Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (6): 590-605    DOI: 10.11867/j.issn.1001-8166.2018.06.0590
综述与评述     
基于被动微波遥感的积雪深度和雪水当量反演研究进展
肖雄新(), 张廷军*()
兰州大学资源环境学院,西部环境教育部重点实验室,甘肃 兰州 730000
Passive Microwave Remote Sensing of Snow Depth and Snow Water Equivalent: Overview
Xiongxin Xiao(), Tingjun Zhang*()
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000,China
 全文: PDF(1346 KB)   HTML
摘要:

积雪是冰冻圈重要组成要素之一,也是对天气和气候响应最为敏感的自然要素。被动微波能够穿透云层、积雪和大气进行全天候、全天时地工作,在估算积雪深度、雪水当量等积雪参数上有很大优势。综述了国内外基于被动微波遥感的积雪参数反演研究的进展,首先介绍了被动微波遥感监测积雪的基本理论,以及被动微波遥感数据;然后将当前的积雪深度和雪水当量反演算法总结为4类:①基于统计的线性反演算法;②基于微波积雪模型的反演算法;③基于先验知识的非线性反演算法;④数据融合与数据同化。随后介绍了常用的7种积雪数据产品,并讨论了影响积雪深度和雪水当量反演精度的几个因素,最后对未来积雪参数反演研究方向做出了展望。

关键词: 被动微波遥感积雪深度雪水当量积雪产品    
Abstract:

Snow cover is an informative indicator of climate change because it affects local and regional surface energy and water balance, hydrological processes and climate. Passive Microwave (PM) works all weather and round the clock and penetrates clouds and snow. Passive microwave remote sensing data have been widely applied to retrieving snow depth and snow water equivalent in the past few decades. Recently, the snow depth retrieval study has rapidly developed. This paper reviewed the research progress of snow depth and snow water equivalent inversion algorithm using PM data at home and abroad. Firstly, the basic theory of passive microwave remote sensing snow monitoring and passive microwave remote sensing data were introduced. Then, the current snow depth and snow water equivalent inversion algorithm were summarized into four categories: ① A statistically based linear inversion algorithm; ② An inversion algorithm based on microwave transmission snow model; ③ A nonlinear inversion algorithm based on prior knowledge; ④ Data fusion and data assimilation. Afterwards, the commonly used seven kinds of snow data products were introduced, and several factors affecting the snow depth and the snow water inversion accuracy were discussed. Finally, the possible direction of future snow parameter inversion research was prospected.

Key words: Passive microwave remote sensing    Snow depth    Snow water equivalent    Snow products.
收稿日期: 2017-12-11 出版日期: 2018-07-23
ZTFLH:  P426.63+5  
基金资助: *国家重大科学研究计划项目“复杂地形积雪遥感及其多尺度积雪变化研究”(编号:2013CBA01802);国家自然科学基金重大研究计划项目“黑河流域上游多年冻土地表水、地下水过程及其效应研究”(编号: 91325202)资助.
通讯作者: 张廷军     E-mail: xiaoxiongxin5118@126.com;tjzhang@lzu.edu.cn
作者简介:

作者简介:肖雄新 (1991-),男,陕西富平人,硕士研究生,主要从事积雪遥感研究.E-mail:xiaoxiongxin5118@126.com

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
肖雄新
张廷军

引用本文:

肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.

