施建成, 熊川, 蒋玲梅. 雪水当量主被动微波遥感研究进展[J]. 中国科学:D辑, 2016, 46(4): 529-543.]
|
[12] |
Sun Shaobo, Che Tao.A review of the research on snow cover monitored with Sythetic Aperture Radar (SAR)[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 636-647.
|
|
[孙少波, 车涛. 基于合成孔径雷达 (SAR) 的积雪监测研究进展[J]. 冰川冻土, 2013, 35(3): 636-647.]
doi: 10.7522/j.issn.1000-0240.2013.0073
|
[13] |
Hou Huishu, Yang Hongye.A general introduction to MODIS snow products and its researching application[J]. Remote Sensing Technology and Application, 2009, 24(2): 252-256.
|
|
[侯慧姝, 杨宏业. MODIS 积雪产品及研究应用概述[J]. 遥感技术与应用, 2009, 24(2): 252-256.]
URL
|
[14] |
Li Jinya, Yang Xiuchun, Xu Bin, et al. Snow monitoring using MODIS and AMSR-E in six main pastoral areas of China[J]. Scientia Geographica Sinica,2011, 31(9): 1 097-1 104.
|
|
[李金亚, 杨秀春, 徐斌, 等. 基于MODIS 与 AMSR-E 数据的中国 6 大牧区草原积雪遥感监测研究[J]. 地理科学, 2011, 31(9): 1 097-1 104.]
|
[15] |
Che Tao, Li Xin.The development and prospect of estimating snow water equivalent using passive microwave remote sensing data[J]. Advances in Earth Science, 2004, 19(2): 204-210.
|
|
[车涛, 李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2): 204-210.]
|
[16] |
Li Xin, Che Tao.A review on passive microwave remote sensing of snow cover[J] Journal of Glaciology and Geocryology, 2007, 29(3): 487-496.
|
|
[李新, 车涛. 积雪被动微波遥感研究进展[J]. 冰川冻土, 2007, 29(3):487-496.]
|
[17] |
Wu Yang, Zhang Jiahua, Xu Haiming, et al. Advances in study of snow-cover from remote sensing data[J]. Meteorological Monthly,2007, 33(6): 3-10.
|
|
[吴杨, 张佳华, 徐海明, 等. 卫星反演积雪信息的研究进展[J]. 气象, 2007, 33(6): 3-10.]
doi: 10.3969/j.issn.1000-0526.2007.06.001
URL
|
[18] |
Zhao Yingshi.Principle and Method of Remote Sensing Application Analysis (Second Edition)[M].Beijing: Science Press, 2013.
|
|
[赵英时. 遥感应用分析原理与方法 (第二版)[M]. 北京:科学出版社, 2013.]
|
[19] |
Sun Zhiwen,Shi Jiancheng,Jiang Lingmei, et al. Development of snow depth and snow water equivalent algorithm in western China using passive microwave remote sensing data[J]. Advances in Earth Science,2006,21(12):1 363-1 369.
|
|
[孙之文,施建成,蒋玲梅,等. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J].地球科学进展,2006,21(12):1 363-1 369.]
doi: 10.3321/j.issn:1001-8166.2006.12.018
URL
|
[20] |
Jin Rui, Li Xin.A review on the algorithm of frozen/thaw boundary detection by using passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2002, 17(6):370-375.
|
|
[晋锐, 李新. 被动微波遥感监测土壤冻融界限的研究综述[J]. 遥感技术与应用, 2002, 17(6): 370-375.]
doi: 10.3969/j.issn.1004-0323.2002.06.017
URL
|
[21] |
Zhang Tingjun, Jin Rui, Gao Feng.Overview of the satellite remote sensing of frozen ground: Passive microwave sensors[J]. AdvanceS in Earth Science, 2009,24(10):1 073-1 083.
|
|
[张廷军, 晋锐, 高峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1 073-1 083.]
doi: 10.11867/j.issn.1001-8166.2009.10.1073
URL
|
[22] |
Zhang Tingjun, Jin Rui, Gao Feng.Overview of the satellite remote sensing of frozen ground: Visile thermal infrared and radar sensor[J]. Advances in Earth Science, 2009,24(9):963-972.
|
|
[张廷军, 晋锐, 高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.]
