地球科学进展 ›› 2013, Vol. 28 ›› Issue (6): 674 -684. doi: 10.11867/j.issn.1001-8166.2013.06.0674

综述与评述 上一篇    下一篇

沉积物磷原位钝化技术研究进展
杨永琼 1,2,陈敬安 1*,王敬富 1,2,曾 艳 1   
  1. 1.中国科学院地球化学研究所 环境地球化学国家重点实验室,贵州 贵阳 550002;2.中国科学院大学,北京 100049
  • 收稿日期:2012-11-05 修回日期:2013-04-23 出版日期:2013-06-10
  • 通讯作者: 陈敬安(1973-),男,湖北黄冈人,研究员,主要从事湖泊环境与全新世气候变化研究.E-mail:chenjingan@vip.skleg.cn E-mail:陈敬安chenjingan@vip.skleg.cn
  • 基金资助:

    国家科技支撑计划项目“草海湿地生态系统恢复与重建关键技术研究与示范”(编号: 2011BAC02B0201) 资助

Research Progress of Sediments Phosphorus Insitu Inactivation

Yang Yongqiong 1,2, Chen Jing’an 1, Wang Jingfu 1,2, Zeng Yan 1   

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry Chinese Academy of Sciences, Guiyang 550002, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-11-05 Revised:2013-04-23 Online:2013-06-10 Published:2013-06-10

水体磷含量是湖泊富营养化最主要的限制因子之一。伴随着湖泊流域工农业发展,外源污染物的长期输入致使沉积物中蓄积了大量的磷及其他污染物。湖泊沉积物一方面是水体磷重要的汇,但另一方面还是水体磷重要的源。在单纯控制湖泊外源污染条件下,沉积物磷的释放仍可导致水体持续富营养化,湖水水质得到明显改善通常需要数十年,因此控制湖泊沉积物内源污染释放是快速恢复湖泊水质必不可少的措施。沉积物内源污染控制技术包括生物修复、环保疏浚以及原位钝化技术。受水深等环境条件限制,生物修复技术和环保疏浚在深水、亚深水型湖泊难以实施。沉积物磷原位钝化技术具有生态、经济、快速和效果稳定等特点,在控制湖泊底泥内源污染中可望发挥重要作用,尤其适合于深水、亚深水型湖泊内源污染控制。系统阐述了不同沉积物原位钝化剂的钝化原理,对比分析了铝盐、铁盐、钙盐和粘度矿物作为磷钝化剂的优缺点和应用条件,概述了国内外沉积物原位钝化技术的应用现状,在此基础上提出了沉积物原位钝化技术未来的重点研究方向:一是研究发展新型钝化剂;二是因地制宜,探索适合不同类型湖泊的底泥原位钝化技术体系;三是加强底泥原位钝化技术与其他技术的联合应用研究与示范;四是加强钝化剂负面影响评价,建立科学的应用技术方案。

Phosphorus (P) is one of the limited factors for eutrophication. With the industrial and agricultural development, a large amount of phosphorus and other pollutants enter and accumulate in sediments. Sediments play an important role in overall phosphorus (P) cycling in lake ecosystem, which are thought to act both as a sink and a source of P due to continuous transport of P across the sedimentwater interface. Phosphorus can be released from sediments into overlying water under certain environmental conditions, which may have a significant impact on water quality and result in continuing eutrophication. Under the condition of pure exogenous pollution control, the lake water will be improved in at least tens of years. To improve water quality, it  is   necessary to promote to reduce phosphorus sources in upstream tributaries and the phosphorus release from sediments. Many methods are used for restraining of P release from sediments, such as bioremediation, strategic dredging and insitu inactivation technology. For the restriction of water depth, bioremediation and strategic dredging can not reduce the P releasing from sediments effectively. Sediments repaired with inactivation agents can improve the water quality. Insitu inactivation technology will play an important role in sediments, especially for the subdeep lakes sediments, reparation. Inactivation agents are used for restraining of P release from sediments ecologically, economically and effectively. However, the application of one technology can solve a problem, and also brings another problem accordingly. This paper gives a review of recent researches on the sediments insitu inactivation technology, inactivation mechanism, advantages and disadvantages of different inactivation agents, such as aluminum, iron, calcium and natural clay  minerals. Meanwhile, the priority research areas of sediments in-situ inactivation technology are pointed out: The first is to explore novel agents for insitu inactivation technology; the second is to search new technology system suitable to local conditions for different types of lakes, the third is to strengthen researches of combining applications of sediments inactivation and other technologies; and the last is to strengthen the negative effects assessment of different inactivation technologies, and to find reasonable plans to solve these problems.