Xiongxin Xiao, Tingjun Zhang. Passive Microwave Remote Sensing of Snow Depth and Snow Water Equivalent: Overview. Advances in Earth Science, 2018, 33(6): 590-605.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.06.0590        http://www.adearth.ac.cn/CN/Y2018/V33/I6/590

图1  积雪覆盖地表微波辐射
传感器 卫星平台 运行时间 频率/GHz 极化方式(H,V) 瞬间视场/(km×km)
SMMR Nimbus 7 1978.10-1987.08 6.6 H,V 136×89
10.7 H,V 87×57
18.0 H,V 54×35
21.0 H,V 47×30
37.0 H,V 47×30
SSM/I DMSP 1987.07-2009.11 19.35 H,V 70×45
22.24 V 60×40
37.0 H,V 38×30
85.5 H,V 16×14
SSMIS DMSP 2006.12- 19.35 H,V 70×45
22.24 V 60×40
37.0 H,V 38×30
91.66 H,V 38×30
AMSR-E Aqua 2002.06-2011.10 6.93 H,V 75×43
10.65 H,V 51×39
18.7 H,V 27×16
23.8 H,V 32×18
36.5 H,V 14×8
89.0 H,V 6×3
AMSR2 GCOM-W1 2012.05- 6.93 H,V 62×35
7.3 H,V 62×35
10.65 H,V 42×24
18.7 H,V 22×14
23.8 H,V 26×15
36.5 H,V 12×7
89.0 H,V 5×3
MWRI FY-3B/3C 2010.11- 10.65 H,V 51×85
18.70 H,V 50×30
23.80 H,V 27×45
36.50 H,V 18×30
89.00 H,V 9×15
表1  常用被动微波传感器特征参数
算法名称 算法公式 参考文献 公式编号
Chang算法 SD=1.59×(Tb18h-Tb37h) [24] (3)
SPD算法 SPD=(Tb19v-Tb37v)+Tb19v-Tb19h)
SD=A0×SPD-A1
[45] (4)
(5)
车涛1算法 SD=0.78×(Tb18h-Tb37h)+b
SD=0.66×(Tb19h-Tb37h)+b
[49] (6)
(7)
表2  基于亮温梯度的积雪深度静态反演算法
算法名称 算法公式 参考文献 公式编号
Forest 算法 SD=0.78×(Tb18h-Tb37h)/(1-f) [50] (8)
AMSR-E 算法 SD=f×SDf+(1-f)×SD0 [41,52] (9)
车涛2算法 SD=(0.78×(Tb18h-Tb37h)+b)/(1-f)
SD=(0.66×(Tb19h-Tb37h)+b)/(1-f)
[54] (10)
(11)
蒋玲梅算法 SD=fgrass×SDgrass+fbarren×SDbarren
+fforest×SDforest+ffarmland×SDfarmland
[37] (12)
表3  基于森林覆盖率修订的积雪深度静态反演算法
序号 数据名称 空间范围 空间分辨率 时间范围 时间
分辨率
获取地址
1 中国雪深长时间序列
数据集
中国 25 km(或0.25°) 1978.10.24-2016.12.31 逐日 http:∥westdc.westgis.ac.cn
2 FY3-MWRI雪深雪水
当量产品
全球 25 km 2011.7.15- 逐日 http:∥www.nsmc.org.cn
3 AMSR-E积雪产品 全球 25 km 2002.6.19-2011.11.3 逐日 http:∥nsidc.org/
4 SMMR、SSM/I 和
SSMIS积雪产品
全球 25 km 1978.11.11- 逐日 http:∥nsidc.org/
5 GlobSnow-2积雪产品 北半球 25 km 1979—2012年 逐日 http:∥www.globsnow.info/
6 加拿大气象中心逐日
积雪深度分析数据
全球 24 km 1998.08.01-2016.12.31 逐日 http:∥nsidc.org/
7 兰德公司月平均积雪
深度数据集
全球(不包含
非洲和南美)
4°×5° 1950—1976年 逐月 http:∥nsidc.org/
表4  积雪产品数据集
[1] Hoinkes H.Glaciology in the international hydrological decade[R]∥IAHS Commission of Snow and Ice, Reports and Discussion. IUGG General Assembly,Bern, 1967, 79: 7-16.
[2] Winther J G, Hall D K.Satellite-derived snow coverage related to hydropower production in Norway: Present and future[J]. International Journal of Remote Sensing, 1999, 20(16): 2 991-3 008.
[3] Frei A, Robinson D A.Northern Hemisphere snow extent: Regional variability 1972-1994[J]. International Journal of Climatology, 1999, 19(14): 1 535-1 560.
[4] Zhang T.Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4): 589-590.
[5] Schimel J P, Bilbrough C, Welker J M.Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities[J]. Soil Biology and Biochemistry, 2004, 36(2): 217-227.
[6] Tape K, Sturm M, Racine C.The evidence for shrub expansion in northern Alaska and the Pan-Arctic[J]. Global Change Biology, 2006, 12(4): 686-702.
[7] Goodison B, Walker A.Use of snow cover derived from satellite passive microwave data as an indicator of climate change[J]. Annals of Glaciology, 1993, 17(1): 137-142.
[8] Josberger E G, Mognard N M.A passive microwave snow depth algorithm with a proxy for snow metamorphism[J]. Hydrological Processes, 2002, 16(8): 1 557-1 568.