doi: 10.11867/j.issn.1001-8166.2009.09.0963
URL
|
[23] |
Armstrong R L, Chang A, Rango A, et al. Snow depths and grain-size relationships with relevance for passive microwave studies[J]. Annals of Glaciology, 1993, 17(1): 171-176.
doi: 10.1017/S0260305500012799
URL
|
[24] |
Chang A, Foster J, Hall D.Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of Glaciology, 1987, 9(9): 39-44.
doi: 10.1017/S0260305500000355
URL
|
[25] |
Cao Meisheng, Li Xin, Chen Xianzhang, et al.Remote Sensing of Cryosphere[M]. Beijing: Science Press, 2006.
|
|
[曹梅盛, 李新, 陈贤章, 等. 冰冻圈遥感[M]. 北京: 科学出版社, 2006.]
|
[26] |
Hofer R, Mätzler C.Investigations on snow parameters by radiometry in the 3-to 60-mm wavelength region[J]. Journal of Geophysical Research: Oceans, 1980, 85(C1): 453-460.
doi: 10.1029/JC085iC01p00453
URL
|
[27] |
Hallikainen M T, Ulaby F T,Van Deventer T E. Extinction behavior of dry snow in the 18-to 90-GHz range[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987,(6): 737-745.
doi: 10.1109/TGRS.1987.289743
URL
|
[28] |
Chang A, Foster J, Hall D, et al. Snow parameters derived from microwave measurements during the BOREAS winter field campaign[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D24): 29 663-29 671.
doi: 10.1029/96JD03327
URL
|
[29] |
Che T, Dai L, Zheng X, et al. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J]. Remote Sensing of Environment, 2016, 183:334-349.
doi: 10.1016/j.rse.2016.06.005
URL
|
[30] |
Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing, Active and Passive, Microwave Remote Sensing Fundamentals and Radiometry[M]. US: Addison Wesley Publishing Company, 1981.
|
[31] |
Chang T, Gloersen P, Schmugge T, et al. Microwave emission from snow and glacier ice[J]. Journal of Glaciology, 1976, 16(74): 23-39.
doi: 10.1017/S0022143000031415
URL
|
[32] |
Armstrong R, Brodzik M.An Earth-gridded SSM/I data set for cryospheric studies and global change monitoring[J]. Advances in Space Research, 1995, 16(10): 155-163.
doi: 10.1016/0273-1177(95)00397-W
URL
|
[33] |
Yang Hu, Li Xiaoqing, You Ran, et al. Environmental data records from Fengyun-3B microwave radition imager[J]. Advances in Meteorological Science and Technology, 2013,3(4):138-145.
|
|
[杨虎, 李小青, 游然, 等. 风云三号微波成像仪定标精度评价及业务产品介绍[J]. 气象科技进展, 2013, (4): 138-145.]
doi: 10.3969/j.issn.2095-1973.2013.04.014
URL
|
[34] |
Sun Zhiwen.Estimating Snow Depth and Snow Water Equivalent Algorithm for Fy-3 MWRI and Development of System[D]. Beijing: Beijing Normal University, 2007.
|
|
[孙知文. 风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发[D]. 北京:北京师范大学, 2007.]
|
[35] |
Sun Zhiwen, Yu Pengshan, Xia Lang, et al. Progress in study of snow parameter inversion by passive remote sensing[J]. Remote Sensing for Land and Resources, 2015,27(1):9-15.
|
|
[孙知文, 于鹏珊, 夏浪, 等. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1): 9-15.]
doi: 10.6046/gtzyyg.2015.01.02
URL
|
[36] |
Wang Gongxue, Jiang Lingmei, Wu Shengli, et al. Intercalibration FY-3B and FY-3C/MWRI for synergistic implementing to snow depth retrieval algorithm[J]. Remote Sensing Technology and Application, 2017, 32(1): 49-56.
|
|
[王功雪, 蒋玲梅, 武胜利, 等. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用[J]. 遥感技术与应用, 2017, 32(1): 49-56.]
|
[37] |
Jiang Lingmei, Wang Pei, Zhang Lixin, et al. Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Science in China (Series D),2014, 44(3):531-547.
|
|
[蒋玲梅, 王培, 张立新, 等. FY3B-MWRI 中国区域雪深反演算法改进[J]. 中国科学: D辑, 2014, 44(3):531-547.]
