地球科学进展 ›› 2014, Vol. 29 ›› Issue (11): 1242 -1249. doi: 10.11867/j.issn.1001-8166.2014.11.1242

上一篇    下一篇

页岩纳米孔隙研究新进展
张盼盼 1, 2( ), 刘小平 1, 2, *( ), 王雅杰 3, 孙雪娇 4   
  1. 1.中国石油大学(北京)地球科学学院, 北京102249
    2.中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249
    3.中石油大港油田分公司勘探开发研究院, 天津 300280
    4. 中石油大港油田分公司第五采油厂, 天津 300280
  • 出版日期:2014-11-27
  • 通讯作者: 刘小平 E-mail:zpp90315@163.com;liuxiaoping@cup.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“湖相未熟—低熟页岩油形成与聚集机理”(编号:41372144)资助

Research Progress in Shale Nanopores

Panpan Zhang 1, 2( ), Xiaoping Liu 1, 2( ), Yajie Wang 3, Xuejiao Sun 4   

  1. 1. College of Geosciences, China University of Petroleum, Beijing 102249, China
    2. State Key Laboratory of etroleum Resources and Prospecting, China University of Petroleum, Beijng 102249, China
    3. Research Institute of Petroleum Exploration and Development, Dagang Oilfield Company, CNPC, Tianjin 300280, China
    4. The Fifth Oil Production Plant, Dagang Oilfield Company, CNPC, Tianjin 300280, China
  • Online:2014-11-27 Published:2014-11-20

随着页岩油气勘探的兴起及近年来北美地区页岩油气开发取得的巨大成功, 含气页岩储层的孔隙研究受到越来越多的重视。页岩储层不同于常规储层, 其以纳米孔隙为主, 无法用常规储层孔隙研究方法进行表征和评价。对目前国内外含气页岩孔隙分类及孔隙表征方法进行了综述, 从定性及定量的角度对表征方法进行归类和总结, 指出了各类方法的优缺点及应用范围。定性表征方法主要是利用聚焦离子束扫描电子显微镜、高分辨率的场发射扫描电子显微镜、透射电子显微镜、宽离子束扫描电子显微镜、原子力显微镜等电子显微成像分析技术及Nano-CT技术等直观描述页岩孔隙的几何形态、连通性和充填情况等;定量表征方法是利用气体吸附法、压汞实验、小角散射及核磁共振等技术定量分析页岩孔径大小及分布、比表面积等。进一步探讨了含气页岩纳米孔隙发育演化的控制因素以及纳米孔隙对页岩气聚集的影响。展望未来, 在页岩纳米孔隙结构表征技术方面, 应不断提高实验精度和效率, 定性与定量表征相结合, 改进三维成像技术;在页岩纳米孔隙储层评价研究方面, 纳米孔隙发育演化的控制因素、纳米孔隙储层的储气及产气能力、陆相非均质页岩纳米孔隙的表征与评价是关注的重点领域。

With the rise of shale oil and gas exploration and great success of North American shale oil and gas development in recent years, the study of gas shale reservoir pores gets more and more attention. The pore diameters of shale reservoirs are mainly in nano-scale which are different from conventional reservoirs, and they can not be evaluated by conventional methods. On the basis of the research on the classification of shale pore types and nanopore characterization techniques, qualitative and quantitative nanopore characterization methods were classified and summarized. In addition, the advantages and disadvantages of various methods as well as application scopes were summarized. Qualitative characterization methods can obtain the morphologic information, connectivity and filling conditions of shale pores directly by focused ion beam milling scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, broad ion beam scanning electron microscope, atomic force microscope and Nano-CT. Quantitative characterization methods can measure pore diameters, pore distribution and specific surface area by nitrogen adsorption experiments, carbon dioxide adsorption experiments, mercury injection experiments, small-angle neutron scattering, and nuclear magnetic resonance. The factors that control nanopore developments and the effects of nanopore on shale gas accumulation were discussed. The nanopore developments are related to total organic carbon content, clay minerals content, carbonate content and thermal maturity. Nanopores have influences on shale gas storage capacity, occurrences of shale gas and seepage mechanisms. Frontier research and development directions were proposed. In the aspect of nanopore characterization techniques of shales, the accuracy and efficiency of the experiments and threedimensional imaging technology should be improved constantly. Qualitative and quantitative characterization techniques should be combined. As to the evaluation of shale nanopore reservoirs, the factors that control nanopore developments, shale gas storing and producing and nanopores characterization and evaluation of continental heterogeneous shale are the key issues for further research.

