地球科学进展 ›› 2018, Vol. 33 ›› Issue (5): 506 -516. doi: 10.11867/j.issn.1001-8166.2018.05.0506

研究论文 上一篇    下一篇

长江河口区晚新生代以来沉积化学元素分布及物源指示意义
顾家伟( )   
  1. 河南教育学院地理系,河南 郑州 450046
  • 收稿日期:2017-11-15 修回日期:2018-03-10 出版日期:2018-05-20
  • 基金资助:
    *河南省科技攻关重点项目“郑州地铁灰尘重金属污染与人体健康风险评价”(编号:152102310093)资助.

Geochemical Finger Prints on China’s Yangtze River Channelization into the Sea and Its Provenance Implications

Jiawei Gu( )   

  1. Department of Geography of He’nan Institute of Education, Zhengzhou 450046, China
  • Received:2017-11-15 Revised:2018-03-10 Online:2018-05-20 Published:2018-06-13
  • About author:

    First author:Gu Jiawei(1981-),male,Zhengzhou City,He’nan Province,Associate professor. Research areas include Quaternary research in the Yangtze Delta.E-mail:15939018661@163.com

  • Supported by:
    Project supported by the Key Programs for Science and Technology of Henan Province“Heavy metal contamination and its human body exposure health risk in Zhengzhou subway network”(No.152102310093).

通过对长江三角洲平原上海浦东机场孔(PD钻孔)沉积物的化学元素分析,结合判别函数和因子分析等手段,探讨了元素富集规律随时间的演变特征,揭示了该区物源的演化过程。研究结果显示,PD钻孔沉积物可以划分为I~V带:I带(上新世—早更新世早期)主要富集Pb,Th,U,Ba,La和Ce等元素,此时长江三角洲逐渐由区域性台地向沉降盆地转变,较封闭的局地物源控制了该区沉积特征;II带(早更新世早期—早更新世中期)中Fe,K,As和Rb含量增高,表明此时长江中游物质加入进来,镇江峡口被切穿;III带(早更新世末期—中更新世)由Ti,V和Cr等主导,这些元素代表了上游峨眉山玄武岩,也表征该区物源进一步扩展至长江上游;IV~V带(中新世末—更新世—全新世)元素特征与III带类似,但以Br高含量为特征,表明此时该区地势进一步降低,并遭受多次海侵。PD钻孔的地球化学资料很好地揭示了在我国东西地势倒转的大背景下古长江溯源侵蚀,逐级切穿峡口的演化历程。结合测年资料,推断长江贯通东流至现今河口地区的时间不晚于1.0~1.2 Ma(III带底部)。

This study investigated sediment source to sink relating the channelization of the Yangtze River into the sea. A sediment borehole (PD) on the river coast, penetrating thick Quaternary sediments, to thin sediments of late Pliocene age until the bedrock recorded a change in sediment provenances through time. Geochemical elements and magneto-stratigraphy helped identify five zones. Zone I (the late Pliocene-the Early Pleistocene), characterized by Pb, Th, U, Ba, La, Ce, Nd, Hf, Y, Zr, Nb and Mn, indicated a local sediment provenance. This means that the study area was a localized sub-basin. Zone II (the Early Pleistocene-the mid-stage of Early Pleistocene), with remarkable high Fe, K, As and Rb implied a new sediment provenance joining to the sub-basin from the middle Yangtze reach after the opening of Zhenjiang Gorge. Zone III (the mid-stage of Early Pleistocene-the Middle Pleistocene), featured by Ti, V, Cr, Sr, Sc, Cu, Co, Ni, Mg, Ca, Na and P suggested a further extension of sediment provenance to the upper Yangtze reach, where a large block of the E’mei basalt occurs. This hinted the channelization of the Three Gorges valley linking the upper and middle Yangtze reaches. Zone IV~V (the Middle Pleistocene-the Holocene) showed their geochemical similarity to Zone III. Discrimination ratio f(Cr,Th), f(La) and f(K,La), a new approach developed for tracing sediment provenance, confirmed a basin-wide sediment source through Zone III-V. These together witness a progressive extension of the sediment provenance towards the upper Yangtze reach, corresponding to the long-term tilting effect of the Cenozoic Topographic Reversal of the eastern China continent. The timing of the Yangtze River channelizing into the continental shelf of East Asia appeared at ca. 1.0~1.2 Ma (bottom of Zone III).

