地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.10.1134

环境地球化学 上一篇    下一篇

沱江流域磷矿开采和加工过程中放射性环境问题探讨
施泽明 1,2,倪师军 1,2,张成江 1,2,葛良全 1,郑〓林 2,裴云倩 2   
  1. 1.四川省地学核技术重点实验室,四川 成都 610059; 2.成都理工大学地球化学系,四川 成都 610059
  • 收稿日期:2012-07-28 修回日期:2012-08-23 出版日期:2012-10-10
  • 基金资助:

    中国地质调查局项目“成都经济区生态地球化学调查与评价”(编号:200314200015)

Discussion on Radioactively Environmental Problems during Phosphorite Mining and Processing in Tuojiang Area

Shi Zeming 1,2, Ni Shijun 1,2,  Zhang Chengjiang 1,2, Ge Liangquan 1,Zheng Lin 2,  Pei Yunqian 2   

  1. 1.Sichuan Province Key Laboratory of Nuclear Techniques in Geosciences, Chengdu 610059, Chnia;2.Department of Geochemistry, Chengdu University of Technology, Chengdu 610059, Chnia
  • Received:2012-07-28 Revised:2012-08-23 Online:2012-10-10 Published:2012-10-10

大多数磷矿伴随着高含量的放射性元素U,通过对龙门山地区磷矿开采和加工过程中U,Th迁移的研究,初步查明了沱江流域放射性环境问题。研究结果显示,除含U磷块岩外,四川省磷肥及磷矿石中U含量水平相对偏高,磷矿开采加工是造成区域放射性元素含量偏高的主要原因;磷矿加工过程中放射性元素U,Th主要迁移到中间产物及最终产品中;磷石膏的堆放对周边土壤环境的放射性影响,水平方向上已超过2 km,垂向上近50 cm;磷矿的开采与加工已对流域产生了一定程度的放射性环境影响。

Most Phosphorite is accompanied by high levels of radioactive elements uranium. By studying Uranium and Thorium migration during Phosphorite mining and processing in Tuojiang area, this paper did a preliminary identification of radioactive pollution in Tuojiang drainage basin. The result reveals that the Phosphorite mining and processing are the main causes of regionally high radioactive elements contents, which are reflected in relatively higher Uranium content in Phosphate fertilizer and Phosphorite except for Uraniumbearing Phosphorite in Sichuan province. During Phosphorite mining and processing, the radioactive elements (Uranium and Thorium) mainly migrate into the intermediate and final products. The impact of phosphogypsum dumping on periphery soil environment is unneglected with radioactive infiltration over 2 km in horizontal and 50 cm in vertical. On a certain extent, Phosphate mining and processing has produced radioactive environmental impact.

中图分类号: 

[1]Fan Min. Monitoring for environmental natural radioactive level of Xiamen City[J]. Environmental Monitoring in China,2000,16(1):33-35.[樊敏.厦门市区环境天然放射性水平监测[J].中国环境监测,2000,16(1):33-35.]

[2]Zhang Chunlin,Zheng Dongqin,Hu Guohui,et al.Study of radiological impact of emission from coal-fired and Daya Wan nuclear power station[J]. Journal of Jinan University,2000,21(5):30-36.[张春粦,郑冬琴,胡国辉,等.大亚湾核电站与燃煤电站放射性排出物对环境的影响[J].暨南大学学报,2000,21(5):30-36.]

[3]Tripathi R M,Sahoo S K,Jha V N, et al. Assessment of environmental radioactivity at uranium mining,processing and tailings management facility at Jaduguda, India[J]. Applied Radiation and Isotopes,2008,66:1 666-1 670.

[4]Gnandi K,Tobschall H J. Distribution patterns of rare-earth elements and uranium in tertiary sedimentary phosphorites of Hahotoé-Kpogamé, Togo[J]. Journal of African Earth Sciences,2003,37:1-10.

[5]Rio M A P,Amaral E C S,Fernandes H M, et al. Environmental radiological impact associated with non-Uranium mining industries: A proposal for screening criteria[J]. Journal of Environmental Radioactivity,2002,59: 1-17.

[6]Tanaka A,Doi T,Uehiro T. Uranium isotope ratios in the environmental samples collected after a criticality accident in the Uranium conversion facilities of JCO[J]. Journal of Environmental Radioactivity,2000,50:151-160.

[7]Soudry D, Ehrlich S, Yoffe O, et al.Uranium oxidation state and related variations in geochemistry of phosphorites from the Negev (southern Israel)[J]. Chemical Geology,2002,189:213-230.

[8]Bai Li’na,Sui Wenli,Lin Zhong. Environmental radioactivity impact arising from Baiyun Obo Rare Earth and steel production[J]. Chinese Rare Earths,2004,25(4):75-77.[白丽娜,隋文力,林忠. 白云鄂博矿在稀土和钢铁生产中放射性对周围环境的影响[J].稀土,2004,25(4):75-77.]

[9]Wei Fuxing,Liu Yuqin,Wei Tao, et al. Administer of radioactivity level and sanitation in Guizhou phosphate[J]. Guizhou Enviromental Protection Science and Technology, 1995,1:33-35.[魏复兴,刘玉琴,魏涛,等.贵州省磷肥的放射性水平与放射卫生管理对策初探[J].贵州环保科技,1995,1:33-35.]