|
[38] |
Dai Liyun.Study on Passive Microwave Remote Sensing of Snow in northern China[D]. Beijing:University of Chinese Academy of Sciences, 2013.
|
|
[戴礼云. 我国北方积雪被动微波遥感反演研究[D].北京: 中国科学院大学, 2013.]
|
[39] |
Che Tao, Li Xin, Gao Feng.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3): 363-368.
|
|
[车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3): 363-368.]
doi: 10.3969/j.issn.1000-0240.2004.03.019
URL
|
[40] |
Takala M, Luojus K, Pulliainen J, et al. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements[J]. Remote Sensing of Environment, 2011, 115(12): 3 517-3 529.
doi: 10.1016/j.rse.2011.08.014
URL
|
[41] |
Tedesco M, Narvekar P S.Assessment of the NASA AMSR-E SWE Product[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1): 141-159.
doi: 10.1109/JSTARS.2010.2040462
URL
|
[42] |
Sturm M, Taras B, Liston G E, et al. Estimating snow water equivalent using snow depth data and climate classes[J]. Journal of Hydrometeorology, 2010, 11(6): 1 380-1 394.
doi: 10.1175/2010JHM1202.1
URL
|
[43] |
Mccreight J L, Small E E.Modeling bulk density and snow water equivalent using daily snow depth observations[J]. Cryosphere, 2014, 8(2): 5 007-5 049.
|
[44] |
Martinec J.Expected snow loads on structures from incomplete hydrological data[J]. Journal of Glaciology, 1977, 19(81): 185-195.
doi: 10.1017/S0022143000029270
URL
|
[45] |
Aschbacher J.Land Surface Studies and Atmospheric Effects by Satellite Microwave Radiometry[D]. Innsbruck: University of Innsbruck, 1989.
|
[46] |
Tedesco M, Kelly R, Foster J, et al. AMSR-E/Aqua Daily L3 Global Snow Water Equivalent EASE-Grids V002[M]. Boulder, CO:National Snow and Ice Data Center, 2004.
|
[47] |
Liang J, Liu X, Huang K, et al. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance[J]. Remote Sensing of Environment, 2015, 156:500-509.
doi: 10.1016/j.rse.2014.10.016
URL
|
[48] |
Xiao X, Zhang T, Zhong X, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sensing of Environment, 2018, 210:48-64.
doi: 10.1016/j.rse.2018.03.008
URL
|
[49] |
Che Tao.Study on Passive Microwave Remote Sensing of Snow and Snow Data Assimilation Method[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute,CAS, 2006.
|
|
[车涛. 积雪被动微波遥感反演与积雪数据同化方法研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 2006.]
|
[50] |
Foster J, Chang A, Hall D.Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology[J]. Remote Sensing of Environment, 1997, 62(2): 132-142.
doi: 10.1016/S0034-4257(97)00085-0
URL
|
[51] |
Foster J L, Sun C, Walker J P, et al. Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005, 94(2): 187-203.
doi: 10.1016/j.rse.2004.09.012
URL
|
[52] |
Kelly R.The AMSR-E snow depth algorithm: Description and initial results[J]. Journal of The Remote Sensing Society of Japan, 2009, 29(1): 307-317.
doi: 10.11440/rssj.29.307
URL
|
[53] |
Cao Meisheng, Li Peiji, Robinson D, et al. Evaluation and primary application of microwave remote sensing SMMR derived snow coer in Western China[J]. Remote Sensing of Environment, 1993, 8(3): 260-269.
|
|
[曹梅盛, 李培基, Robinson D, 等. 中国西部积雪 SMMR 微波遥感的评价与初步应用[J]. 环境遥感, 1993, 8(3): 260-269.]
|
[54] |
Che T, Xin L, Jin R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1): 145-154.
doi: 10.3189/172756408787814690
URL
|
[55] |
Kelly R E, Chang A T, Tsang L, et al. A prototype AMSR-E global snow area and snow depth algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 230-242.
doi: 10.1109/TGRS.2003.809118
URL
|
[56] |
Biancamaria S, Mognard N M, Boone A, et al. A satellite snow depth multi-year average derived from SSM/I for the high latitude regions[J]. Remote Sensing of Environment, 2008, 112(5): 2 557-2 568.
doi: 10.1016/j.rse.2007.12.002
URL
|
[57] |
Grippa M, Mognard N, Le Toan T, et al. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm[J]. Remote Sensing of Environment, 2004, 93(1): 30-41.