中图分类号: 

图1 表征纳米孔隙研究方法的应用范围 [ 32 ]
Fig.2 Utility of various methodologies in common use for investing porous materials [ 32 ]
图2 利用FE-SEM观察Woodford页岩样品 [ 3 ]
Fig.2 Field emission scanning electron microscope(FE-SEM) images of the Woodford sample [ 3 ]
图3 利用FIB-SEM背散射电子图像重构Horn River页岩样品三维图 [ 25 ] (a)三维立体图;(b)干酪根;(c)孔隙;(d)黄铁矿
Fig.3 Reconstruction of the Horn River sample from 500 sequential backscattered electron images showing [ 25 ] (a)A three-dimensional solid; (b) Kerogen; (c)Pores; (d) Pyrite
[51] Zhang Xuefen, Lu Xiancai, Zhang Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010, 25(6) : 597-604.
[张雪芬, 陆现彩, 张林晔, 等.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展, 2010, 25(6): 597-604.]
[52] Etminan S R, Javadpour F, Maini B B, et al. Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen[J]. International Journal of Coal Geology, 2014, 123: 10-19.
[53] Ross D J K, Bustin R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Original Research Article Fuel, 2007, 86(17/18): 2696-2706.
[54] Chalmers G R L, Bustin R M. Lower Cretaceous gas shales in northeastern British Columbia, evaluation of regional potential gas resource[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 22-61.
[55] Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada[J].International Journal of Coal Geology, 2007, 70: 223-239.
[56] Yang Feng, Ning Zhengfu, Kong Detao, et al. Pore structures of shales from high pressure mercury injection and nitrogen adsorption methond[J]. Natural Gas Geoscience, 2013, 24(3): 450-455.
[杨峰, 宁正福, 孔德涛, 等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学, 2013, 24(3): 450-455.]
[57] Chen Qiang, Kang Yili, You Lijun, et al. Micro-pore structure of gas shale and its effect on gas mass transfer[J]. Natural Gas Geoscience, 2013, 24(6): 1298-1304.
[陈强, 康毅力, 游利军, 等.页岩微孔结构及其对气体传质方式影响[J].天然气地球科学, 2013, 24(6): 1298-1304.]
[1] Cui Jingwei, Zou Caineng, Zhu Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Science, 2012, 27(12): 1319-1325.
[崔景伟, 邹才能, 朱如凯, 等.页岩孔隙研究新进展[J].地球科学进展, 2012, 27(12): 1319-1325.]
[2] Ambrose R J, Hartman R C, Diaz-Campos M, et al. New pore-scale considerations for shale gas in place calculations[C]\\ SPE Unconventional Gas Conference. Pittsburgh, Pennsylvania, USA, 2010.
[3] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
[4] Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
[邹才能, 朱如凯, 白斌, 等.中国油气储层中纳米孔首次发现机及其科学价值[J].岩石学报, 2011, 27(6): 1857-1864.]
[5] Huang Zhilong, Guo Xiaobo, Liu Bo, et al. The reservoir space characteristics and origins of Lucaogou Formation source rock oil in the Malang Sag[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1115-1122.
[黄志龙, 郭小波, 柳波, 等.马朗凹陷芦草沟组源岩油储集空间特征及其成因[J].沉积学报, 2012, 30(6): 1115-1122.]
[6] Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional Petroleum Geology[M]. Beijing: Geology Publishing House, 2011.
[邹才能, 陶士振, 侯连华, 等.非常规油气地质[M].北京: 地质出版社, 2011.]
[7] American Society for TestingMaterials. ASTM D1412-07 Standard Test Method for Equilibrium Moisture of Coal at 96 to 97 Percent Relative Humidity and 30 ℃[S]. West Conshohocken: ASTM International, 2004: 261-263.
[8] Ambrose R J, Hartman R C, Diaz-Campos M. et al. Shale gas-in-place calculations PartⅠ: New pore scale consideration[J]. SPE Journal, 2012, 17(1): 219-229.
[9] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. London: Academic Press, 1982.
[10] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure and Applied Chemistry, 1985, 57(4): 603-619.
