地球科学进展 ›› 2018, Vol. 33 ›› Issue (5): 493 -505. doi: 10.11867/j.issn.1001-8166.2018.05.0493

综述与评述 上一篇    下一篇

泥页岩烃—孔隙—表面的关系及其对残留烃评价的意义
李旭 1( ), 蔡进功 1, *( ), 宋明水 2, 刘惠民 2, 刘庆 2, 李政 2   
  1. 1.同济大学 海洋地质国家重点实验室,上海 200092
    2.中国石化 胜利油田分公司勘探开发研究院,山东 东营 257015
  • 收稿日期:2017-12-15 修回日期:2018-03-24 出版日期:2018-05-20
  • 通讯作者: 蔡进功 E-mail:lixu_0424@tongji.edu.cn;jgcai@tongji.edu.cn
  • 基金资助:
    *国家自然科学基金项目“泥页岩中不同赋存态烃的分离及特征研究”(编号:41372130);国家油气重大专项项目“济阳坳陷古近系烃源岩有机—无机协同演化及其资源潜力评价”(编号:2016ZX05006001-003)资助.

The Relationships Among Hydrocarbon-Pore-Surface in Shale Rocks and Their Significance for the Evaluation of Residual Hydrocarbons

Xu Li 1( ), Jingong Cai 1, *( ), Mingshui Song 2, Huimin Liu 2, Qing Liu 2, Zheng Li 2   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    2.Research Institute of Petroleum Exploration and Development, Shengli Oilfield Company, SINOPEC, Dongying Shandong 257015, China
  • Received:2017-12-15 Revised:2018-03-24 Online:2018-05-20 Published:2018-06-13
  • Contact: Jingong Cai E-mail:lixu_0424@tongji.edu.cn;jgcai@tongji.edu.cn
  • About author:

    First author:Li Xu(1992-),male,Xuzhou City,Jiangsu Province,Ph.D student. Research areas include shale pore structure characteristics and shale oil and gas evaluation. E-mail:lixu_0424@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Fundation of China “Research on the separation and characteristics of different occurrence state hydrocarbon in shale”(No.41372130);The National Oil and Gas Special Fund “Organic-inorganic co-evolution and resource potential evaluation of Paleogene source rocks in Jiyang depression”(No.2016ZX05006001-003).

泥页岩中残留烃具有多种赋存态,且赋存态与赋存空间紧密相关,残留烃的研究必须同时关注赋存态和赋存空间。残留烃的不同赋存态在本质上是由于残留烃组分以及孔隙和表面性质的多样性造成的,导致不同赋存态烃的剥离条件具有差异,基于这种差异,提出有机溶剂抽提—化学湿氧化的相继处理方法分离游离态烃、物理吸附烃和化学结合态烃。泥页岩中存在多种类型的孔隙和表面,气体吸附法、压汞法、化学吸附法和成像方法的配合才能够全面表征泥页岩的孔隙结构。通过分析每一步处理前后烃参数和孔隙结构表征参数的变化特征可以建立烃—孔隙表面的关系,而烃和矿物在分子层面和微观尺度相互作用的研究有助于进一步丰富烃—孔隙—表面的关系,这对于深刻理解残留烃的赋存机理和流动特征具有重要意义。

Development of shale oil and gas has prompted people to think about the occurrence space and occurrence states of residual hydrocarbon in shale. There are three occurrence states of residual hydrocarbon in shale: free, adsorbed and dissolved. The contribution of different state hydrocarbon remains uncertain. The occurrence space for hydrocarbon includes pore and surface. Pore can be divided into macropore, mesopore, micropore; and surface can be distinguished between the external and internal surface. Filling and adsorption of hydrocarbon in/on different spaces vary a lot. Furthermore, characteristics of hydrocarbon and organic matter, and the burial and evolution process could complicate the relationships among hydrocarbon, pore and surface. In summary, research on residual hydrocarbon in shale must focus on occurrence state and space simultaneously. Rock-Eval pyrolysis and organic solvent extraction are effective quantitative methods for residual hydrocarbon evaluation, and calibration of characteristic parameters is of great significance. Union of N2 adsorption, mercury intrusion and EGME adsorption methods could achieve the pore structure characteristics of shale comprehensively. These quantitative evaluation methods are the basis for the research on relationships among hydrocarbon, pore and surface. This paper recommended progressively use of organic solvents and wet chemical oxidation methods which can separate free hydrocarbon, physical adsorption hydrocarbon and chemical bonding hydrocarbon gradually, and then we could establish the relationship among hydrocarbon, pore and surface by the combination of residual hydrocarbon and space quantitative characterization methods. Research on the interactions between hydrocarbon and minerals in molecular level and micro-scale will enrich the relationship among hydrocarbon, pore and surface, and it has great significance for us to understand the occurrence mechanism and flow characteristics of residual hydrocarbon in shale.

中图分类号: 

[1] Jarvie D M.Shale resource systems for oil and gas: Part 2—Shale-oil resource systems[J]. AAPG Special Volumes, 2012, 97: 89-119. DOI: 10.1306/13321447M973489.
doi: 10.1306/13321446M973489     URL    
[2] Zhang Kang.From tight oil & gas to shale oil & gas—An approach to developing unconventional oil & gas in China[J]. Strategic Forum, 2012, 21(2): 9-15.