doi: 10.1016/j.rse.2004.06.012
URL
|
[58] |
Pulliainen J T, Grandell J, Hallikainen M T.HUT snow emission model and its applicability to snow water equivalent retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1 378-1 390.
doi: 10.1109/36.763302
URL
|
[59] |
Roy V, Goita K, Royer R, et al. Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model[J]. IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(9): 1 850-1 859.
|
[60] |
Tsang L, Chen C T, Chang A T, et al. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow[J]. Radio Science, 2000, 35(3): 731-49.
doi: 10.1029/1999RS002270
URL
|
[61] |
Chen C T, Nijssen B, Guo J, et al. Passive microwave remote sensing of snow constrained by hydrological simulations[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(8): 1 744-1 756.
doi: 10.1109/36.942553
URL
|
[62] |
Wiesmann A, Mätzler C.Microwave emission model of layered snowpacks[J]. Remote Sensing of Environment, 1999, 70(3): 307-316.
doi: 10.1016/S0034-4257(99)00046-2
URL
|
[63] |
Gharaei-Manesh S, Fathzadeh A, Taghizadeh-Mehrjardi R.Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran[J]. Cold Regions Science & Technology, 2016, 122:26-35.
|
[64] |
Davis D T, Chen Z, Tsang L, et al. Retrieval of snow parameters by iterative inversion of a neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(4): 842-852.
doi: 10.1109/36.239907
URL
|
[65] |
Tedesco M, Pulliainen J, Takala M, et al. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data[J]. Remote Sensing of Environment, 2004, 90(1): 76-85.
doi: 10.1016/j.rse.2003.12.002
URL
|
[66] |
Tabari H, Marofi S, Abyaneh H Z, et al. Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami Basin of Iran[J]. Neural Computing & Applications, 2010, 19(4): 625-635.
|
[67] |
Forman B A, Reichle R H, Derksen C.Estimating passive microwave brightness temperature over snow-covered land in North America using a land surface model and an artificial neural network[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(1): 235-248.
|
[68] |
Dai L, Che T, Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127:14-29.
doi: 10.1016/j.rse.2011.08.029
URL
|
[69] |
Zhang Xianfeng, Bao Huiyi, Liu Yu, et al. Snow parameter estimation from microwave remote sensing data[J]. Mountain Research, 2014, 32(3): 307-313.
|
|
[张显峰, 包慧漪, 刘羽, 等. 基于微波遥感数据的雪情参数反演方法[J]. 山地学报, 2014, 32(3): 307-313.]
doi: 10.3969/j.issn.1008-2786.2014.03.007
URL
|
[70] |
Etemad-Shahidi A, Mahjoobi J.Comparison between M5' model tree and neural networks for prediction of significant wave height in Lake Superior[J]. Ocean Engineering, 2009, 36(15/16): 1 175-1 181.
doi: 10.1016/j.oceaneng.2009.08.008
URL
|
[71] |
Forman B A, Reichle R H.Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow-covered land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(9): 4 431-4 441.
|
[72] |
Xue Y, Forman B A.Comparison of passive microwave brightness temperature prediction sensitivities over snow-covered land in North America using machine learning algorithms and the Advanced Microwave Scanning Radiometer[J]. Remote Sensing of Environment, 2015, 170:153-165.
doi: 10.1016/j.rse.2015.09.009
URL
|
[73] |
Balk B, Elder K.Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed[J]. Water Resources Research, 2000, 36(1): 13-26.
doi: 10.1029/1999WR900251
URL
|
[74] |
Wu Lili, Li Xiaofeng, Chen Yueqing, et al. The improvement of HUT model and its application in snow depth inversion[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 904-910.
|
|
[武黎黎, 李晓峰, 陈月庆, 等. HUT模型的改进及其雪深反演[J]. 武汉大学学报:信息科学版, 2017, 42(7): 904-910.]
doi: 10.13203/j.whugis20150184
URL
|
[75] |
Li Xiaolan, Zhang Feimin, Wang Chenghai.Comparison and analysis of snow depth over China, observed and derived from remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4):755-764.
|
|
[李小兰, 张飞民, 王澄海. 中国地区地面观测积雪深度和遥感雪深资料的对比分析[J]. 冰川冻土, 2012, 34(4): 755-764.]
