地球科学进展 ›› 2018, Vol. 33 ›› Issue (5): 517 -531. doi: 10.11867/j.issn.1001-8166.2018.05.0517

研究论文 上一篇    下一篇

分析Nudging对辽宁地区降尺度的影响
易雪 1( ), 李得勤 2, *( ), 赵春雨 1, 沈历都 1, 敖雪 1, 刘鸣彦 1   
  1. 1. 沈阳区域气候中心,辽宁 沈阳 110166
    2.辽宁省气象台,辽宁 沈阳 110166
  • 收稿日期:2017-09-08 修回日期:2017-12-25 出版日期:2018-05-20
  • 通讯作者: 李得勤 E-mail:yi11xue@163.com;lewen05@hotmail.com
  • 基金资助:
    *中国气象局气候变化专项项目“东北地区高分辨率气候场构建和评估”(编号:CCSF201608);国家自然科学基金项目“基于动态下垫面和Nudging同化技术的高时空分辨率气候场构建”(编号:41675098)资助.

Assessment of Dynamical Climate Downscaling Methods Using Analysis Nudging for Liaoning Area

Xue Yi 1, Deqin Li 2, *( ), Chunyu Zhao 1( ), Lidu Shen 1, Xue Ao 1, Mingyan Liu 1   

  1. 1.Regional Climate Center of Shenyang, Shenyang 110166, China
    2.Liaoning Meteorological Observatory, Shenyang 110166,China
  • Received:2017-09-08 Revised:2017-12-25 Online:2018-05-20 Published:2018-06-13
  • Contact: Deqin Li E-mail:yi11xue@163.com;lewen05@hotmail.com
  • About author:

    First author:Yi Xue (1984-), female,Tieling City, Liaoning Province, Engineer. Research areas include land surface processes, data assimilation and climate simulation.E-mail:yi11xue@163.com

  • Supported by:
    Project supported by the Climatic Change Research Item of the China Meteorological Administration “Study on the construction and evaluation of high resolution climate field in Northeast China” (No.CCSF201608);The National Natural Science Foundation of China “Study on the construction of high spatiotemporal resolution climate field with dynamic underlying surface information and Nudging method”(No.41675098).

利用分析Nudging方法,选取辽宁省2015年7月和10月作为夏季和秋季代表月份,开展不同分辨率嵌套网格上的分析同化试验,研究在不同分辨率的嵌套网格上使用分析Nudging对地面要素降尺度模拟的影响。结果表明,采用分析Nudging后,可以明显减小WRF模式模拟高空要素与大尺度背景场的差异,使模式在长时间的积分过程中能够与大尺度背景场保持很好的一致性,且在12 km和4 km分辨率上均采用分析Nudging相对于仅在36 km分辨率嵌套上采用分析Nudging效果更好。对于地面要素影响方面,不同分辨率嵌套网格采用分析Nudging相对于控制试验均可以提高地面2 m温度、相对湿度、10 m风速和降水的模拟准确度。总体来看,分析Nudging应用于12 km分辨率上的降尺度效果整体最优,当进一步在4 km分辨率嵌套上使用分析Nudging后,反而使得模式对温度、降水的模拟变差,说明在区域气候降尺度中,考虑大尺度背景场本身的分辨率,不宜在高分辨率嵌套网格上进一步采用分析Nudging。

Analysis Nudging in different resolution domains was adopted for dynamic downscaling, and the result of two typical months of July and October, 2015, which represented summer and autumn, was evaluated in Liaoning Province of China. Results showed that significant improvement was present in large-scale background with AN in WRF, such as geopotential height at 500 hPa and relative humidity at 925 hPa. According to the characteristics of error between simulated and observation of surface variables, including temperature and relative humidity at 2 m, wind speed at 10 m and precipitation, it also showed that analysis nudging at 12 km and 4 km resolution was more effective than at 36 km. However, after using analysis nudging at 4 km, there was no improvement of the precision of surface variables anymore, and the surface temperature and precipitation were even worse than using nudging at 12 km grid. This suggested that, according to the resolution of background filed, nudging in high resolution grid was ineffective after using analysis nudging at the relatively coarse model grid.