[张抗. 从致密油气到页岩油气——中国非常规油气发展之路探析[J]. 国际石油经济,2012,21(2): 9-15.]
[3] Luo Chengxian.Shale oil development may change the landscape in the world’s oil market[J]. Sino-Global Energy, 2011, 16(12):22-26.
[罗承先. 页岩油开发可能改变世界石油形势[J]. 中外能源,2011,16(12):22-26.]
[4] Maugeri L.The Shale Oil Boom: A U.S. Phenomenon[R]. Cambridge: Harvard Kennedy School, 2013.
[5] Dong Dazhong, Zou Caineng, Yang Hua,et al.Progress and prospects of shale gas exploration and development in China[J]. Acta Geologica Sinica, 2012, 33(1):107-114.
[董大忠,邹才能,杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报,2012,33(1):107-114.]
[6] Yang Hua, Li Shixiang, Liu Xianyang.Characteristics and resource prospects of tight oil and shale oil in Ordos basin[J].Acta Petrolei Sinica, 2013, 34(1):1-11.
[杨华,李士祥,刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报,2013,34(1):1-11.]
doi: 10.7623/syxb201301001     URL    
[7] Zhang Linye, Li Zheng, Li Juyuan.Feasibility analysis of existing recoverable oil and gas resource in the Palaeogene shale of Dongying depression[J]. Natural Gas Geoscience, 2011, 23(1):1-13.
[张林晔,李政,李钜源. 东营凹陷古近系泥页岩中存在可供开采的油气资源[J]. 天然气地球科学,2012,23(1):1-13.]
[8] Zhang Shanwen, Zhang Linye, Li Zheng, et al.Formation conditions of Paleogene shale oil and gas in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6):1-5.
[张善文,张林晔,李政,等. 济阳坳陷古近系页岩油气形成条件[J]. 油气地质与采收率,2012, 19(6):1-5.]
doi: 10.3969/j.issn.1009-9603.2012.06.001     URL    
[9] Ning Fangxing.Mechanism of shale oil enrichment in Jiyang depression[J]. Special Oil and Gas Reservoirs, 2015, 22(3):27-30.
[宁方兴. 济阳坳陷页岩油富集机理[J]. 特种油气藏,2015,22(3):27-30.]
[10] Ning Fangxing, Wang Xuejun, Hao Xuefeng, et al.An analysis on occurrences state and mobility of shale oil in Jiyang depression[J]. Xinjiang Oil & Gas, 2015, 11(3):1-5.
[宁方兴,王学军,郝雪峰,等. 济阳坳陷页岩油赋存状态和可动性分析[J]. 新疆石油天然气,2015,11(3):1-5.]
doi: 10.3969/j.issn.1673-2677.2015.03.001     URL    
[11] Wang Yong, Song Guoqi, Liu Huimin, et al.Main control factors of enrichment characteristics of shale oil in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(4):20-25.
[王勇,宋国奇,刘惠民,等. 济阳坳陷页岩油富集主控因素[J]. 油气地质与采收率,2015,22(4):20-25.]
[12] Huang Wenbiao, Deng Shouwei, Lu Shuangfang, et al.Shale organic heterogeneity evaluation method and its application to shale oil resource evaluation—A case study from Qingshankou Formation,southern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(5):704-711.
[黄文彪,邓守伟,卢双舫,等. 泥页岩有机非均质性评价及其在页岩油资源评价中的应用——以松辽盆地南部青山口组为例[J].石油与天然气地质,2014,35(5):704-711.]
doi: 10.11743/ogg20140516    
[13] Chen Xiang, Wang Min, Yan Yongxin,et al.Accumulation conditions for continental shale oil and gas in the Biyang depression[J]. Oil & Gas Geology, 2011, 32(4):568-576.
[陈祥,王敏,严永新,等. 泌阳凹陷陆相页岩油气成藏条件[J]. 石油与天然气地质,2011,32(4):568-576.]
doi: 10.11743/ogg20110410     URL    
[14] Zou Caineng, Yang Zhi, Tao Shizhen,et al.Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1):13-26.
[邹才能,杨智,陶士振,等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发,2012,39(1):13-26.]
[15] Zhao Jingzhou.Conception,classification and resource potential of unconventional hydrocarbon[J]. Natural Gas Geoscience, 2012, 23(3):393-406.
[赵靖舟. 非常规油气有关概念、分类及资源潜力[J]. 天然气地球科学,2012,23(3):393-406.]
URL    
[16] Qiu Zhen, Zou Caineng, Li Jianzhong,et al.Unconventional petroleum resources assessment:Progress and future prospects[J]. Natural Gas Geoscience, 2013, 24(2):238-246.
[邱振,邹才能,李建忠,等. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学,2013,24(2):238-246.]
URL    
[17] Zou Caineng, Zhang Guosheng, Yang Zhi, et al.Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4):385-399.
[邹才能,张国生,杨智,等. 非常规油气概念、特征、潜力及技术[J]. 石油勘探与开发,2013,40(4):385-399.]
[18] Chen Jianping, Sun Yongge, Zhong Ningning,et al.The efficiency and model of petroleum expulsion from from the lacustrine source rocks within geological frame[J]. Acta Geologica Sinica, 2014, 88(11):2 005-2 032.