URL
|
[76] |
Zhao Yingshi.Principle and Method of Remote Sensing Application Analysis[M]. Beijing:Science Press,2003.
|
|
[赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003.]
|
[77] |
Reichle R H.Data assimilation methods in the Earth sciences[J]. Advances in Water Resources, 2008, 31(11): 1 411-1 418.
doi: 10.1016/j.advwatres.2008.01.001
URL
|
[78] |
Liston G E, Pielke R A, Greene E M.Improving first-order snow-related deficiencies in a regional climate model[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D16): 19 559-19 567.
doi: 10.1029/1999JD900055
URL
|
[79] |
Brasnett B.A global analysis of snow depth for numerical weather prediction[J]. Journal of Applied Meteorology, 1999, 38(6): 726-740.
doi: 10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2
URL
|
[80] |
Sheffield J,Pan M,Wood E F, et al. Snow process modeling in the North American Land Data Assimilation System (NLDAS):1. Evaluation of model-simulated snow cover extent[J]. Journal of Geophysical Research Atmospheres,2003,108(D22):2 101-2 110.
|
[81] |
Zhao Liang, Zhu Yuxiang, Yang Hong, et al. A dynamic approach to retrieving snow depth based on the technology of integrating satellite remote sensing and in situ data[J]. Acta Meterologica Sinica, 2013, 71(4): 769-782.
|
|
[赵亮, 朱玉祥, 杨弘, 等. 一种基于卫星遥感与地面测站数据融合技术的雪深动态反演方法[J]. 气象学报, 2013, 71(4): 769-782.]
doi: 10.11676/qxxb2013.056
|
[82] |
Andreadis K M, Lettenmaier D P.Assimilating remotely sensed snow observations into a macroscale hydrology model[J]. Advances in Water Resources, 2006, 29(6): 872-886.
doi: 10.1016/j.advwatres.2005.08.004
URL
|
[83] |
Durand M, Margulis S A.Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent[J]. Journal of Hydrometeorology, 2006, 7(3): 443-457.
doi: 10.1175/JHM502.1
URL
|
[84] |
Che Tao, Li Xin, Jin Rui, et al. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth[J]. Remote Sensing of Environment, 2014, 143(54/63): 54-63.
doi: 10.1016/j.rse.2013.12.009
URL
|
[85] |
Pulliainen J.Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations[J]. Remote Sensing of Environment, 2006, 101(2): 257-269.
doi: 10.1016/j.rse.2006.01.002
URL
|
[86] |
Jiang Lingmei.Passive Microwave Remote Sensing of Snow Water Equivalence Study[D].Beijing:Beijing Normal University, 2005.
|
|
[蒋玲梅. 被动微波雪水当量研究[D].北京:北京师范大学, 2005.]
|
[87] |
Dai L, Che T, Ding Y.Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 2015, 7(6): 7 212-7 230.
doi: 10.3390/rs70607212
URL
|
[88] |
Armstrong R L, Brodzik M J.Recent northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors[J]. Geophysical Research Letters, 2001, 28(19): 3 673-3 676.
doi: 10.1029/2000GL012556
URL
|
[89] |
Cao Meisheng, Li Peiji.Microwave remote sensing monitoring of snow cover in western China[J]. Mountain Reseach, 1994, 12(4): 230-234.
|
|
[曹梅盛, 李培基. 中国西部积雪微波遥感监测[J]. 山地研究, 1994, 12(4): 230-234.]
URL
|
[90] |
Zheng Lei, Zhang Tingjun, Che Tao, et al. Evaluation of snow depth products derived from passive microwave satellite remote sensing data using ground—Based snow measurements[J]. Remote Sensing Technology and Application, 2015, 30(3):413-423.
|
|
[郑雷, 张廷军, 车涛, 等. 利用实测资料评估被动微波遥感雪深算法[J]. 遥感技术与应用, 2015, 30(3): 413-423.]
doi: 10.11873/j.issn.1004-0323.2015.3.0413
URL
|
[91] |
Liu J, Li Z, Huang L, et al. Hemispheric-scale comparison of monthly passive microwave snow water equivalent products[J]. Journal of Applied Remote Sensing, 2014, 8(1). DOI:10.1117/1.JRS.8.084688.