中图分类号: 

图1 长江流域地质与地貌概图
(a)长江流域源岩分布(据参考文献[ 3 ]修改);(b)长江河口区钻孔分布;(c)新生代以来中国现代地貌剖面地形变化;(d)新生代以来中国早第三纪地貌剖面地形变化(据参考文献[ 4 ]修改)
Fig.1 Geological and geomorphological details of the Yangtze drainage basin
(a) Source rocks in the Yangtze Basin(modified after reference[3]); (b) The Yangtze Estuary and the sediment boreholes; (c) Cenozoic topographic reversal geomorphologic profile at present in the eastern China coast; (d) Cenozoic topographic reversal geomorphologic profile during the Early Tertiary(modified after reference[4])
图1 长江流域地质与地貌概图
(a)长江流域源岩分布(据参考文献[ 3 ]修改);(b)长江河口区钻孔分布;(c)新生代以来中国现代地貌剖面地形变化;(d)新生代以来中国早第三纪地貌剖面地形变化(据参考文献[ 4 ]修改)
Fig.1 Geological and geomorphological details of the Yangtze drainage basin
(a) Source rocks in the Yangtze Basin(modified after reference[3]); (b) The Yangtze Estuary and the sediment boreholes; (c) Cenozoic topographic reversal geomorphologic profile at present in the eastern China coast; (d) Cenozoic topographic reversal geomorphologic profile during the Early Tertiary(modified after reference[4])
图2 长江三峡贯通年代总结 (通过参考文献[1,12,15~40]总结获得)
Fig.2 Channelization time of the Three Gorges summarized from the previous studies (summarized from references[1,12,15~40])
图2 长江三峡贯通年代总结 (通过参考文献[1,12,15~40]总结获得)
Fig.2 Channelization time of the Three Gorges summarized from the previous studies (summarized from references[1,12,15~40])
表1 长江上游、中游、下游物源判断的特征元素
Table 1 Diagnostic geochemical element of the upper, middle and lower Yangtze reaches
表1 长江上游、中游、下游物源判断的特征元素
Table 1 Diagnostic geochemical element of the upper, middle and lower Yangtze reaches
图3 长江三角洲磁性地层对比图(据参考文献[ 49 ]修改)
灰色部分表示钻孔底部较低的磁化率区域
Fig.3 Generalized Plio-Quaternary magneto-stratigraphy of the Yangtze Delta (modified after reference[49])
Gray bar marks lower magnetic susceptibility in the bottom of cores
图3 长江三角洲磁性地层对比图(据参考文献[ 49 ]修改)
灰色部分表示钻孔底部较低的磁化率区域
Fig.3 Generalized Plio-Quaternary magneto-stratigraphy of the Yangtze Delta (modified after reference[49])
Gray bar marks lower magnetic susceptibility in the bottom of cores
图4 PD钻孔沉积物Q型聚类与化学元素分布
(a)包括Ti,V,Cr等元素;(b)包括Th和U等元素和判别函数,所有元素Al归一化处理;垂直虚线为全孔平均值;判别函数粗实线为10点平均;I~V带为TILIA软件聚类分析结果
Fig.4 Q-type cluster plot of PD bore and its geochemical distribution
(a) Consists of Ti, V, Cr and other elemental distribution; (b) Consists of Th, U and other elemental distribution, and three discrimination ratios; All elements are normalized by Al; The vertical dashed line denotes the mean values; Bold lines in discrimination ratios are ten points moving average; Five zones of I~V are established by cluster analysis of TILIA
图4 PD钻孔沉积物Q型聚类与化学元素分布
(a)包括Ti,V,Cr等元素;(b)包括Th和U等元素和判别函数,所有元素Al归一化处理;垂直虚线为全孔平均值;判别函数粗实线为10点平均;I~V带为TILIA软件聚类分析结果
Fig.4 Q-type cluster plot of PD bore and its geochemical distribution
(a) Consists of Ti, V, Cr and other elemental distribution; (b) Consists of Th, U and other elemental distribution, and three discrimination ratios; All elements are normalized by Al; The vertical dashed line denotes the mean values; Bold lines in discrimination ratios are ten points moving average; Five zones of I~V are established by cluster analysis of TILIA