[陈建平,孙永革,钟宁宁,等. 地质条件下湖相烃源岩生排烃效率与模式[J]. 地质学报,2014,88(11):2 005-2 032.]
[19] Li Jijun, Wang Weiming, Cao Qun, et al.Impact of hydrocarbon expulsion efficiency of continental shale upon shale oil accumulations in eastern China[J]. Marine & Petroleum Geology, 2015, 59(59): 467-479.
doi: 10.1016/j.marpetgeo.2014.10.002     URL    
[20] Nelson P H.Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340.
doi: 10.1306/10240808059     URL    
[21] Curtis J B.Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1 921-1 938.
[22] Ross D J K, Bustin R M. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51-75.
doi: 10.2113/gscpgbull.55.1.51     URL    
[23] Ju Yiwen, Qi Yu, Fang Lizhi, et al.China shale gas reservoir types and its controlling factors[J]. Advances in Earth Science, 2016, 31(8): 782-799.
[琚宜文,戚宇,房立志,等. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展,2016,31(8):782-799.DOI:10.11867/j.issn.1001-8166.2016.08.0782.]
doi: 10.11867/j.issn.1001-8166.2016.08.0782.    
[24] Ning Fangxing.Difference analysis on different types of shale oils in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6):6-9, 14.
[宁方兴. 济阳坳陷不同类型页岩油差异性分析[J]. 油气地质与采收率,2014,21(6):6-9,14.]
doi: 10.3969/j.issn.1009-9603.2014.06.002     URL    
[25] Lin Wei, Mastalerz M, Schimmelmann A, et al.Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J]. International Journal of Coal Geology, 2014, 132: 38-50. DOI: 10.1016/j.coal.2014.08.003.
doi: 10.1016/j.coal.2014.08.003     URL    
[26] Li Jing, Zhou Shixin, Li Yuanju, et al.Effect of organic matter on pore structure of mature lacustrine organic-rich shale: A case study of the Triassic Yanchang shale, Ordos Basin, China[J]. Fuel, 2016, 185: 421-431. DOI: 10.1016/j.fuel.2016.07.100.
doi: 10.1016/j.fuel.2016.07.100     URL    
[27] Yu Yuxi, Luo Xiaorong, Cheng Ming, et al.Study on the distribution of extractable organic matter in pores of lacustrine shale: An example of Zhangjiatan Shale from the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Interpretation, 2017, 5(2): 109-126.
doi: 10.1190/INT-2016-0124.1     URL    
[28] Sing K S.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
doi: 10.1351/pac198557040603     URL    
[29] Echeverría J C, Morera M T, Mazkiarn C, et al.Characterization of the porous structure of soils: Adsorption of nitrogen (77K) and carbon dioxide (273K), and mercury porosimetry[J]. European Journal of Soil Science, 1999, 50(3): 497-503.
doi: 10.1046/j.1365-2389.1999.00261.x     URL    
[30] Zhu Xiaojun, Cai Jingong, Song Guoqi, ,et al.. Factors influencing the specific surface areas of argillaceous source rocks[J]. Applied Clay Science, 2015, 109/110: 83-94. DOI: 10.1016/j.clay.2015.02.016.
doi: 10.1016/j.clay.2015.02.016     URL    
[31] Zhu Xiaojun, Cai Jingong, Liu Weixin ,et al.. Occurrence of stable and mobile organic matter in the clay-sized fraction of shale: Significance for petroleum geology and carbon cycle[J]. International Journal of Coal Geology, 2016, 160/161: 1-10. DOI: 10.1016/j.coal.2016.03.011.
doi: 10.1016/j.coal.2016.03.011     URL    
[32] Zhang Tongwei, Ellis G S, Ruppel S C, et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47(6): 120-131.
doi: 10.1016/j.orggeochem.2012.03.012     URL    
[33] Wu Jingshu, Yu Bingsong, Li Yuxi.Adsorption capacity of shale gas and controlling factors from the well Yuye 1 at the southeast of Chongqing[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(4):40-48.
[武景淑,于炳松,李玉喜. 渝东南渝页1井页岩气吸附能力及其主控因素[J]. 西南石油大学学报:科学技术版,2012,34(4):40-48.]
doi: 10.3863/j.issn.1674-5086.2012.04.005     URL    
[34] Wang Sen, Feng Qihong, Javadpour F, ,et al.. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J]. International Journal of Coal Geology, 2015,147/148: 9-24. DOI: 10.1016/j.coal.2015.06.002.
doi: 10.1016/j.coal.2015.06.002     URL    
[35] Lu Shuangfang, Huang Wenbiao, Chen Fangwen, et al.Classification and evaluation criteria of shale oil and gas resources: Discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2):249-256.
[卢双舫,黄文彪,陈方文,等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发,2012,39(2):249-256.]
doi: 10.1016/S1876-3804(12)60042-1     URL    
[36] Jiang Zaixing, Zhang Wenzhao, Liang Chao, et al.Characteristics and evaluation elements of shale oil reservoir[J]. Acta Geologica Sinica, 2014, 35(1):184-196.