doi: 10.1117/1.JRS.8.084688
URL
|
[92] |
Frei A, Tedesco M, Lee S, et al. A review of global satellite-derived snow products[J]. Advances in Space Research, 2012, 50(8): 1 007-1 029.
doi: 10.1016/j.asr.2011.12.021
URL
|
[93] |
Singh P R, Gan T Y.Retrieval of snow water equivalent using passive microwave brightness temperature data[J]. Remote Sensing of Environment, 2000, 74(2): 275-286.
doi: 10.1016/S0034-4257(00)00121-8
URL
|
[94] |
Hall D K.Influence of depth hoar on microwave emission from snow in northern Alaska[J]. Cold Regions Science and Technology, 1987, 13(3): 225-231.
doi: 10.1016/0165-232X(87)90003-6
URL
|
[95] |
Wei Yue, Chen Shujiang, Chen Xia.Analysis on the seasonal snow density change characteristics of north Xinjiang[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 519-523.
|
|
[魏玥, 陈蜀江, 陈霞. 新疆北部地区季节性积雪密度变化特征分析[J]. 冰川冻土, 2010, 32(3): 519-523.]
URL
|
[96] |
Li Peiji.Dynamic characteristic of snow cover in Western China[J]. Acta Geographic Sinica, 1993, 48(6): 505-515.
|
|
[李培基. 中国西部积雪变化特征[J]. 地理学报, 1993, 48(6): 505-515.]
doi: 10.11821/xb199306004
URL
|
[97] |
Foster J L, Hall D K, Chang A T, et al. Effects of snow crystal shape on the scattering of passive microwave radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1 165-1 168.
doi: 10.1109/36.752235
URL
|
[98] |
Vander Jagt B J, Durand M T, Margulis S A, et al.The effect of spatial variability on the sensitivity of passive microwave measurements to snow water equivalent[J]. Remote Sensing of Environment, 2013, 136:163-179.
doi: 10.1016/j.rse.2013.05.002
URL
|
[99] |
Goïta K, Walker A E, Goodison B E.Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data[J]. International Journal of Remote Sensing, 2003, 24(5): 1 097-1 102.
doi: 10.1080/0143116021000044805
URL
|
[100] |
Romanov P, Tarpley D.Enhanced algorithm for estimating snow depth from geostationary satellites[J]. Remote Sensing of Environment, 2007, 108(1): 97-110.
doi: 10.1016/j.rse.2006.11.013
URL
|
[101] |
Zhou Shengnan, Che Tao, Dai Liyun.Based on the type of ground site representative of snow remote sensing products precision evaluation[J]. Remote Sensing Technology and Application, 2017, 32(2): 228-237.
|
|
[周胜男, 车涛, 戴礼云. 基于地面站点类型代表性的积雪遥感产品精度评价[J]. 遥感技术与应用, 2017, 32(2): 228-237.]
|
[102] |
Grody N C, Basist A N.Global identification of snowcover using SSM/I measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1): 237-249.
doi: 10.1109/36.481908
URL
|
[103] |
Savoie M H, Armstrong R L, Brodzik M J, et al. Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau[J]. Remote Sensing of Environment, 2009, 113(12): 2 661-2 669.
doi: 10.1016/j.rse.2009.08.006
URL
|
[104] |
Qiu Y, Shi J, Lemmetyinen J, et al. The atmosphere influence to AMSR-E measurements over snow-covered areas: Simulation and experiments[C]//Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS, 2009. DOI:10.1109/IGARSS.2009.5418158.
|
[105] |
Tedesco M, Wang J R.Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 320-324.
doi: 10.1109/LGRS.2006.871744
URL
|
[106] |
Mizukami N, Perica S.Towards improved snow water equivalent retrieval algorithms for satellite passive microwave data over the mountainous basins of western USA[J]. Hydrological Processes, 2012, 26(13): 1 991-2 002.
doi: 10.1002/hyp.v26.13
URL
|
[107] |
Smith T, Bookhagen B.Assessing uncertainty and sensor biases in passive microwave data across high mountain asia[J]. Remote Sensing of Environment, 2016, 181:174-185.
doi: 10.1016/j.rse.2016.03.037
URL
|
[108] |
Dai L, Che T, Ding Y, et al. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing[J]. Cryosphere Discussions, 2017, 11(4): 1-31.
doi: 10.5194/tc-11-1-2017
URL
|