中图分类号: 

[1]Fan Chengxin, Zhang Lu. Lake Taihu: Principles of Sediment Pollution and Remediation[M]. Beijing: Science Press, 2009.[范成新, 张路. 太湖——沉积物污染与修复原理[M].北京:科学出版社, 2009.]

[2]Rydin E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 34: 2 037-2 042.

[3]Sndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003,(506/509): 135-145.

[4]Qin B Q, Zhu G W, Luo L C, et al. Estimation of internal nutrient release in large shallow Lake Taihu, China[J]. Science in China (Series D), 2006, 49(Suppl.): 38-50.

[5]zkundakci D, Hamilton D P, Gibbs M M. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion[J]. Hydrobiologia, 2011, 661(1): 5-20.

[6]Carvalho L, Maberly S, May L, et al. Risk Assessment Methodology for Determining Nutrient Impacts in Surface Freshwater Bodies[M]. Bristol: Environment Agency, 2005.

[7]Van Arkel G J. Long-term Sediment Modeling in Hamilton Harbors[M].  Hamilton:McMaster University,1994.

[8]Agyei N M, Strydom C A, Potgieter J H. The removal of phosphate ions from aqueous solution by fly ash slag, ordinary Portland cement and related blends[J]. Cement and Concrete Research, 2002, 32: 1 889-1 897.

[9]Egemose S, Wauer G, Kleeberg A. Resuspension behavior of aluminum treated lake sediments: Effects of ageing and pH[J]. Hydrobiologia, 2009, 636(1): 203-217.

[10]Vopel K, Gibbs M, Hickey C W, et al. Modification of sediment-water solute exchange by sediment-capping materials: Effects on O2 and pH[J]. Marine and Freshwater Research, 2008, 59(12): 1 101-1 110.

[11]Rydin E, Welch E B. Aluminum dose required to inactivate phosphate in lake sediments[J]. Water Research, 1998, 32(10): 2 969-2 976.

[12]Malecki-Brown L M, White J R. Effect of aluminum-containing amendments on phosphorus sequestration of wastewater treatment wetland soil[J]. Soil Science Society of America Journal, 2009, 73(3): 852-861.

[13]Malecki-Brown L M, White J R, Sees M. Alum application to improve water quality in a municipal wastewater treatment wetland[J]. Journal of Environmental Quality, 2009, 38(2): 814-821.

[14]Wang Jingfu, Chen Jing’an, Zeng Yan, et al. Spatial distribution characteristics of phosphorus forms in sediment of Lake Hongfeng, Guizhou Province[J]. Journal of Lake Sciences,2012, 24(5): 789-796.[王敬富, 陈敬安, 曾艳, 等. 贵州红枫湖沉积物磷赋存形态的空间变化特征[J]. 湖泊科学, 2012, 24(5): 798-796.]

[15]Yue Q Y, Zhao Y Q, Li Q, et al. Research on the characteristics of Red Mud Granular Adsorbents (RMGA) for phosphate removal[J]. Journal of Hazardous Materials, 2010, 176:741-748.

[16]Cooke G, Welch E B D, Peterson S A, et al. Restoration and Management of Lakes and Reservoirs (Second Edition)[M]. Boca Raton:Lewis Publishing (CRC Press, Inc.), 1993.

[17]Hu Xiaozhen, Jin Xiangcan, Liang Lili, et al. Inactivation of phosphorus from contaminated sediment of Dianchi Lake when treated with alum under different pH conditions and modified by clay mineral[J]. Acta Scientiae Circumstantiae, 2008, 28(1): 44-49.[胡晓帧, 金相灿, 梁丽丽,等. 不同改良条件下硫酸铝对滇池污染底泥磷的钝化效果[J]. 环境科学学报, 2008, 28(1): 44-49.]

[18]Haggard B E, Moore P A, Delaune P B. Phosphorus flux from bottom sediments in lake Eucha, Oklahoma[J]. Journal of Environmental Quality, 2005, 34(2): 724-728.

[19]Cooke G D, Welch E B, Martin A B, et al. Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes[J]. Hydrobiologia, 1993, 253(1/3): 323-335.

[20]He Hongping, Guo Jiugao, Zhu Jianxi, et al. An experimental study of adsorption capacity of montmorillonite, kaolinite and illite for heavy metals[J]. Acta Petrologicaet Mineralogica, 2001, 20(4):573-578.[何宏平, 郭九皋, 朱建喜,等. 蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J]. 岩石矿物学杂志, 2001, 20(4): 573-578.]