图5 PD钻孔沉积物特征元素因子分析与样品载荷散点图
(a)6个特征元素的因子分析;(b)PD钻孔样品特征元素的载荷散点图
Fig.5 Factor analysis for the diagnostic elements and the loading distribution of samples in the PD core
(a) Factor analysis for the diagnostic elements of Ti,V,Cr,Sc, Th and U in PD core; (b) The loading of the diagnostic elements of PD core on F1 and F2
图5 PD钻孔沉积物特征元素因子分析与样品载荷散点图
(a)6个特征元素的因子分析;(b)PD钻孔样品特征元素的载荷散点图
Fig.5 Factor analysis for the diagnostic elements and the loading distribution of samples in the PD core
(a) Factor analysis for the diagnostic elements of Ti,V,Cr,Sc, Th and U in PD core; (b) The loading of the diagnostic elements of PD core on F1 and F2
图6 PD钻孔物源演化模式图
Fig.6 Sketch map of PD core provenance evolution
图6 PD钻孔物源演化模式图
Fig.6 Sketch map of PD core provenance evolution
[1] Chen Jing, Wang Zhanghua, Chen Zhongyuan, et al.Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea[J]. Geomorphology, 2009, 113: 129-136.
doi: 10.1016/j.geomorph.2009.03.010     URL    
[2] Clift P D, Shimizu N, Layne G D, et al.Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram[J]. Geological Society of America, 2001, 113(8): 1 039-1 051.
doi: 10.1130/0016-7606(2001)1132.0.CO;2     URL    
[3] Changjiang River Water Resources Commission. Atlas of Changjiang River Basin[M]. Beijing:Sinomaps Press, 1999.
[长江水利委员会. 长江流域地图集[M]. 北京:中国地图出版社,1999.]
[4] Wang Pingxian.Neogene stratigraphy and paleoenvironments of China[J]. Palaeogeography, Palaeoclimatolology, Palaeoecology, 1990, 77(3/4): 315-334.
doi: 10.1016/0031-0182(90)90183-8     URL    
[5] Li Siguang.Geology of the gorge district of the Yangtze (from Ichang to Tzekuei) with special reference to the development of the gorges[J]. Bulletin of the Geological Society of China, 1924, 3(3/4): 351-391.
[李四光. 峡东地质及长江之历史[J]. 中国地质学会志, 1924, 3(3/4): 351-391.]
[6] Shen Yuchang, Yang Yichou.New research on the problem of river capture of Ching Sha Chiang (the upper Yangtze), Western Yunnan, China[J]. Acta Geographica Sinica, 1963, 29(2): 87-108.
[沈玉昌, 杨逸畴. 滇西金沙江袭夺问题的新探讨[J]. 地理学报, 1963, 29(2): 87-108.]
[7] Ren Meie, Bao Haosheng, Han Tongchun.Geomorphology of the Jinsha River valley and it s river capture in northwestern Yunnan[J]. Acta Geographica Sinica, 1959, 25(2): 135-155.
[任美锷, 包浩生, 韩同春. 云南西北部金沙江河谷地貌与河流袭夺问题[J]. 地理学报, 1959, 25(2): 135-155.]
[8] Zhao Cheng.River capture and origin of the Yangtze Gorges[J]. Journal Changchun University of Earth Sciences, 1996, 26(4) : 428-433.
[赵诚. 长江三峡河流袭夺与河流起源[J]. 长春地质学院学报, 1996, 26(4): 428-433.]
[9] Wang Hongzhen.Altas of the Palaeogeography of China[M]. Beijing: Cartographic Publishing House, 1985.
[王鸿祯. 中国古地理图集[M]. 北京: 地图出版社, 1985.]
[10] Yang Dayuan.Study on the Changjiang River[M]. Nanjing: Hohai University Press, 2004.
[杨达源. 长江研究[M]. 南京: 河海大学出版社, 2004.]
[11] Brookfiled M E.The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards[J]. Geomorphology, 1998, 22: 285-312.
doi: 10.1016/S0169-555X(97)00082-2     URL    
[12] Clark M K, Schoenbohm L M, Royden L H, ,et al. Surface uplift. Surface uplift, tectonics,erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 2004, 23: TC1006.DOI: 10.1029/ 2002TC001402.
