地球科学进展 ›› 2018, Vol. 33 ›› Issue (6): 578 -589. doi: 10.11867/j.issn.1001-8166.2018.06.0578

综述与评述 上一篇    下一篇

黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展
邹银洪 1, 2( ), 张润宇 1, *( ), 陈敬安 1, 王立英 1, 陆顶盘 1, 2   
  1. 1.中国科学院地球化学研究所,环境地球化学国家重点实验室,贵州 贵阳 550081
    2.中国科学院大学,北京 100049
  • 收稿日期:2017-11-15 修回日期:2018-05-05 出版日期:2018-06-20
  • 通讯作者: 张润宇 E-mail:zouyinhong@vip.gyig.ac.cn;zhangrunyu@vip.gyig.ac.cn
  • 基金资助:
    *国家自然科学基金项目“黏土矿物对富营养化湖泊内源磷的钝化机制及其有机质的复合影响”(编号:41573133);贵州省应用基础研究计划重大项目“贵州典型深水型湖库水环境健康风险及综合调控理论与技术”(编号:[2015]2001)资助.

Research Advance in the Application of Clay Minerals to Phosphorus Pollution Control in Eutrophic Water Bodies and Sediments

Yinhong Zou 1, 2( ), Runyu Zhang 1, *( ), Jing’an Chen 1, Liying Wang 1, Dingpan Lu 1, 2   

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-11-15 Revised:2018-05-05 Online:2018-06-20 Published:2018-07-23
  • Contact: Runyu Zhang E-mail:zouyinhong@vip.gyig.ac.cn;zhangrunyu@vip.gyig.ac.cn
  • About author:

    First author:Zou Yinhong(1987-),male,Zunyi City,Guizhou Province,Master student. Research areas include water pollution control. E-mail:zouyinhong@vip.gyig.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Inactivation mechanisms of internal—P loading of eutrophic lake using clay minerals and the combined impact of organic matter” (No.41573133);The Science and Technology Project of Guizhou Province “Water environmental health risks and integrated control theory and technology of typical deep-water lakes and reservoirs in Guizhou Province”(No.[2015]2001).

水体富营养化已成为当今全球亟待解决的重大环境问题之一。磷是造成淡水湖库富营养化的主要限制因子,其过量输入不仅导致浮游藻类的异常增殖及湖水溶解氧和透明度的显著降低,而且衍生的藻毒素、嗅味物质对生态系统和人类健康造成严重危害。当湖库外源磷输入得到有效遏制后,水体与底泥中内负荷磷的污染控制直接决定着富营养化的治理成效。黏土矿物是一类在自然界中广泛分布的非金属矿藏资源,具备孔隙多、比表面积大、优良的表面吸附和离子交换等性能,近年来在生态环境修复与治理领域备受关注。简述黏土矿物的主要类型及其理化特性,归纳了典型黏土矿物的不同改性方法及其优缺点,概括了黏土矿物应用在富营养化水体和底泥磷污染控制中的最新研究成果,重点探讨了黏土矿物的除磷机理、关键影响因子以及潜在的生态环境影响,在此基础上对未来的研究方向予以展望。

Eutrophication has become a major global environmental concern. As the main factor responsible for freshwater lakes and reservoirs eutrophication, the excessive input of phosphorus (P) initiates phytoplankton blooms as well as the significant reduction in dissolved oxygen and transparency in lake, thus secreting algae toxins and derived odor substances which seriously threaten the ecosystem and human life. When the external inputs are effectively curbed, the control of internal-P loading including eutrophic water and sediment directly determines the effectiveness of eutrophication. Clay minerals are a kind of nonmetallic mineral resources widely distributed in nature. It has been extensively applied in ecological environment restoration and management in recent years, ascribing to its large specific surface area, porosity and the excellent surface adsorption and ion exchange performance. This paper introduced the main types of clay minerals and their physicochemical characteristics, summarized the advantages and disadvantages of different modification methods on typical clay minerals, presented the latest research results of its application in P control of eutrophic water and sediment, discussed the factors influencing the mechanism of P removal and their potential ecological environment impact, and pointed out the future research direction.