[姜在兴,张文昭,梁超,等. 页岩油储层基本特征及评价要素[J]. 石油学报,2014,35(1):184-196.]
doi: 10.7623/syxb201401024     URL    
[37] Guo Shaohui, Li Shuyuan, Qin Kuangzong.CS2/NMP extraction of immature source rock concentrates[J]. Organic Geochemistry, 2000, 31(12): 1 783-1 795.
doi: 10.1016/S0146-6380(00)00126-1     URL    
[38] Song Yitao, Liao Yongsheng, Zhang Shouchun.Two occurences of soluble organic matter determination in salty lacustrine source rocks and its significances[J]. Chinese Science Bulletin, 2005, 50(14):1 531-1 534.
[宋一涛,廖永胜,张守春. 半咸—咸水湖相烃源岩中两种赋存状态可溶有机质的测定及其意义[J]. 科学通报,2005,50(14):1 531-1 534.]
[39] Mikutta R, Kleber M, Kaiser K, et al.Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate[J]. Soil Science Society of America Journal, 2005, 69(1): 120-135.
doi: 10.2136/sssaj2005.0120     URL    
[40] Lu Longfei, Cai Jingong, Liu Wenhui, et al.Occurrence and thermostability of absorbed organic matter on clay minerals in mudstones and muddy sediments[J]. Oil & Gas Geology, 2013, 34(1):16-26.
[卢龙飞,蔡进功,刘文汇,等. 泥岩与沉积物中黏土矿物吸附有机质的三种赋存状态及其热稳定性[J]. 石油与天然气地质,2013,34(1):16-26.]
doi: 10.11743/ogg20130103     URL    
[41] Tissot B, Welte D.Petroleum Formation and Occurrence[M]. Berlin: Springer, 1984.
[42] Behar F, Beaumont V, Penteado H D B. Rock-Eval 6 technology: Performances and developments[J]. Oil & Gas Science and Technology, 2001, 56(2): 111-134.
[43] Kinley T J, Cook L W, Breyer J A, et al.Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico[J]. AAPG Bulletin, 2008, 92(8): 967-991.
doi: 10.1306/03240807121     URL    
[44] Xue Haitao, Tian Shansi, Lu Shuangfang, et al.Selection and verigication of key parameters in quantitative evaluation of shale oil: A case study at the Qingshankou formation, Northern Songliao basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1):70-78.
[薛海涛,田善思,卢双舫,等. 页岩油资源定量评价中关键参数的选取与校正[J]. 矿物岩石地球化学通报,2015,34(1):70-78.]
doi: 10.3969/j.issn.1007-2802.2015.01.008    
[45] Chen Zhonghong, Zha Ming, Jin Qiang.An investigation on generation and expulsion of hydrocarbon from source rocks of the Shahejie formation in the well Niu-38, Dongying depression[J]. Chinese Journal of Geology, 2004, 39(3):356-366.
[陈中红,查明,金强. 东营凹陷牛38井沙河街组烃源岩生排烃评价[J]. 地质科学,2004,39(3):356-366.]
doi: 10.3321/j.issn:0563-5020.2004.03.006     URL    
[46] Zhou Jie, Pang Xiongqi.A method for calculating the quantity of hydrocarbon generation and expulsion[J]. Petroleum Exploration and Development, 2002, 29(1):24-27.
[周杰,庞雄奇. 一种生、排烃量计算方法探讨与应用[J]. 石油勘探与开发,2002,29(1):24-27.]
doi: 10.3321/j.issn:1000-0747.2002.01.006     URL    
[47] Zhou Jie, Pang Xiongqi, Li Na.Characteristics of hydrocarbon expulsion for the lower Tertiary resource rocks in the Jiyang depression, the Bohaiwan Basin[J]. Petroleum Geology & Experiment, 2006, 28(1):59-64.
[周杰,庞雄奇,李娜. 渤海湾盆地济阳坳陷烃源岩排烃特征研究[J]. 石油实验地质,2006,28(1):59-64.]
doi: 10.3969/j.issn.1001-6112.2006.01.012     URL    
[48] Bordenave M.The sedimentation of organic matter[M]∥Bordenave M L, ed. Applied Petroleum Geochemistry. Paris:Editions Technip, 1993:15-76.
[49] Liu Bo, He Jia, Lü Yanfang, et al.Parameters and method for shale oil assessment: Taking Qingshankou formation shale oil of northern Songliao Basin[J]. Journal of Central Sourth University(Science and Technology), 2014, 45(11):3 846-3 852.
[柳波,何佳,吕延防,等. 页岩油资源评价指标与方法——以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报:自然科学版,2014,45(11):3 846-3 852.]
URL    
[50] Ding Fei, Cai Jingong, Song Mingshui, et al.The relationships between organic matter and specific surface in the clay fraction with diameter <2 μm of shale resource rocks[J]. Science in China (Series D), 2013, 43(4):634-641.
[丁飞,蔡进功,宋明水,等. 泥质烃源岩中<2 μm黏粒级组分的有机质与比表面关系[J]. 中国科学:D辑,2013,43(4):634-641.]
[51] Sanei H, Wood J M, Ardakani O H, ,et al.. Characterization of organic matter fractions in an unconventional tight gas siltstone reservoir[J]. International Journal of Coal Geology, 2015, 150/151: 296-305. DOI: 10.1016/j.coal.2015.04.004.
doi: 10.1016/j.coal.2015.04.004     URL    
[52] Kaczmarczyk W, Sowi K, Słoczyński T. Methodological aspects of hydrocarbon shale resources assessment using different variants of volumetric methods[J]. Nafta-Gaz, 2015, 71(6): 400-407.