[11] Loucks R G, Reed R M, Ruppel S C. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[12] Desbois G, Urai J L, Kukla P A. Morphology of the pore space in claystones—Evidence from BIB/FIB ion beam sectioning and cryo-SEM observations[J].Earth, 2009, 4: 15-22.
[13] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(11/12): 848-861.
[14] Slatt E M, O’Neal N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
[15] Curtis M E, Ambrose R J, Sondergeld C H, et al. Structural characterization of gas shales on the micro- and nano-scales[C]\\ SPE Canadian Unconventional Resources and International Petroleum Conference. Calgary, Alberta, Canada, 2010.
[16] Sondergeld C H, Ambrose R J, Rai C S, et al. Microstructural studies of gas shales[C]\\ SPE Unconventional Gas Conference. Pittsburgh, Pennsylvania, USA, 2010.
[17] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks(shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.
[18] Javadpour F, Moravvej Farshi M, Amrein M. Atomic-force microscopy: A new tool for gas-shale characterization[J]. Journal of Canadian Petroleum Technology, 2012, 51(4): 236-243.
[19] Curtis M E, Ambrose R J, Sondergeld C H, et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale[C]\\ SPE Unconventional Gas Conference. Woodlands, Texas, USA, 2011.
[20] Milner M, Mclin R, Petrirllo J, et al. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ion-milled backscatter SEM methods[C]\\ SPE Unconventional Resources & International Petroleum Conference. Calgary, Alberta, Canada, 2010.
[21] Sondergeld C H, Ambrose R J, Rai C S, et al. Micro-structural studies of gas shales[C]\\ SPE Unconventional Gas Conference. Pittsburgh, Pennsyvania, USA, 2010.
[22] Farshi M M, Javadpour F. Uncovering nanoscale issues in shale gas systems[J].Geological Society of America, 2011, 43(3): 48.
[23] Bustin A M M, Bustin R M, Cui X. Importance of fabric on the production of gas shales[C]\\ SPE Unconventional Reservoirs Conference. Keystone, Colorado, USA, 2008.
[24] Golab A N, Knackstedt M A, Averdunk H, et al. 3D porosity and mineralogy characterization in tight gas sandstones[J]. Special Section: Tight Gas Sands, 2010, 29(12): 1476-1483.
[25] Curtis M E, Sondergeld C H, Ambrose R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677.
[26] Klaver J, Desbois G, Urai J L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany[J]. International Journal of Coal Geology, 2012, 103: 12-25.
[27] Ruppert L F, Sakurovs R, Blach T P, et al. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water[J]. Energy Fuels, 2013, 27: 772-779.
[28] Clarkson C R, Freeman M, He L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis[J]. Fuel, 2012, 95: 371-385.
[29] Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J].Fuel, 2013, 103: 606-616.
[30] Melnichenko Y B, He L, Sakurovs R, et al. Accessibility of pores in coal to methane and carbon dioxide[J].Fuel, 2012, 91: 200-208.
[31] Sigal R F, Odusina E. Laboratory NMR measurements on methane saturated Barnett Shale samples[J]. Petrophysics, 2011, 52: 32-49.
[32] Bustin R M, Bustin A M M, Cui X, et al. Impact of shale properties on pore structure and storage characterisitics[C]\\ SPE Society of Petroleum Engineers. Fort Worth, Texas, USA, 2008.
[33] Bai Bin, Zhu Rukai, Wu Songtao, et al. New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2014, 19(3): 78-86.
[白斌, 朱如凯, 吴松涛, 等.非常规油气致密储层微观孔喉结构表征新技术及意义[J].中国石油勘探, 2014, 19(3): 78-86.]
[34] Kleiberg R L, Kenyon W E, Mitra P P. Mechanism of NMR relaxation of fluids in rock[J]. Journal of Magnetic Resonance(Series A), 1994, 108(2): 206-214.
[35] Kuila U, Prasad M. Surface area and pore-size distribution in clays and shales[J].Geophysical Prospecting, 2013, 61(2): 341-362.