中图分类号: 

表1 蒙脱石的改性方法及其优缺点
Table 1 Modification methods of montmorillonite and their advantages and disadvantages
改性方法 改性机理 优点 缺点 参考文献
酸改性 通过加酸浸泡,蒙脱石层间的金属阳离子溶出,使得其孔道得到疏通,有利于吸附质分子的扩散,电离出来的H+还可以置换出层间的金属阳离子,从而减弱层间作用力,永久性负电荷增多 增大了内部孔结构容积,提高吸附性能 吸附效果受酸的浓度控制 [23]
盐改性 利用蒙脱石的膨胀性和层间阳离子可交换性的特点,通过使无机金属阳离子水解产生的金属羟基阳离子进入蒙脱石层间来置换出可交换阳离子 增大比表面积、稳定性增强,吸附性增强,有效、可回收重复利用 过量使用会引起水体pH值过高,对生物体造成严重危害 [7,24~28]
热改性 蒙脱石在高温煅烧下依次失去表面水、骨架结构中的结合水 孔隙率增加,结构更为疏松,吸附性能得到一定改善 不详 [29]
有机改性 如有机长链烷基季铵盐对蒙脱石表面改性或有机硅烷偶联剂对蒙脱石表面羟基进行嫁接改性 增强蒙脱石亲有机性、比表面积、稳定性和吸附能力,且吸附剂具有一定的再生性 稳定性差,会造成水体二次污染 [30,31]
复合改性 将有机组分(如长链烷基季铵盐、有机硅烷偶联剂)与无机阳离子(如铁、铝)通过化学方法嫁接负载在蒙脱石表面 复合改性后的蒙脱石具有亲有机性且更稳定,更加环保 在实际应用中可能受其他污染物干扰,影响其吸附率 [31,32]
表1 蒙脱石的改性方法及其优缺点
Table 1 Modification methods of montmorillonite and their advantages and disadvantages
改性方法 改性机理 优点 缺点 参考文献
酸改性 通过加酸浸泡,蒙脱石层间的金属阳离子溶出,使得其孔道得到疏通,有利于吸附质分子的扩散,电离出来的H+还可以置换出层间的金属阳离子,从而减弱层间作用力,永久性负电荷增多 增大了内部孔结构容积,提高吸附性能 吸附效果受酸的浓度控制 [23]
盐改性 利用蒙脱石的膨胀性和层间阳离子可交换性的特点,通过使无机金属阳离子水解产生的金属羟基阳离子进入蒙脱石层间来置换出可交换阳离子 增大比表面积、稳定性增强,吸附性增强,有效、可回收重复利用 过量使用会引起水体pH值过高,对生物体造成严重危害 [7,24~28]
热改性 蒙脱石在高温煅烧下依次失去表面水、骨架结构中的结合水 孔隙率增加,结构更为疏松,吸附性能得到一定改善 不详 [29]
有机改性 如有机长链烷基季铵盐对蒙脱石表面改性或有机硅烷偶联剂对蒙脱石表面羟基进行嫁接改性 增强蒙脱石亲有机性、比表面积、稳定性和吸附能力,且吸附剂具有一定的再生性 稳定性差,会造成水体二次污染 [30,31]
复合改性 将有机组分(如长链烷基季铵盐、有机硅烷偶联剂)与无机阳离子(如铁、铝)通过化学方法嫁接负载在蒙脱石表面 复合改性后的蒙脱石具有亲有机性且更稳定,更加环保 在实际应用中可能受其他污染物干扰,影响其吸附率 [31,32]
表2 凹凸棒石的改性方法及其优缺点
Table 2 Modification methods of attapulgite and their advantages and disadvantages
表2 凹凸棒石的改性方法及其优缺点
Table 2 Modification methods of attapulgite and their advantages and disadvantages
表3 氧化铁矿物的改性方法及其优缺点
Table 3 Modification methods of iron oxide minerals and their advantages and disadvantages
吸附剂 制备过程 优点 缺点 参考文献
石英砂负
载氧化铁
筛取粒度较小的石英砂滤料,先用浓盐酸溶液浸泡后,洗净烘干。按一定比例将Fe(NO3)·9H2O溶于双蒸水,与洗净后的石英砂均匀混合,烘干,冷却后,用双蒸水洗去未负载的氧化铁颗粒,直至中性,烘干备用 对磷的吸附效果好,并解决粉末吸附剂难以回收的问题 不详 [42,43]
水合氧
化铁
将氨水溶液与三氯化铁溶液均匀混合,所得沉淀用去离子水反复洗涤至中性,再将沉淀物烘干至质量恒定,碾成粉末状,得到固体水合氧化铁吸附剂样品 对磷酸根有较强的吸附能力,并且制备方法简单、材料价格低廉、且无生态毒性 pH值及反应时间影响其吸附性能 [44,45]
羟基氧
化铁
将三价铁盐与羟基混合,形成原位水解生成的羟基氧化铁 比表面积大,有利于磷的吸附 吸附剂多为粉末状,固液分离难,不利于磷的回收及吸附剂的再生 [46~48]
沸石负载
氧化铁