[13] Xu Zhonglu, Li Xingjian.Discussion on the genesis of the Hongwen-Diannan valley and the piracy of the Jinsha River in Northwestern Yunnan[J]. Acta Geographica Sinica, 1982, 37(3): 325-333.
[许仲路, 李行健. 滇西北丽江鸿文村—剑川甸南纵谷成因与金沙江袭夺问题之探讨[J]. 地理学报, 1982, 37(3): 325-333.]
[14] He Haosheng, He Kezhao, Zhu Xiangmin.Study on the piracy of the Jinshajiang River[J]. Modern Geology, 1989, 3(2): 319-330.
[何浩生, 何科昭, 朱祥民. 滇西北金沙江河流袭夺的研究——兼与任美锷先生商榷[J]. 现代地质, 1989, 3(2): 319-330.]
[15] Yang Dayuan.The origin and evolution of the Three Gorges of the Changjiang Yangzte River[J]. Journal of Nangjing University(Natural Sciences Edition), 1988, 24(3): 466-474
[杨达源. 长江三峡的起源与演变[J]. 南京大学学报:自然科学版, 1988, 24(3): 466-474.]
[16] Zhang Yechun.Formation of the Yangtze Gorges and its significance[J]. Jounal of Northwest Normal University(Natural Science), 1995, 31(2): 52-56.
[张叶春. 长江三峡贯通的时代及意义[J]. 西北师范大学学报:自然科学版, 1995, 31(2): 52-56.]
[17] Zhao Cheng.River capture and origin of the Yangtze Gorges[J]. Journal of Changchun University of Earth Sciences, 1996, 26(4): 428-433.
[赵诚. 长江三峡河流袭夺与河流起源[J]. 长春地质学院学报, 1996, 26(4): 428-433.]
[18] Gong Shuyi, Chen Guojin.Evolution of Quaternary rivers and lakes in the middle reach of the Yangtze River and its effect on environment[J]. Earth ScienceJournal of China University of Geosciences, 1997, 22(2): 199-203.
[龚树毅, 陈国金. 长江中游地区第四纪河湖演变及其对环境的影响[J]. 地球科学——中国地质大学学报, 1997, 22(2): 199-203.]
doi: 10.1007/BF02951625     URL    
[19] Tang Guizhi, Tao Ming.Discussion on relationship between the middle Pleistocene glaciation and formation of the Yangtze Gorges[J]. Geology and Mineral Resources of South China, 1997,(4): 9-18.
[唐贵智, 陶明. 论长江三峡形成与中更新世大姑冰期的关系[J]. 华南地质与矿产, 1997,(4): 9-18.]
[20] Li Jijun, Xie Shiyou, Kuang Mingsheng.Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 2001, 41: 125-135.
doi: 10.1016/S0169-555X(01)00110-6     URL    
[21] Fan Daidu, Li Congxian, Yokoyama Ketal, et al.Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science in China (Series D), 2005,48(10): 1 718-1 727.
[范代读, 李从先, Yokoyama K, 等. 长江三角洲晚新生代地层独居石年龄与长江贯通时间研究[J]. 中国科学:D辑, 2004, 34(11): 1 015-1 022.]
[22] Xiang Fang, Zhu Lidong, Wang Chengshan, et al.Terrace age correlation and its significance in research of Yangtze Three Gorges, China[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 2005, 32(2): 162-166.
[向芳, 朱利东, 王成善, 等. 长江三峡阶地的年代对比法及其意义[J]. 成都理工大学学报:自然科学版, 2005, 32(2): 162-166.]
[23] Yang Shouye, Li Congxian, Yokoyama K.Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 2006, 245: 762-776.
doi: 10.1016/j.epsl.2006.03.042     URL    
[24] Xiang Fang, Zhu Lidong, Wang Chengshan, et al.Character of basaltic gravels in Quaternary sediments in Yichang area and its relationship with formation of Yangtze Three Gorges[J]. Journal of Earth Sciences and Environment, 2006, 28(2): 4-10.