[9] Gao Feng, Li Xin, Armstrong R L, et al. Preliminary application of passive microwave data to operational snow monitoring in Tibetan Plateau[J]. Remote Sensing Technology and Application, 2003, 18(6): 360-363.[高峰,李新,ARMSTRONG R L,等.被动微波遥感在青藏高原积雪业务监测中的初步应用[J].遥感技术与应用,2003,18(6):360-363.]
[10] Tedesco M, Miller J.Observations and statistical analysis of combined active-passive microwave space-borne data and snow depth at large spatial scales[J]. Remote Sensing of Environment, 2007, 111(2): 382-397.
[11] Shi Jiancheng, Xiong Chuan, Jiang Lingmei.Review of snow water equivalent microwave remote sensing[J]. Science in China (Series D), 2016,46(4):529-543.[施建成, 熊川, 蒋玲梅. 雪水当量主被动微波遥感研究进展[J]. 中国科学:D辑, 2016, 46(4): 529-543.]
[12] Sun Shaobo, Che Tao.A review of the research on snow cover monitored with Sythetic Aperture Radar (SAR)[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 636-647.[孙少波, 车涛. 基于合成孔径雷达 (SAR) 的积雪监测研究进展[J]. 冰川冻土, 2013, 35(3): 636-647.]
[13] Hou Huishu, Yang Hongye.A general introduction to MODIS snow products and its researching application[J]. Remote Sensing Technology and Application, 2009, 24(2): 252-256.[侯慧姝, 杨宏业. MODIS 积雪产品及研究应用概述[J]. 遥感技术与应用, 2009, 24(2): 252-256.]
[14] Li Jinya, Yang Xiuchun, Xu Bin, et al. Snow monitoring using MODIS and AMSR-E in six main pastoral areas of China[J]. Scientia Geographica Sinica,2011, 31(9): 1 097-1 104.[李金亚, 杨秀春, 徐斌, 等. 基于MODIS 与 AMSR-E 数据的中国 6 大牧区草原积雪遥感监测研究[J]. 地理科学, 2011, 31(9): 1 097-1 104.]
[15] Che Tao, Li Xin.The development and prospect of estimating snow water equivalent using passive microwave remote sensing data[J]. Advances in Earth Science, 2004, 19(2): 204-210.[车涛, 李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2): 204-210.]
[16] Li Xin, Che Tao.A review on passive microwave remote sensing of snow cover[J] Journal of Glaciology and Geocryology, 2007, 29(3): 487-496.[李新, 车涛. 积雪被动微波遥感研究进展[J]. 冰川冻土, 2007, 29(3):487-496.]
[17] Wu Yang, Zhang Jiahua, Xu Haiming, et al. Advances in study of snow-cover from remote sensing data[J]. Meteorological Monthly,2007, 33(6): 3-10.[吴杨, 张佳华, 徐海明, 等. 卫星反演积雪信息的研究进展[J]. 气象, 2007, 33(6): 3-10.]
[18] Zhao Yingshi.Principle and Method of Remote Sensing Application Analysis (Second Edition)[M].Beijing: Science Press, 2013.[赵英时. 遥感应用分析原理与方法 (第二版)[M]. 北京:科学出版社, 2013.]
[19] Sun Zhiwen,Shi Jiancheng,Jiang Lingmei, et al. Development of snow depth and snow water equivalent algorithm in western China using passive microwave remote sensing data[J]. Advances in Earth Science,2006,21(12):1 363-1 369.[孙之文,施建成,蒋玲梅,等. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J].地球科学进展,2006,21(12):1 363-1 369.]
[20] Jin Rui, Li Xin.A review on the algorithm of frozen/thaw boundary detection by using passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2002, 17(6):370-375.[晋锐, 李新. 被动微波遥感监测土壤冻融界限的研究综述[J]. 遥感技术与应用, 2002, 17(6): 370-375.]
[21] Zhang Tingjun, Jin Rui, Gao Feng.Overview of the satellite remote sensing of frozen ground: Passive microwave sensors[J]. AdvanceS in Earth Science, 2009,24(10):1 073-1 083.[张廷军, 晋锐, 高峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1 073-1 083.]
[22] Zhang Tingjun, Jin Rui, Gao Feng.Overview of the satellite remote sensing of frozen ground: Visile thermal infrared and radar sensor[J]. Advances in Earth Science, 2009,24(9):963-972.[张廷军, 晋锐, 高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.]