用稀盐酸浸泡沸石,冲洗至中性,烘干。按一定比例将Fe(NO3)3溶解于超纯水中,并与预处理的沸石混合均匀,烘干。再将负载后的沸石清洗至中性,烘干备用 除磷性能好、容易再生和价格低廉等优点 pH值影响其吸附
性能
[49]
铁锰复合
氧化物
将铁盐与高锰酸钾在碱性条件下混合,便可获得铁
锰复合氧化物
比表面积增大,对磷的吸附性能较好 吸附效果受共存离子及pH值的影响 [50,51]
表3 氧化铁矿物的改性方法及其优缺点
Table 3 Modification methods of iron oxide minerals and their advantages and disadvantages
吸附剂 制备过程 优点 缺点 参考文献
石英砂负
载氧化铁
筛取粒度较小的石英砂滤料,先用浓盐酸溶液浸泡后,洗净烘干。按一定比例将Fe(NO3)·9H2O溶于双蒸水,与洗净后的石英砂均匀混合,烘干,冷却后,用双蒸水洗去未负载的氧化铁颗粒,直至中性,烘干备用 对磷的吸附效果好,并解决粉末吸附剂难以回收的问题 不详 [42,43]
水合氧
化铁
将氨水溶液与三氯化铁溶液均匀混合,所得沉淀用去离子水反复洗涤至中性,再将沉淀物烘干至质量恒定,碾成粉末状,得到固体水合氧化铁吸附剂样品 对磷酸根有较强的吸附能力,并且制备方法简单、材料价格低廉、且无生态毒性 pH值及反应时间影响其吸附性能 [44,45]
羟基氧
化铁
将三价铁盐与羟基混合,形成原位水解生成的羟基氧化铁 比表面积大,有利于磷的吸附 吸附剂多为粉末状,固液分离难,不利于磷的回收及吸附剂的再生 [46~48]
沸石负载
氧化铁
用稀盐酸浸泡沸石,冲洗至中性,烘干。按一定比例将Fe(NO3)3溶解于超纯水中,并与预处理的沸石混合均匀,烘干。再将负载后的沸石清洗至中性,烘干备用 除磷性能好、容易再生和价格低廉等优点 pH值影响其吸附
性能
[49]
铁锰复合
氧化物
将铁盐与高锰酸钾在碱性条件下混合,便可获得铁
锰复合氧化物
比表面积增大,对磷的吸附性能较好 吸附效果受共存离子及pH值的影响 [50,51]
表4 氧化铝矿物的改性方法及其优缺点
Table 4 Modification methods of alumina mineral and their advantages and disadvantages
表4 氧化铝矿物的改性方法及其优缺点
Table 4 Modification methods of alumina mineral and their advantages and disadvantages
图1 锁磷剂的除磷机理示意图
Fig.1 Schematic diagram of P control mechanism of Phoslock
图1 锁磷剂的除磷机理示意图
Fig.1 Schematic diagram of P control mechanism of Phoslock
图2 凹凸棒石的除磷机理示意图 [ 14 ]
Fig.2 Schematic diagram of P control mechanism of NCAP700 [ 14 ]
图2 凹凸棒石的除磷机理示意图 [ 14 ]
Fig.2 Schematic diagram of P control mechanism of NCAP700 [ 14 ]
图3 金属氧化物除磷机理示意图 [ 50 ]
Fig.3 Schematic diagram of P control mechanism of metal oxides [ 50 ]
图3 金属氧化物除磷机理示意图 [ 50 ]
Fig.3 Schematic diagram of P control mechanism of metal oxides [ 50 ]
[1] Wu Fengchang,Jin Xiangcan,Zhang Runyu,et al. Effects and significance of organic nitrogen and phosphorous in the lake aquatic environment[J].Journal of Lake Science,2010,(1): 1-7.
[吴丰昌,金相灿,张润宇,等.论有机氮磷在湖泊水环境中的作用和重要性[J].湖泊科学,2010,(1):1-7.]
doi: 10.18307/2010.0101     URL    
[2] Yang Yongqiong,Chen Jing’an,Wang Jingfu,et al. Research progress of sediments Phosphorus in-situ inactivation[J].Advances in Earth Science,2013,28(6): 674-684.