URL    
[53] Jarvie D M, Baker D.Application of the rock-eval III oil show analyzer to the study of gaseous hydrocarbons in an Oklahoma gas well[C]//187th ACS National Meeting, St. Louis Missouri, 1984.
[54] Li Juyuan.Oil and gas contents and movable oil amounts of shales in 4th member of Shahejie formation, Lijin subsag, Dongying sag[J]. Petroleum Geology & Experiment, 2014, 36(3):365-369.
[李钜源. 东营利津洼陷沙四段页岩含油气量测定及可动油率分析与研究[J]. 石油实验地质,2014,36(3):365-369.]
doi: 10.11781/sysydz201403365     URL    
[55] Zhang Xinwen, Li Jijun, Zhu Jingxiu, et al.Resource evaluation and favorable area prediction on rich section of shale oil in Biyang depression[J]. Fault-Block Oil & Gas Field, 2014, 21(3):301-304.
[章新文,李吉君,朱景修,等. 泌阳凹陷页岩油富集段资源评价及有利区预测[J]. 断块油气田,2014,21(3):301-304.]
[56] Zhu Rifang, Zhang Linye, Li Juyuan, et al.Quantitative evaluation of residual liquid hydrocarbons in shale[J]. Acta Petrolei Sinica, 2015, 36(1):13-18.
[朱日房,张林晔,李钜源,等. 页岩滞留液态烃的定量评价[J]. 石油学报,2015,36(1):13-18.]
doi: 10.7623/syxb201501002     URL    
[57] Wang Wenguang, Zheng Min, Wang Min, et al.The discussion of the evaluation method of shale oil movable resources amount and Palaeogene Shahejie formation application effect in the northern of Dongpu depression[J]. Nature Gas Geoscience, 2015, 26(4):771-781.
[王文广,郑民,王民,等. 页岩油可动资源量评价方法探讨及在东濮凹陷北部古近系沙河街组应用[J]. 天然气地球科学,2015,26(4):771-781.]
doi: 10.11764/j.issn.1672-1926.2015.04.0771    
[58] Cooles G, Mackenzie A, Quigley T.Calculation of petroleum masses generated and expelled from source rocks[J]. Organic Geochemistry, 1986, 10(1): 235-245.
doi: 10.1016/0146-6380(86)90026-4     URL    
[59] Jiang C, Mort A, Sanei H, et al.S1 peak of Rock-Eval analysis: What does it represent for unconventional hydrocarbon resource assessment?[C]//CSPG/CSEG/CWLS GeoConvention, 2015.
[60] Jiang C, Chen Z, Mort A, et al.Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: Its geochemical and geological implications[J]. Marine & Petroleum Geology, 2016, 70: 294-303.
doi: 10.1016/j.marpetgeo.2015.11.021     URL    
[61] Loucks R G, Reed R M, Ruppel S C, et al.Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
doi: 10.2110/jsr.2009.092     URL    
[62] Zhang Linye, Bao Youshu, Li Juyuan, et al.Movability of lacustrine shale oil: A case study of Dongying sag, Jiyang depressiong, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2014, 41(6):641-349.
[张林晔,包友书,李钜源,等. 湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J]. 石油勘探与开发,2014,41(6):641-649.]
[63] Wang Juan.Low-tempreture closed extraction technology of light hydrocarbons and its application in evaluation of shale oil resource[J]. China Petroleum Exploration, 2015, 20(3):58-63.
[王娟. 轻质烃组分的低温密闭抽提技术及其在页岩油资源评价中的应用[J]. 中国石油勘探,2015,20(3):58-63.]
[64] Yang Kan, Lu Xiancai, Liu Xiandong, et al.Characterization technique II of mineral material based on probe gas adsorption isotherm: Nano-pore struture of porous material[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(4):362-368.
[杨侃,陆现彩,刘显东,等. 基于探针气体吸附等温线的矿物材料表征技术II.多孔材料的孔隙结构[J]. 矿物岩石地球化学通报,2006,25(4):362-368.]
doi: 10.3969/j.issn.1007-2802.2006.04.015     URL    
[65] Clarkson C R, Solano N, Bustin R M, et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103(1): 606-616.
doi: 10.1016/j.fuel.2012.06.119     URL    
[66] Kuila U, Prasad M.Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61(2): 341-362.
doi: 10.1111/1365-2478.12028     URL    
[67] Kuila U, Mccarty D K, Derkowski A, et al.Total porosity measurement in gas shales by the Water Immersion Porosimetry (WIP) method[J]. Fuel, 2014, 117(1): 1 115-1 129.
doi: 10.1016/j.fuel.2013.09.073     URL    
[68] Wu Songtao, Zhu Rukai, Cui Jinggang, et al.Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 185-195.
doi: 10.1016/S1876-3804(15)30005-7     URL    
[69] Jarvie D M, Hill R J, Ruble T E, et al.Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[70] Curtis M E, Cardott B J, Sondergeld C H, et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103(23): 26-31.
doi: 10.1016/j.coal.2012.08.004     URL    
[71] Chalmers G R, Bustin R M, Power I M.Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG bulletin, 2012, 96(6): 1 099-1 119.
doi: 10.1306/10171111052     URL    
[72] Chen Ji, Xiao Xianming.Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129(4): 173-181.
doi: 10.1016/j.fuel.2014.03.058     URL    
[73] Guo Qiulin, Chen Xiaoming, Song Huanqi, et al.Evolution and models of shale porosity during burial progress[J]. Natural Gas Geoscience, 2013, 24(3):439-449.