[23] Armstrong R L, Chang A, Rango A, et al. Snow depths and grain-size relationships with relevance for passive microwave studies[J]. Annals of Glaciology, 1993, 17(1): 171-176.
[24] Chang A, Foster J, Hall D.Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of Glaciology, 1987, 9(9): 39-44.
[25] Cao Meisheng, Li Xin, Chen Xianzhang, et al.Remote Sensing of Cryosphere[M]. Beijing: Science Press, 2006.[曹梅盛, 李新, 陈贤章, 等. 冰冻圈遥感[M]. 北京: 科学出版社, 2006.]
[26] Hofer R, M?tzler C.Investigations on snow parameters by radiometry in the 3-to 60-mm wavelength region[J]. Journal of Geophysical Research: Oceans, 1980, 85(C1): 453-460.
[27] Hallikainen M T, Ulaby F T,Van Deventer T E. Extinction behavior of dry snow in the 18-to 90-GHz range[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987,(6): 737-745.
[28] Chang A, Foster J, Hall D, et al. Snow parameters derived from microwave measurements during the BOREAS winter field campaign[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D24): 29 663-29 671.
[29] Che T, Dai L, Zheng X, et al. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J]. Remote Sensing of Environment, 2016, 183:334-349.
[30] Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing, Active and Passive, Microwave Remote Sensing Fundamentals and Radiometry[M]. US: Addison Wesley Publishing Company, 1981.
[31] Chang T, Gloersen P, Schmugge T, et al. Microwave emission from snow and glacier ice[J]. Journal of Glaciology, 1976, 16(74): 23-39.
[32] Armstrong R, Brodzik M.An Earth-gridded SSM/I data set for cryospheric studies and global change monitoring[J]. Advances in Space Research, 1995, 16(10): 155-163.
[33] Yang Hu, Li Xiaoqing, You Ran, et al. Environmental data records from Fengyun-3B microwave radition imager[J]. Advances in Meteorological Science and Technology, 2013,3(4):138-145.[杨虎, 李小青, 游然, 等. 风云三号微波成像仪定标精度评价及业务产品介绍[J]. 气象科技进展, 2013, (4): 138-145.]
[34] Sun Zhiwen.Estimating Snow Depth and Snow Water Equivalent Algorithm for Fy-3 MWRI and Development of System[D]. Beijing: Beijing Normal University, 2007.[孙知文. 风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发[D]. 北京:北京师范大学, 2007.]
[35] Sun Zhiwen, Yu Pengshan, Xia Lang, et al. Progress in study of snow parameter inversion by passive remote sensing[J]. Remote Sensing for Land and Resources, 2015,27(1):9-15.[孙知文, 于鹏珊, 夏浪, 等. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1): 9-15.]
[36] Wang Gongxue, Jiang Lingmei, Wu Shengli, et al. Intercalibration FY-3B and FY-3C/MWRI for synergistic implementing to snow depth retrieval algorithm[J]. Remote Sensing Technology and Application, 2017, 32(1): 49-56.[王功雪, 蒋玲梅, 武胜利, 等. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用[J]. 遥感技术与应用, 2017, 32(1): 49-56.]
[37] Jiang Lingmei, Wang Pei, Zhang Lixin, et al. Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Science in China (Series D),2014, 44(3):531-547.[蒋玲梅, 王培, 张立新, 等. FY3B-MWRI 中国区域雪深反演算法改进[J]. 中国科学: D辑, 2014, 44(3):531-547.]
[38] Dai Liyun.Study on Passive Microwave Remote Sensing of Snow in northern China[D]. Beijing:University of Chinese Academy of Sciences, 2013.[戴礼云. 我国北方积雪被动微波遥感反演研究[D].北京: 中国科学院大学, 2013.]
[39] Che Tao, Li Xin, Gao Feng.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3): 363-368.[车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3): 363-368.]
[40] Takala M, Luojus K, Pulliainen J, et al. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements[J]. Remote Sensing of Environment, 2011, 115(12): 3 517-3 529.
[41] Tedesco M, Narvekar P S.Assessment of the NASA AMSR-E SWE Product[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1): 141-159.
[42] Sturm M, Taras B, Liston G E, et al. Estimating snow water equivalent using snow depth data and climate classes[J]. Journal of Hydrometeorology, 2010, 11(6): 1 380-1 394.