[杨永琼,陈敬安,王敬富,等.沉积物磷原位钝化技术研究进展[J].地球科学进展,2013,28(6):674-684.]
[3] Carpenter S R.Phosphorus control is critical to mitigating eutrophication[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(32):11 039-11 040.
doi: 10.1073/pnas.0806112105     URL     pmid: 18685114
[4] Liu X,Sheng H,Jiang S,et al. Intensification of phosphorus cycling in China since the 1600s[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(10): 2 609-2 614.
doi: 10.1073/pnas.1519554113     URL     pmid: 26903638
[5] Yan Z,Han W,Peñuelas J,et al. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts[J]. Ecology Letters,2016,19(10): 1 237-1 246.
doi: 10.1111/ele.12658     URL    
[6] Egemose S,Reitzel K,AndersenF Ø,et al. Chemical lake restoration products: Sediment stability and phosphorus dynamics[J]. Environmental Science & Technology,2010,44(3): 985-991.
[7] Meis S,Spears B M,Maberly S C,et al. Assessing the mode of action of Phoslock in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington,UK)[J]. Water Research,2013,47(13): 4 460-4 473.
doi: 10.1016/j.watres.2013.05.017     URL    
[8] Jia Y,Wang H,Zhao X,et al. Kinetics,isotherms and multiple mechanisms of the removal for phosphate by Cl-hydrocalumite[J]. Applied Clay Science,2016,129: 116-121.
doi: 10.1016/j.clay.2016.05.018     URL    
[9] Rai J,Kumar D,Pandey L K,et al. Potential of cyanobacterial biofilms in phosphate removal and biomass production[J]. Journal of Environmental Management,2016,177: 138-144.
doi: 10.1016/j.jenvman.2016.04.010     URL     pmid: 27088210
[10] Blaney L M,Cinar S,Sengupta A K .Hybrid anion exchanger for trace phosphate removal from water and wastewater[J]. Water Research,2007,41(7): 1 603-1 613.
doi: 10.1016/j.watres.2007.01.008     URL     pmid: 17306856
[11] Li Bolin,Liang Ya’nan,Zhang Chengchen,et al.Preparation of monohydrallite-coal ash composite flocculant: Phosphorus removal performance and flocculation mechanism[J]. Acta Scientiae Circumstantiae,2016,36(7): 2 503-2 511.
[李柏林,梁亚楠,张程琛,等.粉煤灰—铝土矿改性制备铝铁复合混凝剂的除磷性能及混凝机理研究[J].环境科学学报,2016,36(7):2 503-2 511.]
[12] Gibbs M M,Hickey C W,Özkundakci D.Sustainability assessment and comparison of efficacy of four P-inactivation agents for managing internal phosphorus loads in lakes: Sediment incubations[J]. Hydrobiologia,2011,658(1): 253-275.
doi: 10.1007/s10750-010-0477-3     URL    
[13] Cooke G D,WelchEB,MartinA B,et al. Effectiveness of Al,Ca,and Fe salts for control of internal phosphorus loading in shallow and deep lakes[J]. Hydrobiologia,1993,253(1/3): 323-335.
doi: 10.1007/BF00050758     URL    
[14] Yin H,Kong M.Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap[J]. Journal of Environmental Management,2015,151(3): 178-185.
[15] Copetti D,Finsterle K,Marziali L,et al. Eutrophication management in surface waters using lanthanum modified bentonite: A review[J]. Water Research,2016,97: 162-174.
doi: 10.1016/j.watres.2015.11.056     URL     pmid: 26706125
[16] Zhao Xingyuan,Zhang Youyu.Analysis of Clay Minerals and Clay Minerals[M]. Beijing: Maritime Press,1990.
[赵杏媛,张有瑜. 粘土矿物与粘土矿物分析[M].北京:海洋出版社,1990.]
[17] Ye H,Chen F,Sheng Y,et al. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Separation & Purification Technology,2006,50(3): 283-290.
doi: 10.1016/j.seppur.2005.12.004     URL    
[18] Cornell R M, Schwertmann U.The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses[M]. Weinheim: Wiley-VCH, 2003.
[19] Nilsson N, Persson P, Lövgren L, et al. Competitive surface complexation of o-phthalate and phosphate on goethite (α-FeOOH) particles[J]. Geochimica et Cosmochimica Acta, 1996, 60(22):4 385-4 395.
doi: 10.1016/S0016-7037(96)00258-X     URL    
[20] Huang Xiaorong,Li Xuehui.Surface acidity and basicity of γ-Alumina membrane[J]. Journal of Molecular Catalysis,2001, 15(1):6-10.