[郭秋麟,陈晓明,宋焕琪,等. 泥页岩埋藏过程孔隙度演化与预测模型探讨[J]. 天然气地球科学,2013,24(3):439-449.]
URL    
[74] Ambrose R J, Hartman R C, Diaz Campos M, et al.New pore-scale considerations for shale gas in place calculations[C]//SPE Unconventional Gas Conference, Society of Petroleum Engineers, 2010.
[75] Wang Sen, Javadpour F, Feng Qihong.Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171: 74-86.
doi: 10.1016/j.fuel.2015.12.071     URL    
[76] Seiichi Kondo, Tatsuo Ishikawa, Abe Ikuo.Adsorption Science[M]. Beijng: Chemical Industry Press, 2006.
[近藤精一,石川达雄,安部郁夫. 吸附科学[M]. 北京:化学工业出版社,2006.]
[77] Cheng Hefa, Hu Erdan, Wei Changfu.Sorption of organic contaminants in mineral micropores: Mechanism and major controlling factors[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):250-256.
[程和发,胡二丹,韦昌富. 矿物微孔对有机污染物吸附的机理和影响因素[J]. 矿物岩石地球化学通报,2015,34(2):250-256.]
doi: 10.3969/j.issn.1007-2802.2015.02.004    
[78] Zhao Xingyuan, Zhang Youyu.Clay Minerals and Clay Mineral Analysis[M].Beijing: Ocean Press, 1990: 43-46.
[赵杏媛,张有瑜. 黏土矿物与黏土矿物分析[M].北京:海洋出版社, 1990:43-46.]
[79] Li Yingli, Cai Jingong.Effect of smetite illitization on shale gas occurrence in argillaceous source rocks[J]. Petroleum Geology & Experiment, 2014, 36(3):352-358.
[李颖莉,蔡进功. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响[J]. 石油实验地质,2014,36(3):352-358.]
doi: 10.11781/sysydz201403352     URL    
[80] Liu Dong, Yuan Peng, Liu Hongmei, et al.High-pressure adsorption of methane on montmorillonite, kaolinite and illite[J]. Applied Clay Science, 2013, 85(1): 25-30.
doi: 10.1016/j.clay.2013.09.009     URL    
[81] Ji Liming, Zhang Tongwei, Milliken K L, et al.Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry, 2012, 27(12): 2 533-2 545.
doi: 10.1016/j.apgeochem.2012.08.027     URL    
[82] Zhang Han, Zhu Yanming, Xia Xiaohong, et al.Comparison and explanation of the absorptivity of organic matters and clay minerals in shales[J]. Journal of China Coal Society, 2013, 38(5):812-816.
[张寒,朱炎铭,夏筱红,等. 页岩中有机质与黏土矿物对甲烷吸附能力的探讨[J]. 煤炭学报,2013,38(5):812-816.]
[83] Kennedy M J, Pevear D R, Hill R J.Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295(5 555): 657-660.
doi: 10.1126/science.1066611     URL     pmid: 11809966
[84] Langford F F.Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. Total Organic Carbon[J]. AAPG Bulletin, 1990, 74(6): 799-804.
doi: 10.1029/JB095iB06p09343     URL    
[85] Dahl B, Bojesen-Koefoed J, Holm A, et al.A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment[J]. Organic Geochemistry, 2004, 35(11): 1 461-1 477.
doi: 10.1016/j.orggeochem.2004.07.003     URL    
[86] Erik N Y, Özçelik O, Altunsoy M.Interpreting Rock-Eval pyrolysis data using graphs of S2 vs. TOC: Middle Triassic-Lower Jurassic units, eastern part of SE Turkey[J]. Journal of Petroleum Science & Engineering, 2006, 53(1): 34-46.
doi: 10.1016/j.petrol.2006.03.001     URL    
[87] Delvaux D, Martin H, Leplat P, et al.Comparative Rock-Eval pyrolysis as an improved tool for sedimentary organic matter analysis[J]. Organic Geochemistry, 1990, 16(4/6): 1 221-1 229.
doi: 10.1016/0146-6380(90)90157-U     URL    
[88] Guo Min, Cai Jingong, Jiang Qigui, et al.Comparison and its significance of pyrolysis-gas chromatography characteristics in source rock and clay fraction with diameter <2 μm[J]. Natural Gas Geoscience, 2016, 27(4):688-698.