[43] Mccreight J L, Small E E.Modeling bulk density and snow water equivalent using daily snow depth observations[J]. Cryosphere, 2014, 8(2): 5 007-5 049.
[44] Martinec J.Expected snow loads on structures from incomplete hydrological data[J]. Journal of Glaciology, 1977, 19(81): 185-195.
[45] Aschbacher J.Land Surface Studies and Atmospheric Effects by Satellite Microwave Radiometry[D]. Innsbruck: University of Innsbruck, 1989.
[46] Tedesco M, Kelly R, Foster J, et al. AMSR-E/Aqua Daily L3 Global Snow Water Equivalent EASE-Grids V002[M]. Boulder, CO:National Snow and Ice Data Center, 2004.
[47] Liang J, Liu X, Huang K, et al. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance[J]. Remote Sensing of Environment, 2015, 156:500-509.
[48] Xiao X, Zhang T, Zhong X, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sensing of Environment, 2018, 210:48-64.
[49] Che Tao.Study on Passive Microwave Remote Sensing of Snow and Snow Data Assimilation Method[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute,CAS, 2006.[车涛. 积雪被动微波遥感反演与积雪数据同化方法研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 2006.]
[50] Foster J, Chang A, Hall D.Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology[J]. Remote Sensing of Environment, 1997, 62(2): 132-142.
[51] Foster J L, Sun C, Walker J P, et al. Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005, 94(2): 187-203.
[52] Kelly R.The AMSR-E snow depth algorithm: Description and initial results[J]. Journal of The Remote Sensing Society of Japan, 2009, 29(1): 307-317.
[53] Cao Meisheng, Li Peiji, Robinson D, et al. Evaluation and primary application of microwave remote sensing SMMR derived snow coer in Western China[J]. Remote Sensing of Environment, 1993, 8(3): 260-269.[曹梅盛, 李培基, Robinson D, 等. 中国西部积雪 SMMR 微波遥感的评价与初步应用[J]. 环境遥感, 1993, 8(3): 260-269.]
[54] Che T, Xin L, Jin R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1): 145-154.
[55] Kelly R E, Chang A T, Tsang L, et al. A prototype AMSR-E global snow area and snow depth algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 230-242.
[56] Biancamaria S, Mognard N M, Boone A, et al. A satellite snow depth multi-year average derived from SSM/I for the high latitude regions[J]. Remote Sensing of Environment, 2008, 112(5): 2 557-2 568.
[57] Grippa M, Mognard N, Le Toan T, et al. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm[J]. Remote Sensing of Environment, 2004, 93(1): 30-41.
[58] Pulliainen J T, Grandell J, Hallikainen M T.HUT snow emission model and its applicability to snow water equivalent retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1 378-1 390.
[59] Roy V, Goita K, Royer R, et al. Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model[J]. IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(9): 1 850-1 859.
[60] Tsang L, Chen C T, Chang A T, et al. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow[J]. Radio Science, 2000, 35(3): 731-49.
[61] Chen C T, Nijssen B, Guo J, et al. Passive microwave remote sensing of snow constrained by hydrological simulations[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(8): 1 744-1 756.
[62] Wiesmann A, M?tzler C.Microwave emission model of layered snowpacks[J]. Remote Sensing of Environment, 1999, 70(3): 307-316.
[63] Gharaei-Manesh S, Fathzadeh A, Taghizadeh-Mehrjardi R.Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran[J]. Cold Regions Science & Technology, 2016, 122:26-35.
[64] Davis D T, Chen Z, Tsang L, et al. Retrieval of snow parameters by iterative inversion of a neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(4): 842-852.
[65] Tedesco M, Pulliainen J, Takala M, et al. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data[J]. Remote Sensing of Environment, 2004, 90(1): 76-85.
[66] Tabari H, Marofi S, Abyaneh H Z, et al. Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami Basin of Iran[J]. Neural Computing & Applications, 2010, 19(4): 625-635.
[67] Forman B A, Reichle R H, Derksen C.Estimating passive microwave brightness temperature over snow-covered land in North America using a land surface model and an artificial neural network[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(1): 235-248.
[68] Dai L, Che T, Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127:14-29.