[黄肖容, 李雪辉.γ-氧化铝膜的表面酸碱性[J].分子催化, 2001, 15(1):6-10.]
[21] Tanada S, Kabayama M, Kawasaki N, et al. Removal of phosphate by aluminum oxide hydroxide[J]. Journal of Colloid & Interface Science, 2003, 257(1):135-140.
doi: 10.1016/S0021-9797(02)00008-5     URL     pmid: 16256465
[22] Li Xing,Fan Qian,Yang Yanling,et al. Adsorption performance of trace phosphorus removal by modified active aluminum oxide[J]. Journal of Beijing University of Technology,2009,35(6):825-829.
[李星,范茜,杨艳玲,等. 改性活性氧化铝吸附去除水中痕量磷的性能[J]. 北京工业大学学报,2009,35(6):825-829.]
URL    
[23] Pawar R R, Gupta P,Lalhmunsiama, et al. Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate[J]. Science of the Total Environment,2016,572:1 222-1 230.
doi: 10.1016/j.scitotenv.2016.08.040     URL     pmid: 27524725
[24] Borgnino L, Avena M J, Pauli C P D. Synthesis and characterization of Fe(III)-montmori-llonites for phosphate adsorption[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2009, 341(1/3):46-52.
[25] Huang W,Chen J,He F,et al. Effective phosphate adsorption by Zr/Al-pillared montmorillonite: Insight into equilibrium, kinetics and thermodynamics[J]. Applied Clay Science, 2015, 104:252-260.
doi: 10.1016/j.clay.2014.12.002     URL    
[26] Kasama T,Watanabe Y,Yamada H,et al. Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH[J]. Applied Clay Science,2004,25(3/4): 167-177.
doi: 10.1016/j.clay.2003.09.005     URL    
[27] Yan L G,Xu Y Y,Yu H Q,et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. Journal of Hazardous Materials, 2010, 179(1/3):244.
doi: 10.1016/j.jhazmat.2010.02.086     URL    
[28] Haghseresht F, Wang S B, Do D D.A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters[J]. Applied Clay Science, 2009, 46(4):369-375.
doi: 10.1016/j.clay.2009.09.009     URL    
[29] Tanyol M,Yonten V,Demir V.Removal of phosphate from aqueous solutions by chemical-and thermal-modified bentonite clay[J]. Water Air & Soil Pollution,2015,226(8): 1-12.
doi: 10.1007/s11270-015-2538-8     URL    
[30] Wang J,Ma H,Yuan W,et al. Synthesis and characterization of an inorganic/organic Modi-fied bentonite and its application in methyl orange water treatment[J]. Desalination & Water Treatment,2014,52(40/42): 7 660-7 672.
[31] Ma J,Zhu L.Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water[J]. Journal of Hazardous Materials,2006,136(3): 982-988.
doi: 10.1016/j.jhazmat.2006.01.046     URL    
[32] Zhu R,Zhu L,Zhu J,et al. Sorption of naphthalene and phosphate to the CTMAB-Al13 intercalated bentonites[J]. Journal of Hazardous Materials,2009,168(2/3): 1 590-1 594.
doi: 10.1016/j.jhazmat.2009.03.057     URL     pmid: 19361919
[33] Gan F, Zhou J, Wang H, et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite[J]. Water Research, 2009, 43(11):2 907-2 915.
doi: 10.1016/j.watres.2009.03.051     URL     pmid: 19447464
[34] Han Meixiang,Yin Hongbin,Tang Wanying.Phosphorus sorption from aqueous solution by the thermally-treated attapulgite amended sediment[J]. China Environmental Science,2016,36(1):100-108.
[韩梅香,尹洪斌,唐婉莹.热改性凹土钝化底泥对水体磷的吸附特征研究[J].中国环境科学,2016,36(1):100-108.]
doi: 10.3969/j.issn.1000-6923.2016.01.017     URL    
[35] Gan Fangqun,Zhou Jianmin,Wang Huoyan,et al. Effect of acid concentration on phosphate adsorption capacity of acid modified palygorskites[J]. Acta Pedologica Sinica,2010,47(2):319-324.
[干方群,周健民,王火焰,等.不同浓度酸改性对凹凸棒石粘土磷吸附性能的影响[J].土壤学报,2010,47(2):319-324.]