[向芳, 朱利东, 王成善, 等. 宜昌地区第四纪沉积物中玄武岩砾石特征及其与长江三峡贯通的关系[J]地球科学与环境学报, 2006, 28(2): 4-10.]
doi: 10.3969/j.issn.1672-6561.2006.02.002     URL    
[25] Xie Shiyou, Yuan Daoxian, Wang Jianli, et al.Features of the planation surface in the surrounding area of the Three Gorges of Yangtze[J]. Carsologica Sinica, 2006, 25(1): 40-45.
[谢世友, 袁道先, 王建力, 等. 长江三峡地区夷平面分布特征及其形成年代[J]. 中国岩溶, 2006, 25(1): 40-45.]
doi: 10.3969/j.issn.1001-4810.2006.01.008     URL    
[26] Xiang Fang, Zhu Lidong, Wang Changshan, et al.Quaternary sediment in the Yichang area: Implications for the formation of the 3-Gorges of the Yangtze River[J]. Geomorphology, 2007, 85: 249-258.
doi: 10.1016/j.geomorph.2006.03.027     URL    
[27] Ma Yongfa, Li Chang’an, Wang Qiuliang, et al.Statistics of gravels from a Bore in Zhoulao Town, Jianghan Plain and Its Relationship with cut-through of the Yangtze Three Gorges, China[J]. Geological Science and Technology Information, 2007, 26(2): 40-44.
[马永法, 李长安, 王秋良, 等. 江汉平原周老镇钻孔砾石统计及其与长江三峡贯通的关系[J]. 地质科技情报, 2007, 26(2): 40-44.]
doi: 10.3969/j.issn.1000-7849.2007.02.008     URL    
[28] Clift P D, Long H V, Hinton R, et al.Evolving East Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-song Hong sediments[J]. Geochemistry, Geophysics, Geosystems, 2008, 9: Q04039, doi:10.1029/2007GC001867.
doi: 10.1029/2007GC001867     URL    
[29] Shu Qiang, Zhang Maoheng, Zhao Zhijun, et al.Sedimentary record from the XH-1 core in north Jiangsu Basin and its implication on the Yangtze River run-through time[J]. Journal of Stratigraphy, 2008, 32(3): 308-314.
[舒强, 张茂恒, 赵志军, 等. 苏北盆地XH-1钻孔晚新生代沉积记录特征及其与长江贯通时间的关联[J].地层学杂志, 2008, 32(3): 308-314.]
[30] Zhang Yufen, Li Chang’an, Wang Qiuliang, et al.Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(5): 584-590.
[张玉芬, 李长安, 王秋良, 等. 江汉平原沉积物磁学特征及对长江三峡贯通的指示[J]. 科学通报, 2008, 53(5): 577-582.]
URL    
[31] Wang Qiuliang, Hu Sihui, Li Chang’an, et al.Heavy mineral characteristics of gravel layers in the Zhoulao Town borehole[J]. Geology in China, 2009, 36(4): 874-884.
[王秋良, 胡思辉, 李长安, 等. 周老镇钻孔砾石层重矿物特征及地质意义[J]. 中国地质, 2009, 36(4): 874-884.]
[32] Kong P, Granger D E, Wu F Y, et al.Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 2009, 278(1/2): 131-141.
doi: 10.1016/j.epsl.2008.12.003     URL    
[33] Huang Xiangtong, Zheng Hongbo, Yang Shouye.Investigation of sedimentary geochemistry of core DY03 in the Yangtze Delta: Implication to tracing provenance[J]. Quaternary Sciences, 2009, 29(2): 299-307.
[黄湘通, 郑洪波, 杨守业. 长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义[J]. 第四纪地质, 2009, 29(2): 299-307.]
[34] Wang Jietao, Li Chang’an, Yang Yong, et al.The LA-ICPMS U-Pb detrital Zircon geochronology and provenance study of sedimentary core in Zhoulao Town, the Jianghan Plain, China[J]. Quaternary Sciences, 2009, 29(2): 343-351.
[王节涛, 李长安, 杨勇, 等. 江汉平原周老孔中碎屑锆石LA-ICPMS定年及物源示踪第四纪研究[J]. 2009, 29(2): 343-351.]
URL    
[35] Li Ting, Li Chang’an, Kang Chunguo, et al.Sedimentary environment and geomorphological significance of the gravel bed in Yichang[J]. Geology in China, 2010, 37(2): 438-445.