[10]Xie Mingyi,Ye Lin. Evaluation of radioactivity level in Sichuan phosphate[J]. Journaol of  Occupational Health and Damage, 1998,13(3):178-179.[谢明义,叶琳.四川省磷肥放射性水平与评价[J].职业卫生与病伤,1998,13(3):178-179.]

[11]Chen Diyun,Chen Zhiying,Hu Ruiying, et al.Radon of atmosphere in Xiazhuang and Nanxiong uranium deposit areas,Guangdong Province[J]. China Environmental Science, 1999,19(1):91-96.[陈迪云,陈智营,胡瑞英,等.广东省下庄和南雄铀矿区周围大气环境氡浓度调查[J].中国环境科学,1999,19(1):91-96.]

[12]Carvalho F P, Madruga M J, Reis M C, et al. Radioactivity in the environment around past radium and uranium mining sites of Portugal[J]. Journal of Environmental Radioactivity,2007, 96: 39-46.

[13]Fernandes H M, Filho F L S,Perez V, et al. Radioecological characterization of a uranium mining site located in a semi-arid region in Brazil[J]. Journal of Environmental Radioactivity, 2006, 88: 140-157.

[14]Arogunjo A M, Hllriegl V, Giussani A, et al. Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity[J]. Journal of Environmental Radioactivity,2009,100:232-240.

[15]Landa E R. Uranium mill tailings: Nuclear waste and natural laboratory for geochemical and radioecological investigations[J]. Journal of Environmental Radioactivity,2004,77: 1-27.

[16]Meinrath A, Schneider P, Meinrath G, et al. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany[J]. Journal of Environmental Radioactivity,2003,64: 175-193.

[17]Lella L A D,Frati L,Loppi S, et al. Environmental distribution of uranium and other trace elements at selected Kosovo sites[J]. Chemosphere, 2004,56:861-865.

[18]Liu Zusen,Chen Jiashen,Huang Yu, et al. Environmental radioactivity impact of Shenzhen arising from India and Pakistan nuclear test[J]. Chinese Journal of Radiation Mediation and Protection,2000,20(1):68-69. [刘祖森,陈佳慎,黄钰,等.印、巴核试验对深圳地区环境放射性水平的影响[J].中华放射性医学与防护杂志,2000,20(1):68-69.]

[19]Luo Shanggeng. Disposal of radioactive waste and field pollute in America[J]. Radioaction Protection,1999,19(4):316-318.[罗上庚.美国军工放射性废物和场址环境污染[J].辐射防护,1999,19(4):316-318.]

[20]Bem H,Firyal B R. Environmental and health consequences of depleted uranium use in the 1991 Gulf War[J].Environmental International,2004,30:123-134.

[21]Salbu B, Janssens K,Lind O C, et al. Oxidation states of uranium in DU particles from Kosovo[J]. Journal of Environmental Radioactivity,2003,64:167-173.

[22]Chen Diyun,Wang Xiangyun,Chen Yongheng. Implications of radionuclide removing to environment in cattle raised near U mine area[J]. China Environmental Science, 2000,20(5):465-468.[陈迪云,王湘云,陈永亨.铀矿区附近牛对放射性核素环境转移的指示[J].中国环境科学,2000,20(5):465-468.]

[23]Boulois D H,Joner E J,Leyval C, et al. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants[J]. Journal of Environmental Radioactivity,2008,99: 775-784.

[24]Kalina M, Wheeler W N, Meinrath G. The removal of uranium from mining waste water using algal/microbial biomass[J].Journal of Environmental Radioactivity,2005, 78: 151-177.

[25]Shi Weijun. Principium of Uranium Hydrogeochemical[M]. Beijing: Atomic Energy Press, 1990:178.[史维浚.铀水文地球化学原理[M].北京:原子能出版社,1990:178.]

[26]Zhang Lianping,Li Fusheng,Chen Yue, et al. Evaluation of radioactivity level in Shandong phosphate[J].Chinese Journal of Radiation Mediation and Protection, 1996,16(5):345-346.[张连平,李福生,陈跃,等.山东省磷肥放射性水平与评价[J].中华放射性医学与防护杂志,1996,16(5):345-346.]

[27]Zhao Zhenhua.  Principium of Trace Element Geochemistry[M].Beijing: Science Press,1997.[赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.]

[28]Wang Jianfeng. Principium of Uranium Geochemical[M]. Beijing: Atomic Energy Press, 1998.[王剑峰.铀地球化学原理[M].北京:原子能出版社,1998.]

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[4] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[5] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[6] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[7] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[8] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[9] 时连强,郭俊丽,刘海江,叶清华. Argus系统在我国海滩研究中的应用进展与展望[J]. 地球科学进展, 2019, 34(5): 552-560.
[10] 韩伟孝,黄春林,王昀琛,顾娟. 基于长时序 Landsat 5/8多波段遥感影像的青海湖面积变化研究[J]. 地球科学进展, 2019, 34(4): 346-355.
[11] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[12] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[13] 王曦, 周洪建. 重特大自然灾害损失统计与评估进展与展望[J]. 地球科学进展, 2018, 33(9): 914-921.
[14] 易雪, 李得勤, 赵春雨, 沈历都, 敖雪, 刘鸣彦. 分析Nudging对辽宁地区降尺度的影响[J]. 地球科学进展, 2018, 33(5): 517-531.
[15] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
阅读次数
全文


摘要