[36] Jozefaciuk G, Matykasarzynska D.Effect of acid treatment and alkali treatment on nanopore properties of selected minerals[J]. Clays & Clay Minerals, 2006, 54(2):220-229.
doi: 10.1346/CCMN.2006.0540207     URL    
[37] Zhang Jianmin,Zhou Lei,Liu Yutao,et al. Modification of paiygorskites by alkali-acid and the effect of the phousphorus removal[J]. Journal of Xian Polytechnic University,2013,27(6):760-763.
[张建民, 周磊, 刘玉涛,等.凹凸棒石的碱酸改性及除磷效果探究[J].西安工程大学学报, 2013,27(6):760-763.]
doi: 10.3969/j.issn.1674-649X.2013.06.012     URL    
[38] Pan M,Lin X,Xie J,et al. Kinetic,equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites[J]. RSC Advances,2017,7(8):4 492-4 500.
doi: 10.1039/C6RA26802A     URL    
[39] Zhang Y,Lv X J,Kou X Y.Kinetics and thermodynamic investigation of phosphate adsorption on AlCl3 modified palygorskite[J]. Advanced Materials Research, 2013, 683:530-533.
doi: 10.4028/www.scientific.net/AMR.683     URL    
[40] Chen H, Zhang J P.Study on preparation of organo-attapulgite clays and properties of superabsorbent composites[J]. Chinese Journal of Applied Chemistry, 2006, 23(1):69-73.
doi: 10.1016/S0379-4172(06)60065-6     URL    
[41] Zhang J M, Zhang Q, Meng L G, et al. Influence of graft modification process on organic grafted attapulgite adsorbing phosphorus[J]. Industrial Water & Wastewater, 2014,45(3):47-51.
URL    
[42] Bailey R P, Bennett T, Benjamin M M.Sorption onto and recovery of Cr(VI) using iron-oxide-coated sand[J]. Water Science & Technology, 1992, 26(5/6):1 239-1 244.
doi: 10.1029/91WR02523     URL    
[43] Xu Guangmei,Shi Zhou,Deng Jun.Characterization of adsorption of antimony and phosphate by using IOCS with XRD,FTIR and XPS[J]. Acta Scientiae Circumstantiae,2007,27(3):402-407.
[许光眉,施周,邓军.石英砂负载氧化铁吸附除锑、磷的XRD、FTIR以及XPS研究[J].环境科学学报,2007,27(3):402-407.]
doi: 10.3321/j.issn:0253-2468.2007.03.008     URL    
[44] Xiang Xuemin,Liu Ying,Zhou Jiti,et al.Sorption-desorption of phosphate in wastewater by hydrous iron oxide[J]. Environmental Science,2008,29(11):3 059-3 063.
[项学敏,刘颖,周集体,等.水合氧化铁对废水中磷酸根的吸附—解吸性能研究[J].环境科学, 2008,29(11):3 059-3 063.]
[45] Mo Deqing,Duan Junyuan,Wang Xijing.Studyon phosphate contained waste water adsorption byhydrous iron oxide[J]. Environmental Science &Technology,2012,35(Suppl.2): 66-69.
[莫德清,段钧元,王曦兢.水合氧化铁对含磷废水的吸附特性研究[J].环境科学与技术,2012,35(增刊2):66-69.]
[46] Genz A, Kornmüller A, Jekel M.Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide[J]. Water Research, 2004, 38(16):3 523-3 530.
doi: 10.1016/j.watres.2004.06.006     URL    
[47] Kim J,Li W, Phillips B L,et al. Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): A31P NMR study[J]. Energy & Environmental Science,2011,4(10):4 298-4 305.
[48] Qi Xiaolu,Sun Lihua,Zhang Yajun,et al. Effectiveness and mechanism of the in situ formed iron hydroxide (FeOxHy) towards the removal of phosphate by coagulation and adsorption[J]. Chinese Journal of Environmental Engineering,2014,8(2): 505-512.
[齐晓璐,孙丽华,张雅君,等.原位水解生成的羟基氧化铁凝聚吸附除磷效能与机制[J].环境工程学报,2014,8(2): 505-512.]
[49] Lu Yanqin,Zhu Li,He Zhaoju,et al. Phosphate adsorption from waste water byiron-oxide coated-zeolite[J]. Environmental Engineering,2015,(4):48-52.
[陆燕勤,朱丽,何昭菊,等.沸石负载氧化铁吸附剂吸附除磷研究[J].环境工程,2015,(4):48-52.]
doi: 10.13205/j.hjgc.201504011     URL    
[50] Li M,Liu J,Xu F,et al. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review[J]. Environmental Reviews,2016,24(3): 319-332.
doi: 10.1139/er-2015-0080     URL    
[51] Li Haining,Chen Jing,Li Qiumei,et al. Adsorptive removal of phosphate from water using Fe-Mn binary oxide coated sea sand[J]. Acta Scientiae Circumstantiae,2016,36(3): 880-886.