[李庭, 李长安, 康春国, 等. 宜昌砾石层的沉积环境及地貌意义[J].中国地质, 2010, 37(2): 438-445.]
doi: 10.3969/j.issn.1000-3657.2010.02.017     URL    
[36] Jia Juntao, Zheng Hongbo, Huang Xiangtong.Detrital zircon U-Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(4/5): 350-358.
[贾军涛, 郑洪波, 黄湘通. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J].科学通报, 2010, 55(4/5): 350-358.]
doi: 10.1360/csb2010-55-4-5-350     URL    
[37] Richardson N J, Densmore A L, Seward D, et al.Did incision of the Three Gorges begin in the Eocene?[J]. Geology, 2010, 38: 551-554.
doi: 10.1130/G30527.1     URL    
[38] Zheng Hongbo, Clift P D, Wang Ping, et al.Pre-Miocene birth of the Yangtze River[J]. PNAS, 2013, 110(19): 7 556-7 561.
doi: 10.1073/pnas.1216241110     URL    
[39] Zheng Hongbo.Birth of the Yangtze River: Age and tectonic-geomorphic implications[J]. National Science Review, 2015, 2(4): 438-453.
doi: 10.1093/nsr/nwv063     URL    
[40] Yue Wei, Liu James T, Zhang Dan, et al.Magnetite with anomalously high Cr2O3 as a fingerprint to trace upper Yangtze sediments to the sea[J]. Geomophology, 2016, 268: 14-20.
doi: 10.1016/j.geomorph.2016.05.032     URL    
[41] China Geological Survey (CGS). Geological Map of China (1∶ 2 500 000)[M]. Beijing: China Geological Map Press, 2004.
[中国地质调查局(CGS). 中国地质全图(1:2 500 000)[M]. 北京: 中国地质地图出版社, 2004]
[42] Zhang Zhaochong, Wang Fusheng.Sr, Nd and Pb isotopic characteristics of Emeishan Basalt Province and discussion on their source region[J]. Earth ScienceJournal of China University of Geosciences, 2003, 28(4): 432-439.
[张招崇, 王福生. 峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨[J]. 地球科学——中国地质大学学报, 2003, 28(4): 432-439.]
doi: 10.3321/j.issn:1000-2383.2003.04.012     URL    
[43] Lei Wenda, Li Chang’an, Zhang Yufen, et al.Heuristic segmentationmethod for change-point analysis of hydrological time series[J]. Yangtze River, 2009, 40(9): 55-58.
[雷文大, 李长安, 张玉芬, 等. 基于特征矿物示踪的长江三峡贯通研究构想[J]. 人民长江, 2009, 40(9): 55-58.]
doi: 10.3969/j.issn.1001-4179.2009.09.020     URL    
[44] Liu Yingjun, Cao Liming, Li Zhaolin, et al.Element Geochemistry[M]. Beijing: Science Press, 1984.
[刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.]
[45] Zeng Chen, Yang Shouye, Wang Lei, et al.Elemental composition of suspended sediment from the Changjiang River and its environmental implicaition[J]. Marine Geology and Quaternary Geology, 2012, 32(1): 19-25.
[曾辰, 杨守业, 王磊, 等. 长江干流悬浮物中元素相态组成与环境指示[J]. 海洋地质与第四纪地质, 2012, 32(1): 19-25.]
URL    
[46] Yang Shouye, Li Congxian.Charactersitic element composition of the Yangtze and the Yellow River sediments and their geological background[J]. Marine Geology and Quaternary Geology, 1999,19(2): 19-26.
[杨守业, 李从先. 长江与黄河沉积物元素组成及地质背景[J]. 海洋地质与第四纪地质, 1999,19(2): 19-26.]
doi: 10.1088/0256-307X/15/12/024     URL    
[47] Mei Hui, Ma Zhendong, Li Chang’an.Analysis on elementary composition of sediments in the Yangtze River and the Hanjiang River[J]. Global Geology, 2007, 26(2): 208-212.
[梅惠, 马振东, 李长安. 长江与汉江现代沉积物元素组成分析[J]. 世界地质, 2007, 26(2): 208-212.]
doi: 10.3969/j.issn.1004-5589.2007.02.011     URL    
[48] Qiu Jinbo, Li Xiao.Quaternary Stratigraphy and Sedimentary Environment of Shanghai[M]. Shanghai: Shanghai Science and Technology Press, 2007.