中图分类号: 

图1 模式3层嵌套的预报区域
Fig.1 Three domains of the numerical forecast
图1 模式3层嵌套的预报区域
Fig.1 Three domains of the numerical forecast
图2 2015年7月(a)、10月(b)CFSR资料500 hPa平均位势高度(dagpm)和850 hPa平均水平风(m/s)
Fig.2 The average geopotential height (unit: dagpm) at 500 hPa and average horizontal wind (unit:m/s) at 850 hPa of CFSR for (a)July ,(b)October in 2015 in the first domain
图2 2015年7月(a)、10月(b)CFSR资料500 hPa平均位势高度(dagpm)和850 hPa平均水平风(m/s)
Fig.2 The average geopotential height (unit: dagpm) at 500 hPa and average horizontal wind (unit:m/s) at 850 hPa of CFSR for (a)July ,(b)October in 2015 in the first domain
图3 不同降尺度试验模拟的2015年7月((a)~(d))、10月((e)~(h)) 500 hPa位势高度与CFSR资料的RMSE
Fig.3 The RMSE of 500 hPa geopotential height between the simulated from different downscaling experiments and CFSR of July ((a)~(d)) and October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图3 不同降尺度试验模拟的2015年7月((a)~(d))、10月((e)~(h)) 500 hPa位势高度与CFSR资料的RMSE
Fig.3 The RMSE of 500 hPa geopotential height between the simulated from different downscaling experiments and CFSR of July ((a)~(d)) and October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图4 不同降尺度试验模拟的2015年7月(a)~(d)、10月(e)~(h) 925 hPa相对湿度与CFSR资料的RMSE
Fig.4 The RMSE of 925 hPa relative humidity between the simulated from different downscaling experiments and CFSR of July (a)~(d) and October (e)~(h) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图4 不同降尺度试验模拟的2015年7月(a)~(d)、10月(e)~(h) 925 hPa相对湿度与CFSR资料的RMSE
Fig.4 The RMSE of 925 hPa relative humidity between the simulated from different downscaling experiments and CFSR of July (a)~(d) and October (e)~(h) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图5 2015年7月((a)~(d))和10月((e)~(h))不同降尺度试验地面2 m温度与观测的RMSE空间分布图
Fig.5 The RMSE of temperature between different downscaling experiments and observation at 2 m of July ((a)~(d)), October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图5 2015年7月((a)~(d))和10月((e)~(h))不同降尺度试验地面2 m温度与观测的RMSE空间分布图
Fig.5 The RMSE of temperature between different downscaling experiments and observation at 2 m of July ((a)~(d)), October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图6 2015年7月((a)~(d))和10月((e)~(h))不同降尺度试验地面10 m风速与观测的RMSE空间分布图
Fig.6 The RMSE of wind speed between different downscaling experiments and observation at 10 m of July ((a)~(d)), October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图6 2015年7月((a)~(d))和10月((e)~(h))不同降尺度试验地面10 m风速与观测的RMSE空间分布图
Fig.6 The RMSE of wind speed between different downscaling experiments and observation at 10 m of July ((a)~(d)), October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h)AN3
图7 2015年7月((a)~(d))和10月((e)~(h))不同降尺度试验地面2 m相对湿度与观测的RMSE空间分布图
Fig.7 The RMSE of relative humidity between different downscaling experiments and observation at 2 m of July ((a)~(d)),October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h) AN3
图7 2015年7月((a)~(d))和10月((e)~(h))不同降尺度试验地面2 m相对湿度与观测的RMSE空间分布图
Fig.7 The RMSE of relative humidity between different downscaling experiments and observation at 2 m of July ((a)~(d)),October ((e)~(h)) in 2015
(a),(e)CTL;(b),(f)AN1;(c),(g)AN2;(d),(h) AN3
表1 控制试验和3组分析Nudging方案降尺度得到的7月2 m温度、10 m风速和2 m相对湿度的误差统计特征
Table 1 The MEAN, MB, RMSE and r of different downscaling experiments of July in the year 2015
表1 控制试验和3组分析Nudging方案降尺度得到的7月2 m温度、10 m风速和2 m相对湿度的误差统计特征
Table 1 The MEAN, MB, RMSE and r of different downscaling experiments of July in the year 2015
表2 控制试验和3组分析Nudging方案降尺度得到的10 月2 m温度,10 m风速和2 m相对湿度的误差统计特征
Table 2 The MEAN, MB, RMSE and r of different downscaling experiments of October in the year 2015
表2 控制试验和3组分析Nudging方案降尺度得到的10 月2 m温度,10 m风速和2 m相对湿度的误差统计特征
Table 2 The MEAN, MB, RMSE and r of different downscaling experiments of October in the year 2015