[69] Zhang Xianfeng, Bao Huiyi, Liu Yu, et al. Snow parameter estimation from microwave remote sensing data[J]. Mountain Research, 2014, 32(3): 307-313.[张显峰, 包慧漪, 刘羽, 等. 基于微波遥感数据的雪情参数反演方法[J]. 山地学报, 2014, 32(3): 307-313.]
[70] Etemad-Shahidi A, Mahjoobi J.Comparison between M5' model tree and neural networks for prediction of significant wave height in Lake Superior[J]. Ocean Engineering, 2009, 36(15/16): 1 175-1 181.
[71] Forman B A, Reichle R H.Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow-covered land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(9): 4 431-4 441.
[72] Xue Y, Forman B A.Comparison of passive microwave brightness temperature prediction sensitivities over snow-covered land in North America using machine learning algorithms and the Advanced Microwave Scanning Radiometer[J]. Remote Sensing of Environment, 2015, 170:153-165.
[73] Balk B, Elder K.Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed[J]. Water Resources Research, 2000, 36(1): 13-26.
[74] Wu Lili, Li Xiaofeng, Chen Yueqing, et al. The improvement of HUT model and its application in snow depth inversion[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 904-910.[武黎黎, 李晓峰, 陈月庆, 等. HUT模型的改进及其雪深反演[J]. 武汉大学学报:信息科学版, 2017, 42(7): 904-910.]
[75] Li Xiaolan, Zhang Feimin, Wang Chenghai.Comparison and analysis of snow depth over China, observed and derived from remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4):755-764.[李小兰, 张飞民, 王澄海. 中国地区地面观测积雪深度和遥感雪深资料的对比分析[J]. 冰川冻土, 2012, 34(4): 755-764.]
[76] Zhao Yingshi.Principle and Method of Remote Sensing Application Analysis[M]. Beijing:Science Press,2003.[赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003.]
[77] Reichle R H.Data assimilation methods in the Earth sciences[J]. Advances in Water Resources, 2008, 31(11): 1 411-1 418.
[78] Liston G E, Pielke R A, Greene E M.Improving first-order snow-related deficiencies in a regional climate model[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D16): 19 559-19 567.
[79] Brasnett B.A global analysis of snow depth for numerical weather prediction[J]. Journal of Applied Meteorology, 1999, 38(6): 726-740.
[80] Sheffield J,Pan M,Wood E F, et al. Snow process modeling in the North American Land Data Assimilation System (NLDAS):1. Evaluation of model-simulated snow cover extent[J]. Journal of Geophysical Research Atmospheres,2003,108(D22):2 101-2 110.
[81] Zhao Liang, Zhu Yuxiang, Yang Hong, et al. A dynamic approach to retrieving snow depth based on the technology of integrating satellite remote sensing and in situ data[J]. Acta Meterologica Sinica, 2013, 71(4): 769-782.[赵亮, 朱玉祥, 杨弘, 等. 一种基于卫星遥感与地面测站数据融合技术的雪深动态反演方法[J]. 气象学报, 2013, 71(4): 769-782.]
[82] Andreadis K M, Lettenmaier D P.Assimilating remotely sensed snow observations into a macroscale hydrology model[J]. Advances in Water Resources, 2006, 29(6): 872-886.
[83] Durand M, Margulis S A.Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent[J]. Journal of Hydrometeorology, 2006, 7(3): 443-457.
[84] Che Tao, Li Xin, Jin Rui, et al. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth[J]. Remote Sensing of Environment, 2014, 143(54/63): 54-63.
[85] Pulliainen J.Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations[J]. Remote Sensing of Environment, 2006, 101(2): 257-269.
[86] Jiang Lingmei.Passive Microwave Remote Sensing of Snow Water Equivalence Study[D].Beijing:Beijing Normal University, 2005.[蒋玲梅. 被动微波雪水当量研究[D].北京:北京师范大学, 2005.]
[87] Dai L, Che T, Ding Y.Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 2015, 7(6): 7 212-7 230.
[88] Armstrong R L, Brodzik M J.Recent northern hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors[J]. Geophysical Research Letters, 2001, 28(19): 3 673-3 676.
[89] Cao Meisheng, Li Peiji.Microwave remote sensing monitoring of snow cover in western China[J]. Mountain Reseach, 1994, 12(4): 230-234.[曹梅盛, 李培基. 中国西部积雪微波遥感监测[J]. 山地研究, 1994, 12(4): 230-234.]