[21]Rydin E, Huser B, Welch E B. Amount of phosphorus inactivated by alum treatments in Washington lakes[J]. Limnology and Oceanography, 2000, 45(1): 226-230.

[22]Berkowitz J, Anderson M A, Amrhein C. Influence of aging on phosphorus sorption to alum flock in lake water[J]. Water Research, 2006, 40(5): 911-916.

[23]Dugopolski  R A, Rydin E, Brett M T. Short-term effects of a buffered alum treatment on Green Lake sediment phosphorus speciation[J]. Lake and Reservoir Management, 2008, 24(2): 181-189.

[24]Vicente De I, Huang P, Andersen F O, et al. Phosphate adsorption by fresh and aged aluminum hydroxide consequences for lake restoration[J]. Environmental Science & Technology, 2008, 42(17): 6 650-6 655.

[25]Rydin E, Welch E B. Dosing alum to Wisconsin lake sediments based on in vitro formation of aluminum bound phosphate[J]. Lake Reservoir Manage, 1999, 15 (4):324-331.

[26]Lewandowski J, Schauser L, Hupfer M. Long term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany)[J]. Water Research, 2003,37(13):3 194-3 204.

[27]Pilgrim K M, Huser B J, Brezonik P L. A method for comparative evaluation of whole-lake and inflow alum treatment[J]. Water Research, 2007, 41(6): 1 215-1 224.

[28]Churchill J J, Beutel M W, Burgoon P S. Evaluation of optional dose and mixing regime for alum treatment of Matthiesen Creek inflow to Jameson Lake, Washington[J]. Lake Reservoir Manage, 2009, 25(1): 102-110.

[29]Kopcek J, Borovec J, Hejzlar J, et al. Aluminum control of phosphorus sorption by lake sediments[J]. Environmental Science & Technology, 2005, 39(22): 8 784-8 789.

[30]Kennedy R H, Cooke G D. Control of lake phosphorus with aluminum sulfate:Dose determination and application techniques[J]. Journal of the American

Water Resources Association, 1982, 18(3): 389-395.

[31]Steinman A, Chu X, Ogdahl M. Spatial and temporal variability of internal and external phosphorus loads in Mona Lake, Michigan[J]. Aquatic Ecology, 2009, 43(1): 1-18.

[32]Zheng Miaozhuang, Lu Shaoyong, Jin Xiangcan, et al. Effect of inactivation agents on the phosphorus release from sediment of Lake Dianchi at different temperature[J]. Environmental Science, 2008, 29(9): 2 465-2 469.[郑苗壮,卢少勇,金相灿,等. 温度对钝化剂抑制滇池底泥磷释放的影响[J]. 环境科学, 2008, 29(9): 2 465-2 469.]

[33]Hullebusch E V, Deluchat V, Chazal P M, et al. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part Ⅱ. Case of copper sulfate[J]. Environmental Pollution, 2002, 120(3): 627-634.

[34]Gao Yun, Lu Shaoyong, Yuan Ye, et al. Effects of inactivation agent on the phosphorus release from sediments of Lake Dianchi by different perturbance[J]. China Environmental Science, 2010, 30(Suppl.): 75-78.[郜芸,卢少勇,远野,等. 扰动强度对钝化剂抑制滇池沉积物磷释放的影响[J]. 中国环境科学, 2010, 30 (增刊): 75-78.]

[35]Kleeberg A, Grüneberg B. Phosphorus mobility in sediments of acid mining lakes, Lusatia, Germany[J]. Ecological Engineering, 2005, 24(1/2): 89-100.

[36]Lewandowski J, Schauser I, Hupfer M. Long term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany)[J]. Water Research, 2003, 37(13): 3 194-3 204.

[37]Welch E, Cooke G. Effectiveness and longevity of phosphorus inactivation with alum[J]. Lake and Reservoir Management, 1999, 15(1): 5-27.

[38]Berkowitz J, Anderson M A, Amrhein C. Influence of aging on phosphorus sorption to alum floc in lake water[J]. Water Research, 2006, 40(5): 911-916.

[39]Liu G R, Ye C S, He J H, et al. Lake sediment treatment with aluminum, iron, calcium and nitrate additives to reduce phosphorus release[J]. Journal of Zhejiang University (Science A), 2009,10(9): 1 367-1 373.

[40]Borggaard O K, Jorgensen S S, Moberg J P, et al. Influence of organic matter on phosphate adsorption by aluminum and iron oxides in sandy soils[J]. Journal of Soil Science,1990, 41(3): 443-449.

[41]Wang S R, Jin X C, Zhao H C, et al. Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in the lake sediments[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297(1/3): 154-162.