图8 2015年7月((a)~(c))和10月((d)~(f))温度((a),(d))、风速((b),(e))、相对湿度((c),(f))日平均变化趋势(地方时)
Fig.8 Diurnal variations of temperature ((a),(d)),wind speed ((b),(e)),relative humidity ((c),(f)) for July ((a)~(c)), October ((d)~(f)) in the year 2015 (local time)
图8 2015年7月((a)~(c))和10月((d)~(f))温度((a),(d))、风速((b),(e))、相对湿度((c),(f))日平均变化趋势(地方时)
Fig.8 Diurnal variations of temperature ((a),(d)),wind speed ((b),(e)),relative humidity ((c),(f)) for July ((a)~(c)), October ((d)~(f)) in the year 2015 (local time)
图9 2015年7月观测、CFSR和不同降尺度试验月降水量
(a)观测;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
Fig.9 Monthly precipitation from station observations, CFSR and different downscaling experiments in July of 2015
(a)Observation;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
图9 2015年7月观测、CFSR和不同降尺度试验月降水量
(a)观测;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
Fig.9 Monthly precipitation from station observations, CFSR and different downscaling experiments in July of 2015
(a)Observation;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
图10 2015年10月观测、CFSR和不同降尺度试验月降水量
(a)观测;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
Fig.10 Monthly precipitation from station observations, CFSR and different downscaling experiments in October of 2015
(a)Observation;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
图10 2015年10月观测、CFSR和不同降尺度试验月降水量
(a)观测;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
Fig.10 Monthly precipitation from station observations, CFSR and different downscaling experiments in October of 2015
(a)Observation;(b)CFSR;(c)CTL;(d)AN1;(e)AN2;(f)AN3
图11 不同降尺度方案得到的2015月7月29日00时至23时温度(a)、风速(b)、相对湿度(c)、降水(d)日变化特征(UTC时)与实况的对比
Fig.11 Diurnal variation of hourly temperature(a), wind speed(b), relative humidity(c) and precipitation(d) on 29 th July in 2015 between different downscaling experiments and observation
图11 不同降尺度方案得到的2015月7月29日00时至23时温度(a)、风速(b)、相对湿度(c)、降水(d)日变化特征(UTC时)与实况的对比
Fig.11 Diurnal variation of hourly temperature(a), wind speed(b), relative humidity(c) and precipitation(d) on 29 th July in 2015 between different downscaling experiments and observation
[1] Liu Liping, Qian Yongfu, Wu Aiming.Comparison of simulated results of regional climate in summer over Qinghai-Xizang Plateau and Northwest China[J]. Plateau Meteorology, 2000, 19(3): 313-322.
[刘黎平,钱永甫,吴爱明.区域模式和GCM对青藏高原和西北地区气候模拟结果的对比分析[J].高原气象,2000,19(3):313-322.]
doi: 10.3321/j.issn:1000-0534.2000.03.006     URL    
[2] Tian Zhiping, Jiang Dabang, Zhang Ran, et al.Long-term climate simulation of CCSM4.0 and evaluation of its performance over East Asia and China[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(3): 619-632.
[田芝平,姜大膀,张冉,等.CCSM4.0的长期积分试验及其对东亚和中国气候模拟的评估[J].大气科学,2012,36(3):619-632.]
doi: 10.3878/j.issn.1006-9895.2011.11092    
[3] Hu Haiyang, Hu Yijia, Zhong Zhong, et al.Double nested dynamical downscaling research on summer precipitation over China with WRF model[J]. Journal of the Meteorological Sciences, 2015, 35(4): 413-421.
[胡海洋,胡轶佳,钟中,等.WRF模式对中国夏季降水的动力降尺度模拟研究[J].气象科学,2015,35(4):413-421.]
doi: 10.3969/2014jms.0041     URL    
[4] Gao Y, Xu J, Chen D.Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Journal of Climate, 2015, 28(7): 2 823-2 841.
doi: 10.1175/JCLI-D-14-00300.1     URL    
[5] Pan Xiaoduo, Li Xin, Chao Zhenhua.Review of research of forcing data for regional scale hydrological model[J]. Advances in Earth Science, 2010, 25(12): 1 314-1 324.
[潘小多,李新,钞振华.区域尺度近地表气候要素驱动数据研制的研究综述[J].地球科学进展,2010,25(12):1 314-1 324.]
[6] Kong Xianghui, Bi Xunqiang.Simulation of temperature and precipitation during the last 100 years over southern China by a regional climate model[J]. Climatic and Environmental Research, 2016, 21(6): 711-724.