[邱金波, 李晓. 上海市第四纪地层与沉积环境[M]. 上海: 上海科学技术出版社, 2007.]
[49] Zhang Dan, Wang Zhanghua, Wei Wei, et al.Rock magnetic properties and source indications of late Cenozoic sediments in Yangtze Delta area[J]. Quaternary Science, 2009, 29(2): 308-317.
[张丹, 王张华, 魏巍, 等. 长江三角洲地区晚新生代沉积物岩石磁学特征极其物源指示意义[J]. 第四纪研究, 2009, 29(2): 308-317.]
URL    
[50] Wang Zhangqiao, Chen Zhongyuan, Wei Zixin, et al.Coupling controls of neotectonism and paleoclimate on the Quaternary sediments of the Yangtze (Changjiang) coast[J]. Chinese Science Bulletin, 2005, 50(16):1 775-1 784.
doi: 10.1360/04wd0089     URL    
[51] Zhang Hucai.Supergene Geochemistry and Its Theoretical Basis[M]. Lanzhou: Lanzhou University Press, 1997.
[张虎才. 元素表生地球化学特征及理论基础[M]. 兰州: 兰州大学出版社, 1997.]
[52] Gu Jiawei.Tectonic subsidence analysis of Subei Basin and Yangtze Delta from the Pliocene[J]. Geological Science and Technology Information, 2015, 34(1): 95-106.
[顾家伟. 上新世以来苏北盆地与长江三角洲构造沉降史分析[J]. 地质科技情报, 2015, 34(1): 95-106.]
[53] Fan Daidu, Wang Yangyang, Wu Yijing.Advances in provenance studies of Changjiang Riverine sediments[J]. Advances in Earth Science, 2012, 27(5): 515-528.
[范代读, 王扬扬,吴伊婧.长江沉积物源示踪研究进展[J].地球科学进展, 2012, 27(5): 515-528.]
doi: 10.11867/j.issn.1001-8166.2012.05.0515     URL    
[54] Zheng Hongbo, Wei Xiaochun, Wang Ping, et al.Geological evolution of the Yangtze River[J]. Science in China(Series D), 2017, 47(4): 385-393.
[郑洪波, 魏晓椿, 王平, 等.长江的前世今生[J]. 中国科学: D辑, 2017, 47(4): 385-393.]
[55] Wei Chuanyi, Liu Chunru, Li Chang’an, et al.Research advances in ESR provenance tracing methods of quartz in sediments[J]. Advances in Earth Science, 2017, 32(10): 1 062-1 071.
[魏传义, 刘春茹, 李长安, 等. 石英ESR法物源示踪: 认识与进展[J]. 地球科学进展, 2017, 32(10): 1 062-1 071.]
doi: 10.11867/j.issn.1001-8166.2017.10.1062     URL    
[1] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[2] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[3] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[4] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[5] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[6] 吴伊婧, 范代读, 印萍, 胡虞杨. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567-580.
[7] 姚蓬娟, 王春乙, 张继权. 长江中下游地区双季早稻冷害、热害危险性评价[J]. 地球科学进展, 2016, 31(5): 503-514.
[8] 王文, 孙畅, 蔡晓军, 许金萍. 南亚高压低频振荡与长江中下游地区旱涝的关系[J]. 地球科学进展, 2016, 31(5): 529-541.
[9] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[10] 罗超, 郑洪波, 吴卫华, 杨守业. 长江河水 87Sr/ 86Sr值的季节性变化及其指示意义:以长江大通站为例 1[J]. 地球科学进展, 2014, 29(7): 835-843.
[11] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[12] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
[13] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
[14] 王建丰, 王玉, 王刚. 基于FVCOM数值模拟和观察资料的长江冲淡水转向机制分析[J]. 地球科学进展, 2012, 27(2): 194-201.
[15] 史威,李世杰,马春梅,朱诚,张蕾. 中坝和中堡岛遗址文化堆积连续性的自然及人类活动因素[J]. 地球科学进展, 2010, 25(5): 523-532.
阅读次数
全文


摘要