[42]Welch E B, Schrieve G D. Alum treatment effectiveness and longevity in shallow lakes[J]. Hydrobiologia, 1994, 275/276: 423-431.

[43]Paul W J, Hamilton D P, Gibbs M M. Low-dose alum application trialled as a management toll for internal nutrient loads in Lake OKARO, New Zealand[J]. New Zealand Journal of Marine and Freshwater Research, 2008, 42(2): 207-217.

[44]Mehner T, Diekmann M, Gonsiorczyk T, et al. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load[J]. Ecosystems, 2008, 11(7): 1 142-1 156.

[45]Reitzel K, Hansen J, Jensen H S, et al. Testing aluminum addition as a tool for lake restoration in shallow, entropic Lake Snderby, Denmark[J]. Hydrobiologia, 2003, 506(1/3): 781-787.

[46]Steinman A D, Ogdahl M. Ecological effects after an alum treatment in Spring Lake, Michigan[J]. Journal of Environmental Quality, 2008, 37(1): 22-29.

[47]Hayes C R, Clark R, Stent F, et al. Control of algae by chemical treatment in a eutrophic water supply reservoir[J]. Journal of the Institution of Water Engineers and Scientists, 1984, 38(2): 149-162.

[48]Boers P C M. The Release of Dissolved Phosphorus from Lake Sediments[D]. Lelystad: Limnological Institute and the Institute for Inland Water Management and Waste Treatment, 1991.

[49]Walker W W Jr, Westerberg C E, Schuler D J, et al. Design and evaluation of eutrophication control measures for the St. Paul water supply[J]. Lake and Reservoir Management, 1989, 5(1):71-83.

[50]Stauffer R E, Armstrong D E. Lake mixing and its relationship to epilimnetic phosphorus in Shagawa Lake, Minnesota[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1984,41(1): 57-69.

[51]Prepas E E, Murphy R P, Crosby J M, et al. Reduction of phosphorus and chlorophyll a concentrations following CaCO3 and Ca(OH)2 additions to hypereutrophic Figure Eight Lake, Alberta[J]. Environmental Science & Technology, 1990, 24: 1 252-1 258.

[52]Murphy T, Hall K,  Northcote T. Lime treatment of a hardwater lake to reduce eutrophication[J]. Lake and Reservoir Management, 1988, 4(2): 51-62.

[53]Song Y H, Weidler P G, Berg U, et al. Calcite-seeded crystallization of calcium phosphate or phosphorus recovery[J]. Chemosphere, 2006, 63(2): 36-43.

[54]Berg U, Neumann T, Donnert D, et al. Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus[J]. Applied Geochemistry, 2004, 19(11): 1 759-1 771.

[55]Babin J E, Prepas E, Murphy T, et al. A test of effects of lime on algal biomass and total phosphorus concentrations in Edmonton stormwater retention lakes[J]. Lake and Reservoir Management, 1989, 5(1): 129-135.

[56]Gan Fangqun, Zhou Jianmin, Wang Huoyan, et al. Phosphate adsorption capacities of different clay minerals in phosphate-contaminated water[J]. Ecology and Environment, 2008, 17(3): 914-917.[干方群,周健民,王火焰,等. 不同粘土矿物对磷污染水体的吸附净化性能比较[J]. 生态环境,2008, 17(3): 914-917.]

[57]Lin Jianwei, Zhu Zhiliang, Zhao Jianfu, et al. Influencing factor of natural zeolite barrier for controlling nitrogen and phosphorus release from sediments[J]. Environmental Science, 2006, 27(5): 880-884.[林建伟, 朱志良,赵建夫,等. 天然沸石覆盖层控制底泥氮磷释放的影响因素[J]. 环境科学, 2006, 27(5): 880-884.]

[58]Lin Jianwei, Zhu Zhiliang, Zhao Jianfu, et al. Influencing factors of phosphorus release control from sediments by compound barrier constructed with zeolite and calcite[J]. Environmental Science, 2007, 28(2): 397-402.[林建伟,朱志良,赵建夫,等. 天然沸石和方解石复合覆盖技术抑制底泥磷释放的影响因素研究[J]. 环境科学, 2007, 28(2): 397-402.]

[59]Lin Jianwei, Zhu Zhiliang, Zhao Jianfu. Efficiency and mechanics of compound barrier with calcite and Zeolite to immobilize phosphorus and Nitrogen release from sediments[J]. Journal of Agro-Environment Science, 2007, 26(2): 790-794.[林建伟, 朱志良, 赵建夫. 沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理分析[J]. 农业环境科学学报, 2007, 26(2): 790-794.]