[孔祥慧,毕训强.利用区域气候模式对我国南方百年气温和降水的动力降尺度模拟[J].气候与环境研究,2016,21(6):711-724.]
doi: 10.3878/j.issn.1006-9585.2016.16079     URL    
[7] Storch H V, Langenberg H, Feser F.A spectral nudging technique for dynamical downscaling purposes[J]. Monthly Weather Review, 2000, 128(10): 3 664-3 673.
doi: 10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2     URL    
[8] Miguez-Macho G, Stenchikov G L, Robock A.Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations[J]. Journal of Geophysical Research Atmospheres, 2004,109(D13): 1 025-1 045.
doi: 10.1029/2002JC001616     URL    
[9] Caya D, Biner S.Internal variability of RCM simulations over an annual cycle[J]. Climate Dynamics, 2004, 22(1): 33-46.
doi: 10.1007/s00382-003-0360-2     URL    
[10] Castro C L, Sr R A P, Leoncini G. Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS)[J]. Journal of Geophysical Research, 2005, 110(D05): 851-862.
doi: 10.1029/2004JD004721     URL    
[11] Alexandru A, De Elia R, Laprise R.Internal variability in regional climate downscaling at the seasonal scale[J]. Monthly Weather Review, 2007, 135(9): 3 221-3 238.
doi: 10.1175/MWR3456.1     URL    
[12] Alexandru A, De Elia R, Laprise R, et al.Sensitivity study of regional climate model simulations to large-scale Nudging parameters[J]. Monthly Weather Review, 2009, 137(5): 1 666-1 686.
doi: 10.1175/2008MWR2620.1     URL    
[13] Davies H C.A lateral boundary formulation for multi-level prediction models[J]. Quarterly Journal of the Royal Meteorological Society, 1976, 102(432): 405-418.
doi: 10.1002/qj.49710243210     URL    
[14] Stauffer D R, Seaman N L.Use of four-dimensional data assimilation in a limited-area mesoscale model, Part I: Experiments with synoptic-scale data[J]. Monthly Weather Review, 1990, 118: 1 250-1 277.
doi: 10.1175/1520-0493(1990)1182.0.CO;2     URL    
[15] Waldron K M, Paegle J, Horel J D.Sensitivity of a spectrally filtered and Nudged limited—Area model to outer model options[J]. Monthly Weather Review, 1996, 124(3): 529-547.
doi: 10.1175/1520-0493(1996)124<0529:SOASFA>2.0.CO;2     URL    
[16] Lo C F, Yang Z L, Sr R A P. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model[J]. Journal of Geophysical Research, 2008, 113(D9).DOI:10.1029/2007JD009216.
doi: 10.1029/2007JD009216     URL    
[17] Wang Yaping, Zhang Wu, Huang Chenran.Application research into climate dynamical downscaling over a complex terrain[J]. Journal of Lanzhou University (Natural Sciences), 2015, 51(4): 517-525.
[王雅萍,张武,黄晨然.气候动力降尺度方法在复杂下垫面的应用研究[J].兰州大学学报:自然科学版,2015,51(4):517-525.]
doi: 10.13885/j.issn.0455-2059.2015.04.010     URL    
[18] Davies H C, Turner R E.Comments on the paper updating prediction models by dynamical relaxationl: An examination of the Technique[J]. Quarterly Journal of the Royal Meteorological Society, 1978, 104(440): 527-532.
doi: 10.1256/smsqj.44021     URL    
[19] Salameh T, Drobinski P, Dubos T.The effect of indiscriminate nudging time on large and small scales in regional climate modelling: Application to the Mediterranean basin[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(646): 170-182.
doi: 10.1002/qj.518     URL    
[20] Omrani H, Drobinski P, Dubos T.Investigation of indiscriminate nudging and predictability in a nested quasi-geostrophic model[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(662): 158-169.
doi: 10.1002/qj.907     URL    
[21] Stauffer D R, Seaman N L.Multiscale four-dimensional data assimilation[J]. Journal of Applied Meteorology, 1994, 33(33): 416-434.
doi: 10.1175/1520-0450(1994)0332.0.CO;2     URL    
[22] Bowden J H, Otte T L, Nolte C G, et al.Examining interior grid nudging techniques using two-way nesting in the WRF Model for regional climate modeling[J]. Journal of Climate, 2012, 25(8): 2 805-2 823.