[郭敏,蔡进功,蒋启贵,等. 烃源岩与<2 μm黏粒级组分的热解—色谱特征对比及其意义[J]. 天然气地球科学,2016,27(4):688-698.]
doi: 10.11764/j.issn.1672-1926.2016.04.0688     URL    
[89] Hao Fang, Zou Huayao, Lu Yongchao.Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1 325-1 346.
doi: 10.1306/02141312091     URL    
[90] Tan Jingqiang, Weniger P, Krooss B, et al.Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part II: Methane sorption capacity[J]. Fuel, 2014, 129(4): 204-218.
doi: 10.1016/j.fuel.2014.03.064     URL    
[91] Gasparik M, Bertier P, Gensterblum Y, et al.Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123(2): 34-51.
doi: 10.1016/j.coal.2013.06.010     URL    
[92] Zhang Lihu, Lu Xiancai, Liu Xiandong, et al.Surface wettability of basal surfaces of clay minerals: Insights from molecular dynamics simulation[J]. Energy & Fuels, 2016,30:149-160.
doi: 10.1021/acs.energyfuels.5b02142     URL    
[93] Zhu Xiaojun, Cai Jingong, Wang Xuejun, et al.Effects of organic components on the relationships between specific surface areas and organic matter in mudrocks[J]. International Journal of Coal Geology, 2014, 133(5): 24-34.
doi: 10.1016/j.coal.2014.08.009     URL    
[94] Heller R, Zoback M.Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J]. Journal of Unconventional Oil & Gas Resources, 2014, 8: 14-24.
doi: 10.1016/j.juogr.2014.06.001     URL    
[95] Pan Lei, Xiao Xianming, Zhou Qin.Influence of soluble organic matter on characterization of shale reservoir[J]. Natural Gas Geoscience, 2015, 26(9):1 729-1 736.
[潘磊,肖贤明,周秦. 可溶有机质对表征页岩储层特性的影响[J]. 天然气地球科学,2015,26(9):1 729-1 736.]
doi: 10.11764/j.issn.1672-1926.2015.09.1729     URL    
[96] Robinson G W.Note on the mechanical analysis of humus soils[J]. The Journal of Agricultural Science, 1922, 12(3): 287-291.
doi: 10.1017/S0021859600005347     URL    
[97] Robinson G W.The determination of organic matter in soils by means of hydrogen peroxide[J]. Journal of Agricultural Engineering Research, 1927, 34(4): 339-356.
URL    
[98] Anderson J.An improved pretreatment for mineralogical analysis of samples containing organic matter[J]. Clays and Clay Minerals, 1963, 10(3): 380-388.
doi: 10.1346/CCMN.1961.0100134     URL    
[99] Meier L P, Menegatti A P.A new, efficient, one-step method for the removal of organic matter from clay-containing sediments[J]. Clay Minerals, 1997, 32(4): 557-563.
doi: 10.1180/claymin.1997.032.4.06     URL    
[100] Mayer L M, Xing Baoshan.Organic matter-surface area relationships in acid soils[J]. Soil Science Society of America Journal, 2001, 65(1): 250-258.
doi: 10.2136/sssaj2001.651250x     URL    
[101] Liang Chenju, Guo Yiyu, Chien Yichen, et al.Oxidative degradation of MTBE by pyrite-activated persulfate: Proposed reaction pathways[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8 858-8 864.
doi: 10.1021/ie100740d     URL    
[102] Teel A L, Ahmad M, Watts R J.Persulfate activation by naturally occurring trace minerals[J]. Journal of Hazardous Materials, 2011, 196(1): 153.
doi: 10.1016/j.jhazmat.2011.09.011     URL     pmid: 21968122
[103] Mikutta R, Kleber M, Torn M S, et al.Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1): 25-56.
doi: 10.1007/s10533-005-0712-6     URL    
[104] Zimmermann M, Leifeld J, Abiven S, et al.Sodium hypochlorite separates an older soil organic matter fraction than acid hydrolysis[J]. Geoderma, 2007, 139(1): 171-179.
doi: 10.1016/j.geoderma.2007.01.014     URL    
[105] Mayer L M, Schick L L, Hardy K R, et al.Organic matter in small mesopores in sediments and soils[J]. Geochimica et Cosmochimica Acta, 2004, 68(19): 3 863-3 872.
doi: 10.1016/j.gca.2004.03.019     URL    
[106] Wagai R, Mayer L M, Kitayama K.Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption approach[J]. Geoderma, 2009, 149(1/2): 152-160.
doi: 10.1016/j.geoderma.2008.11.032     URL    
[107] Zargari S, Canter K L, Prasad M.Porosity evolution in oil-prone source rocks[J]. Fuel, 2015, 153(1): 110-117.
doi: 10.1016/j.fuel.2015.02.072     URL    
[108] Macht F, Eusterhues K, Pronk G J, et al.Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and-liquid (EGME) adsorption methods[J]. Applied Clay Science, 2011, 53(1): 20-26.
doi: 10.1016/j.clay.2011.04.006     URL    
[109] Curtis M E, Sondergeld C H, Ambrose R J, et al.Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677.
doi: 10.1306/08151110188     URL    
[110] Yao Yanbin, Liu Dameng.Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95(1): 152-158.
doi: 10.1016/j.fuel.2011.12.039     URL    
[111] Klaver J, Desbois G, Urai J L, et al.BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany[J]. International Journal of Coal Geology, 2012, 103(23): 12-25.
doi: 10.1016/j.coal.2012.06.012     URL     pmid: 7205543
[112] Schmitt M, Fernandes C P, da Cunha Neto J A, et al. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques[J]. Marine and Petroleum Geology, 2013, 39(1): 138-149.
doi: 10.1016/j.marpetgeo.2012.09.001     URL    
[113] Tiwari P, Deo M, Lin C, et al.Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547-554.
doi: 10.1016/j.fuel.2013.01.006     URL    
[114] Sun Yinsen, Guo Shaobin.Qualitative and quantitative characterization of shale microscopic pore characteristics based on image analysis technology[J]. Advances in Earth Science, 2016, 31(7): 751-763.