[90] Zheng Lei, Zhang Tingjun, Che Tao, et al. Evaluation of snow depth products derived from passive microwave satellite remote sensing data using ground—Based snow measurements[J]. Remote Sensing Technology and Application, 2015, 30(3):413-423.[郑雷, 张廷军, 车涛, 等. 利用实测资料评估被动微波遥感雪深算法[J]. 遥感技术与应用, 2015, 30(3): 413-423.]
[91] Liu J, Li Z, Huang L, et al. Hemispheric-scale comparison of monthly passive microwave snow water equivalent products[J]. Journal of Applied Remote Sensing, 2014, 8(1). DOI:10.1117/1.JRS.8.084688.
[92] Frei A, Tedesco M, Lee S, et al. A review of global satellite-derived snow products[J]. Advances in Space Research, 2012, 50(8): 1 007-1 029.
[93] Singh P R, Gan T Y.Retrieval of snow water equivalent using passive microwave brightness temperature data[J]. Remote Sensing of Environment, 2000, 74(2): 275-286.
[94] Hall D K.Influence of depth hoar on microwave emission from snow in northern Alaska[J]. Cold Regions Science and Technology, 1987, 13(3): 225-231.
[95] Wei Yue, Chen Shujiang, Chen Xia.Analysis on the seasonal snow density change characteristics of north Xinjiang[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 519-523.[魏玥, 陈蜀江, 陈霞. 新疆北部地区季节性积雪密度变化特征分析[J]. 冰川冻土, 2010, 32(3): 519-523.]
[96] Li Peiji.Dynamic characteristic of snow cover in Western China[J]. Acta Geographic Sinica, 1993, 48(6): 505-515.[李培基. 中国西部积雪变化特征[J]. 地理学报, 1993, 48(6): 505-515.]
[97] Foster J L, Hall D K, Chang A T, et al. Effects of snow crystal shape on the scattering of passive microwave radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1 165-1 168.
[98] Vander Jagt B J, Durand M T, Margulis S A, et al.The effect of spatial variability on the sensitivity of passive microwave measurements to snow water equivalent[J]. Remote Sensing of Environment, 2013, 136:163-179.
[99] Go?ta K, Walker A E, Goodison B E.Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data[J]. International Journal of Remote Sensing, 2003, 24(5): 1 097-1 102.
[100] Romanov P, Tarpley D.Enhanced algorithm for estimating snow depth from geostationary satellites[J]. Remote Sensing of Environment, 2007, 108(1): 97-110.
[101] Zhou Shengnan, Che Tao, Dai Liyun.Based on the type of ground site representative of snow remote sensing products precision evaluation[J]. Remote Sensing Technology and Application, 2017, 32(2): 228-237.[周胜男, 车涛, 戴礼云. 基于地面站点类型代表性的积雪遥感产品精度评价[J]. 遥感技术与应用, 2017, 32(2): 228-237.]
[102] Grody N C, Basist A N.Global identification of snowcover using SSM/I measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1): 237-249.
[103] Savoie M H, Armstrong R L, Brodzik M J, et al. Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau[J]. Remote Sensing of Environment, 2009, 113(12): 2 661-2 669.
[104] Qiu Y, Shi J, Lemmetyinen J, et al. The atmosphere influence to AMSR-E measurements over snow-covered areas: Simulation and experiments[C]//Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS, 2009. DOI:10.1109/IGARSS.2009.5418158.
[105] Tedesco M, Wang J R.Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 320-324.
[106] Mizukami N, Perica S.Towards improved snow water equivalent retrieval algorithms for satellite passive microwave data over the mountainous basins of western USA[J]. Hydrological Processes, 2012, 26(13): 1 991-2 002.
[107] Smith T, Bookhagen B.Assessing uncertainty and sensor biases in passive microwave data across high mountain asia[J]. Remote Sensing of Environment, 2016, 181:174-185.
[108] Dai L, Che T, Ding Y, et al. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing[J]. Cryosphere Discussions, 2017, 11(4): 1-31.
[1] 窦燕,陈曦. 基于站点的中国天山山区积雪要素变化研究[J]. 地球科学进展, 2011, 26(4): 441-448.
[2] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[3] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[4] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[5] 孙之文,施建成,蒋玲梅,杨虎,张立新. 被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究[J]. 地球科学进展, 2006, 21(12): 1363-1369.
[6] 车涛;李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2): 204-210.