[36] Modica C J, Lapierre S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming[J]. AAPG Bulletin, 2012, 96(1): 87-108.
[37] Chalmers G R, Bustin R M. Light volatile liquid and gas shale reservoir potential of the Cretaceous Shaftesbury Formation in northeastern British Columbia, Canada[J]. AAPG Bulletin, 2012, 96(7): 1333-1367.
[38] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
[39] Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71: 7-16.
[40] Rose D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[41] Han Shuangbiao, Zhang Jinchuan, Yang Chao, et al. The characteristics of nanoscale pore and its gas storage capability in the Lower Cambrian shale of southeast Chongqing[J]. Journal of China Coal Society, 2013, 38(6): 1038-1043.
[韩双彪, 张金川, 杨超, 等.渝东南下寒武页岩纳米孔隙特征及其储气性能[J].煤炭学报, 2013, 38(6): 1038-1043.]
[42] Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.
[43] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-799.
[44] Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
[45] Guo Qiulin, Chen Xiaoming, Song Huanqi, et al. Evolution and models of shale porosity during burial process[J]. Natural Gas Geoscience, 2013, 24(3): 439-449.
[郭秋麟, 陈晓明, 宋焕琪, 等.泥页岩埋藏过程孔隙度演化与预测模型探讨[J].天然气地球科学, 2013, 24(3): 439-449.]
[46] Li Mingcheng. Oil and Gas Migration[M].Beijing: Petroleum Industry Press, 2004: 50-57.
[李明诚. 石油与天然气运移[M].北京: 石油工业出版社, 2004: 50-57.]
[47] Guo Qiulin, Li Jianzhong, Chen Ningsheng, et al. Modeling of the tight sandstone gas accumulation for the Xujiahe Formation, Hechuan-Tongnan area, Sichuan Basin[J]. Petroleum Exploration and Development, 2011, 38(4): 409-417.
[郭秋麟, 李建忠, 陈宁生, 等.四川合川—潼南地区须家河组致密砂岩气成藏模拟[J].石油勘探开发, 2011, 38(4): 409-417.]
[48] Guo Qiulin, Chen Ningsheng, Hu Junwen, et al. Geo-model of tight sandstone gas accumulation and quantitative simulation[J]. Natural Gas Geoscience, 2012, 23(2): 199-207.
[郭秋麟, 陈宁生, 胡俊文, 等.致密砂岩气聚集模型与定量模拟探讨[J].天然气地球科学, 2012, 23(2): 199-207.]
[58] Li Zhifeng, Li Zhiping, Miao Lili, et al. Gas flow characteristics in nanoscale pores of shale gas[J]. Natural Gas Geoscience, 2013, 24(5): 1042-1047.
[李智锋, 李治平, 苗丽丽, 等.页岩气藏纳米孔隙气体渗流特征分析[J].天然气地球科学, 2013, 24(5): 1042-1047.]
[59] Ju Yiwen, Bu Hongling, Wang Guochang. Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science, 2014, 29(4): 492-450.
[琚宜文, 卜红玲, 王国昌.页岩气储层主要特征及其对储层改造的影响[J].地球科学进展, 2014, 29(4): 492-450.]
[49] Zhu Rukai, Bai Bin, Cui Jingwei, et al. Research advances of microstructure in unconventional tight oil and gas reservoitrs[J]. Journal of Palaeogeography, 2013, 15(5): 615-623.
[朱如凯, 白斌, 崔景伟, 等.非常规油气致密储集层微观结构研究进展[J].古地理学报, 2013, 15(5): 615-623.]
[50] Zeng Jianhui, Yang Zhifeng, Feng Xiao, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651-661.
[曾溅辉, 杨智峰, 冯枭, 等.致密储层油气成藏机理研究现状及其关键科学问题[J].地球科学进展, 2014, 29(6): 651-661.]
[1] 邓腾, 丁正鹏, 许德如. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用[J]. 地球科学进展, 2021, 36(10): 1077-1091.
[2] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[3] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[4] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[5] 琚宜文, 戚宇, 房立志, 朱洪建, 王国昌, 王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[6] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[7] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.
[8] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[9] 崔景伟,邹才能,朱如凯,白斌,吴松涛,王拓. 页岩孔隙研究新进展[J]. 地球科学进展, 2012, 27(12): 1319-1325.
[10] 丁文龙,许长春,久凯,李超,曾维特,吴礼明. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
[11] 张雪芬,陆现彩,张林晔,刘庆. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604.
阅读次数
全文


摘要