[孙寅森,郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展,2016,31(7):751-763.]
doi: 10.11867/j.issn.1001-8166.2016.07.0751     URL    
[115] Barrett E P, Joyner L G, Halenda P P.The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380.
doi: 10.1021/ja01145a126     URL    
[116] Dollimore D, Heal G R.An improved method for the calculation of pore size distribution from adsorption data[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 1964, 14(3): 109-114.
doi: 10.1002/jctb.5010140302     URL    
[117] Horvth G, Kawazoe K.Method for the calculation of effective pore size distribution in molecular sieve carbon[J]. Journal of Chemical Engineering of Japan, 1983, 16(6): 470-475.
doi: 10.1252/jcej.16.470     URL    
[118] Saito A, Foley H C.Curvature and parametric sensitivity in models for adsorption in micropores[J]. Aiche Journal, 2010, 37(3): 429-436.
doi: 10.1002/aic.690370312     URL    
[119] Clarkson C R, Bustin R M.Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential[J]. Fuel, 1996, 75(13): 1 483-1 498.
doi: 10.1016/0016-2361(96)00142-1     URL    
[120] Groen J C, Peffer L A A, Pérez-Ramí Rez J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous & Mesoporous Materials, 2003, 60(1): 1-17.
doi: 10.1016/S1387-1811(03)00339-1     URL    
[121] Xie Xiaoyong, Tang Hongming, Wang Chunhua, et al.Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale’s pore distribution[J]. Natural Gas Industry, 2006, 26(12):100-102.
[谢晓永,唐洪明,王春华,等. 氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业,2006,26(12):100-102.]
doi: 10.3321/j.issn:1000-0976.2006.12.026     URL    
[122] Tian Hua, Zhang Shuichang, Liu Shaobo, et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012, 33(3):419-427.
[田华,张水昌,柳少波,等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报,2012,33(3):419-427.]
doi: 10.7623/syxb201203011     URL    
[123] Zou Mingjun, Wei Chongtao, Zhang Miao, et al.Classifying coal pores and estimating reservoir parameters by nuclear magnetic resonance and mercury intrusion porosimetry[J]. Energy & Fuels, 2013, 27(7): 3 699-3 708.
doi: 10.1021/ef400421u     URL    
[124] David Suits L, Sheahan T C, Cerato A B, et al.Determination of surface area of fine-grained soils by the Ethylene Glycol Monoethyl Ether (EGME) method[J]. Geotechnical Testing Journal, 2002, 25(3): 1-7.
doi: 10.1520/GTJ11087J     URL    
[125] Šrodoń J, Macarty D K.Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements[J]. Clays & Clay Minerals, 2008, 56(2): 155-174.
[126] Yukselen Y, Kaya A.Method dependency of relationships between specific surface area and soil physicochemical properties[J]. Applied Clay Science, 2010, 50(2): 182-190.
doi: 10.1016/j.clay.2010.07.020     URL    
[127] Brunauer S, Emmett P H, Teller E.Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
doi: 10.1021/ja01269a023     URL    
[128] Chiou C T, Rutherford D W, Manes M.Sorption of nitrogen and Ethylene Glycol Monoethyl Ether (EGME) vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data[J]. Environmental Science & Technology, 1993, 27(8): 1 587-1 594.
doi: 10.1021/es00045a014     URL    
[129] Yukselen Y, Kaya A.Comparison of methods for determining specific surface area of soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(7): 931-936.
[130] Zhu Xiaojun, Cai Jingong, Xu Xingyou, et al.Discussion on the method for determining BET specific surface area in argillaceous source rocks[J]. Marine & Petroleum Geology, 2013, 48: 124-129. DOI: 10.1016/j.marpetgeo.2013.08.003.
doi: 10.1016/j.marpetgeo.2013.08.003     URL    
[131] Wang Yongshi, Li Zheng, Gong Jianqiang, et al.Discussion on an evaluation method of shale oil and gas in Jiyang depression: A case study on Luojia area in Zhanhua sag[J]. Acta Petrolei Sinica, 2013, 34(1):83-91.
[王永诗,李政,巩建强,等. 济阳坳陷页岩油气评价方法——以沾化凹陷罗家地区为例[J]. 石油学报,2013,34(1):83-91.]
[132] Li Zheng, Zou Yanrong, Xu Xingyou, et al.Adsorption of mudstone source rock for shale oil—Experiments, model and a case study[J]. Organic Geochemistry, 2016, 92: 55-62. DOI: 10.1016/j.orggeochem.2015.12.009.
doi: 10.1016/j.orggeochem.2015.12.009     URL    
[133] Li Jijun, Shi Yinglin, Huang Zhenkai, et al.Pore characteristics of continental shale and its impact on storage of shale oil in northern Songliao Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(4):27-34.
[李吉君,史颖琳,黄振凯,等. 松辽盆地北部陆相泥页岩孔隙特征及其对页岩油赋存的影响[J]. 中国石油大学学报:自然科学版,2015,39(4):27-34.]
doi: 10.3969/j.issn.1673-5005.2015.04.004     URL    
[1] 张盼盼, 刘小平, 王雅杰, 孙雪娇. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249.
阅读次数
全文


摘要