doi: 10.1175/JCLI-D-11-00167.1     URL    
[23] Bullock O R, Alapaty K, Herwehe J A, et al.An observation-based investigation of Nudging in WRF for downscaling surface climate information to 12-km grid spacing[J]. Journal of Applied Meteorology and Climatology, 2013, 53(1): 20-33.
doi: 10.1175/JAMC-D-13-030.1     URL    
[24] Giorgi F.Regional climate modeling: Status and perspectives[J]. Journal De Physique IV, 2007, 139(1): 101-118.
doi: 10.1051/jp4:2006139008     URL    
[25] Im E S, Kwon W T, Ahn J B, et al.Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model systempart 1: Recent climate simulation (1971-2000)[J]. Climate Dynamics, 2007, 28(7/8): 759-780.
doi: 10.1007/s00382-006-0203-z     URL    
[26] Wootten A, Bowden J H, Boyles R, et al.The sensitivity of WRF downscaled precipitation in Puerto Rico to Cumulus Parameterization and Interior Grid Nudging[J]. Journal of Applied Meteorology and Climatology, 2016, 55(10): 2 263-2 281.
doi: 10.1175/JAMC-D-16-0121.1     URL    
[27] Otte T L, Nolte C G, Otte M J, et al.Does Nudging squelch the extremes in regional climate modeling?[J]. Journal of Climate, 2012, 25(20): 7 046-7 066.
doi: 10.1175/JCLI-D-12-00048.1     URL    
[28] Wang Xiaojun, Ma Hao.Progress of application of the Weather Research and Forecast (WRF) model in China[J]. Advances in Earth Science, 2011, 26(11): 1 191-1 199.
[王晓君,马浩.新一代中尺度预报模式(WRF) 国内应用进展[J].地球科学进展,2011,26(11):1 191-1 199.]
[29] Chen G, Iwasaki T, Qin H, et al.Evaluation of the sarm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA[J]. Journal of Climate, 2014, 27(14): 5 517-5 537.
doi: 10.1175/JCLI-D-14-00005.1     URL    
[30] Fan Binbin, Luo Geping, Zhang Chi, et al.Evaluation of summer precipitation of CFSR, ERA-Interim and MERRA reanalysis in Xinjiang[J]. Geographical Research, 2013, 32(9): 1 602-1 612.
[范彬彬,罗格平,张弛,等.新疆夏季降水时空分布的适用性评估[J].地理研究,2013,32(9):1 602-1 612.]
[31] Hu Zengyun, Ni Yongyong, Shao Hua, et al.Applicability study of CFSR,ERA-Interim and MERRA precipitation estimates in Central Asia[J]. Arid Land Geography, 2013, 36(4): 700-708.
[胡增运,倪勇勇,邵华,等.CFSR、ERA-Interim和MERRA降水资料在中亚地区的适用性[J].干旱区地理,2013,36(4):700-708.]
URL    
[32] Wei Fenfen, Tang Jianping, Wang Shuyu.A reliability assessment of upper-level reanalysis datasets over China[J]. Chinese Journal of Geophysics, 2015, 58(2): 383-397.
[韦芬芬,汤剑平,王淑瑜.中国区域夏季再分析资料高空变量可信度的检验[J].地球物理学报,2015,58(2):383-397.]
doi: 10.6038/cjg20150204    
[33] Grell G A, Dudhia J, Stauffer D.A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR/TN-398+STR[R]. Ncar Technical Note, 1994.DOI:10.5065/D602716B.
[1] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[2] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[3] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[4] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[5] 王林,陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.
[6] 邹立维,周天军. 区域海气耦合模式研究进展[J]. 地球科学进展, 2012, 27(8): 857-865.
[7] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[8] 刘永和, 郭维栋, 冯锦明, 张可欣. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011, 26(8): 837-847.
[9] 王晓君,马浩. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 2011, 26(11): 1191-1199.
[10] 潘小多,李新,钞振华. 区域尺度近地表气候要素驱动数据研制的研究综述[J]. 地球科学进展, 2010, 25(12): 1314-1324.
[11] 周天军,满文敏,张洁. 过去千年气候变化的数值模拟研究进展[J]. 地球科学进展, 2009, 24(5): 469-476.
[12] 张雪芹,彭莉莉,林朝晖. 未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2008, 23(2): 174-185.
[13] 于革. 早新生代温室气候及冰期气候转型的模拟研究[J]. 地球科学进展, 2007, 22(4): 369-375.
[14] 尹崇华,延晓冬,石正国. 近年来中等复杂程度地球系统模式的研究进展[J]. 地球科学进展, 2007, 22(3): 290-296.
[15] 蒲朝霞. 数据同化在气候模拟中的应用——对中国西部区域气候研究的展望[J]. 地球科学进展, 2007, 22(11): 1177-1184.
阅读次数
全文


摘要