[60]Lin J W, Zhan Y H, Zhu Z. Evaluation of sediment capping with Active Barrier Systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release[J]. Science of the Total Environment, 2011, 409(3): 638-646.

[61]Lin Jianwei, Zhu Zhiliang, Zhao Jianfu, et al. Effect of inorganic salt modification on zeolite barriers to control phosphorus and nitrogen release from sediments[J]. Journal of Lake Sciences, 2007, 19(1): 52-57.[林建伟,朱志良,赵建夫,等. 无机盐改性对沸石覆盖技术控制底泥氮磷释放的影响研究[J]. 湖泊科学, 2007, 19(1): 52-57.]

[62]Lin Jianwei, Zhu Zhiliang, Zhao Jianfu, et al. Efficiency and mechanism of compound barrier with HCl modification zeolite and calcite to control nitrogen and phosphorus release from sediments[J]. Environmental Science, 2007, 28(3): 551-555.[林建伟, 朱志良, 赵建夫,等. HCl改性沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理研究[J]. 环境科学, 2007, 28(3):551-555.]

[63]Lin Jianwei, Zhu Zhiliang, Zhao Jianfu, et al. Efficiency and mechanics of surfactant modified zeolite with nitrate adsorbed to control nitrogen and phosphorus release from sediments[J]. Environmental Science, 2008, 29(2): 356-361.[林建伟, 朱志良, 赵建夫,等. 负载硝酸盐有机改性沸石抑制底泥氮磷释放的效果及机制研究[J]. 环境科学, 2008, 29(2): 356-361.]

[64]Lin Jianwei, Zhan Yanhui. Removal of ammonium from aqueous solution using NaCl modified zeolite[J]. Journal of Shanghai Ocean University, 2010, 19(5): 692-697.[林建伟, 詹艳慧. 氯化钠改性沸石对氨氮的吸附作用[J]. 上海海洋大学学报, 2010, 19(5): 692-697.]

[65]Gibbs M, zkundakci D. Effects of a modified zeolite on P and N processes and fluxes across the lake sediment-water interface using core incubations[J]. Hydrobiologia, 2011, 661(1): 21-35.

[66]Liu B, Liu X G, Yang J, et al. Research and application of in-situ control technology for sediment rehabilitation in eutrophic water bodies[J]. Water Science and Technology, 2012, 65(7): 1 190-1 199.

[67]Gibbs M M, Hickey C W, zkundakci D. Sustainability assessment and comparison of efficacy of four P-inactivation agents for managing internal phosphorus loads in lakes: Sediment incubations[J]. Hydrobiologia, 2011, 658(1): 253-275.

[68]Ttrai E, Ungvry G, Adamis Z, et al. Short term in vivo methods for prediction of the fibrogenic effect of different mineral dusts[J]. Experimental Pathology, 1985, 28(2): 111-118.

[69]Behets G J, Verberckmoes S C, Bervoets L, et al. Localisation of lanthanum in bone of chronic renal failure rats after oral dosing with lanthanum carbonate[J]. Kidney International, 2005, 67(5): 1 830-1 836.

[1] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[2] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[3] 邹银洪, 张润宇, 陈敬安, 王立英, 陆顶盘. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6): 578-589.
[4] 林晓娟, 高姗, 仉天宇, 刘桂梅. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
[5] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[6] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[7] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
[8] 施泽明,倪师军,张成江,葛良全,郑 林,裴云倩. 沱江流域磷矿开采和加工过程中放射性环境问题探讨[J]. 地球科学进展, 2012, 27(10): 1134-1139.
[9] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[10] 陈志刚,黄奕普,刘广山,蔡毅华,卢阳阳,刘润. 磷酸盐氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科学进展, 2010, 25(10): 1040-1050.
[11] 黄廷林,柴蓓蓓. 水源水库水质污染与富营养化控制技术研究进展[J]. 地球科学进展, 2009, 24(6): 588-596.
[12] 周俊,邓伟,刘伟龙. 沟渠湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083.
[13] 秦伯强,王小冬,汤祥明,冯胜,张运林. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J]. 地球科学进展, 2007, 22(9): 896-906.
[14] 赵生才. 我国湖泊富营养化的发生机制与控制对策[J]. 地球科学进展, 2004, 19(1): 138-140.
[15] 王根绪,程国栋,钱鞠,常娟. 中国干旱内陆流域水体 N、P负荷特征与动态变化——以黑河流域为例[J]. 地球科学进展, 2003, 18(3): 338-344.
阅读次数
全文


摘要