[李海宁,陈静,李秋梅,等.铁锰复合氧化物包覆海砂的吸附除磷研究[J].环境科学学报,2016,36(3):880-886.]
doi: 10.13671/j.hjkxxb.2015.0458     URL    
[52] Ku Y, Chiou H M.The Adsorption of fluoride ion from aqueous solution by activated alumina[J]. Water Air & Soil Pollution, 2002, 133(1/4):349-361.
doi: 10.1023/A:1012929900113     URL    
[53] Wang J L, Zhang Y J, Feng C M, et al. Adsorption capacity for phosphorus comparison among activated alumina, silica sand and anthracite coal[J]. Journal of Water Resource & Protection, 2009, 1(4):260-264.
[54] Meng Wenna,Xie Jie,Wu Deyi, et al. Study on phosphate removal and recovery by activated alumina[J]. Environmental Science,2013,34(1):231-236.
[孟文娜,谢杰,吴德意,等. 活性氧化铝对水中磷的去除与回收研究[J].环境科学,2013,34(1):231-236.]
URL    
[55] Chubar N I,Kanibolotskyy V A,Strelko V V, et al. Adsorption of phosphate ions on novel inorganic ion exchangers[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2005,255(1/3):55-63.
doi: 10.1016/j.colsurfa.2004.12.015     URL    
[56] Bozorgpour F, Ramandi H F, Jafari P, et al. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads[J]. International Journal of Biological Macromolecules,2016,93(Pt A):557-565.
doi: 10.1016/j.ijbiomac.2016.09.015     URL    
[57] Lai Li,Xie Qiang,Fang Wenkan,et al. Removal and recycle of phosphor from water using magnetic core/shell structured Fe3O4@SiO2 nanoparticles functionalized with hydrous aluminum oxide[J]. Environmental Science,2016,37(4):1 444-1 450.
[赖立,谢强,方文侃,等.水合氧化铝负载的磁性核/壳结构Fe3O4@SiO2纳米颗粒对水中磷的去除及再利用[J].环境科学,2016,37(4):1 444-1 450.]
[58] Jeong Y, Fan M, Singh S, et al. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents[J]. Chemical Engineering & Processing Process Intensification, 2007, 46(10):1 030-1 039.
doi: 10.1016/j.cep.2007.05.004     URL    
[59] Tofik A S,Taddesse A M,Tesfahun K T,et al. Fe-Al binary oxide nanosorbent: Synthesis,characterization and phosphate sorption property[J]. Journal of Environmental Chemical Engineering,2016,4(2): 2 458-2 468.
doi: 10.1016/j.jece.2016.04.023     URL    
[60] Robb M,Greenop B,Goss Z,et al. Application of Phoslock TM,an innovative phosphorus binding clay,to two Western Australian waterways: Preliminary findings[J]. Hydrobiologia,2003,494(1/3): 237-243.
doi: 10.1023/A:1025478618611     URL    
[61] Lürling M,Van O F.Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation[J]. Water Research,2013,47(17): 6 527.
doi: 10.1016/j.watres.2013.08.019     URL     pmid: 24041525
[62] Mrquez-Pacheco H,Hansen A M,Falcón-RojasA. Phosphorous control in a eutrophied reservoir[J]. Environmental Science & Pollution Research,2013,20(12): 8 446-8 456.
[63] Gunn I D M,Meis S,Maberly S C,et al.Assessing the responses of aquatic macrophytes to the application of a lanthanum modified bentonite clay,at Loch Flemington,Scotland,UK[J]. Hydrobiologia,2014,737(1): 309-320.
doi: 10.1007/s10750-013-1765-5     URL    
[64] Zhu Guangwei,Li Jing,Zhu Mengyuan,et al. Efficacy of phoslock on the reductionof sediment phosphrus release in West Lake,Hangzhou,China[J]. Environmental Science,2017,(4):1 451-1 459.
[朱广伟,李静,朱梦圆,等.锁磷剂对杭州西湖底泥磷释放的控制效果[J].环境科学,2017,(4):1 451-1 459.]
[65] Yin H,Kong M,Fan C.Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material[J]. Water Research,2013,47(13): 4 247-4 258.
doi: 10.1016/j.watres.2013.04.044     URL    
[66] Kang S K,Choo K H,Lim K H .Use of iron oxide particles as adsorbents to enhance phosp horus removal from secondary wastewater effluent[J]. Separation Science & Technology,2003,38(15): 3 853-3 874.
[67] Wang Hong.Study on the Adsorption of Phosphorus in Water and Sediment by Using Zirconium-Modified Clay and Lanthanum-Modified Zeolite[D].Shanghai:Shanghai Ocean University, 2016.
[王虹. 锆改性粘土和镧改性沸石的固磷作用研究[D].上海:上海海洋大学,2016.]
[68] Jung Y,Alam S U,Sun Y,et al. Removal and recovery of phosphate from water using sorption[J]. Critical Reviews in Environmental Science & Technology,2014,44(8): 847-907.
doi: 10.1080/10643389.2012.741311     URL    
[69] Acelas N Y,Martin B D,López D,et al. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media[J]. Chemosphere,2015,119: 1 353-1 360.
doi: 10.1016/j.chemosphere.2014.02.024     URL    
[70] Li W,Feng X,Yan Y,et al. Solid state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides[J]. Environmental Science & Technology,2013,47:8 308-8 315.
doi: 10.1021/es400874s     URL     pmid: 23837616
[71] Si Jing,Lu Shaoyong,Jin Xiangcan,et al. Effect of pH value and light on La-modified bentonite adsorption of phosphorus and nitrogen in water[J]. China Environmental Science,2009,29(9):946-950.
[司静,卢少勇,金相灿,等. pH值和光照对镧改性膨润土吸附水中氮和磷的影响[J].中国环境科学,2009,29(9):946-950.]
doi: 10.3321/j.issn:1000-6923.2009.09.010     URL    
[72] Ross G,Haghseresht F,Cloete T E.The effect of pH and anoxia on the performance of Phoslock ,a phosphorus binding clay[J]. Harmful Algae,2008,7(4): 545-550.
doi: 10.1016/j.hal.2007.12.007     URL    
[73] Reitzel K,Balslev K A,Jensen H S.The influence of lake water alkalinity and humic substances on particle dispersion and lanthanum desorption from a lanthanum modified bentonite[J].Water Research,2017,125:191-200.
doi: 10.1016/j.watres.2017.08.044     URL    
[74] Steinman A D,Ogdahl M.Ecological effects after an alum treatment in Spring Lake,Michigan[J]. Journal of Environmental Quality,2008,37(1): 22-29.
doi: 10.2134/jeq2007.0142     URL     pmid: 18178875
[75] Egemose S,Wauer G,Kleeberg A.Resuspension behavior of aluminum treated lake sediments: Effects of ageing and pH[J]. Hydrobiologia,2009,636(1): 203-217.
doi: 10.1007/s10750-009-9949-8     URL    
[76] Svatos K.Commercial silicate phosphate sequestration and desorption leads to a gradual decline of aquatic systems[J].Environmental Science & Pollution Research,2017,25(3):1-7.
[77] Waajen G,Pauwels M,Lürling M.Effects of combined flocculant-Lanthanum modified bentonite treatment on aquatic macroinvertebrate fauna[J].Water Research,2017,122:183.
doi: 10.1016/j.watres.2017.05.075     URL    
[1] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[2] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[3] 林晓娟, 高姗, 仉天宇, 刘桂梅. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
[4] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[5] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[6] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[7] 杨永琼,陈敬安,王敬富,曾艳. 沉积物磷原位钝化技术研究进展[J]. 地球科学进展, 2013, 28(6): 674-684.
[8] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
[9] 施泽明,倪师军,张成江,葛良全,郑 林,裴云倩. 沱江流域磷矿开采和加工过程中放射性环境问题探讨[J]. 地球科学进展, 2012, 27(10): 1134-1139.
[10] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[11] 陈志刚,黄奕普,刘广山,蔡毅华,卢阳阳,刘润. 磷酸盐氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科学进展, 2010, 25(10): 1040-1050.
[12] 黄廷林,柴蓓蓓. 水源水库水质污染与富营养化控制技术研究进展[J]. 地球科学进展, 2009, 24(6): 588-596.
[13] 周俊,邓伟,刘伟龙. 沟渠湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083.
[14] 秦伯强,王小冬,汤祥明,冯胜,张运林. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J]. 地球科学进展, 2007, 22(9): 896-906.
[15] 赵生才. 我国湖泊富营养化的发生机制与控制对策[J]. 地球科学进展, 2004, 19(1): 138-140.
阅读次数
全文


摘要