地球科学进展 ›› 2012, Vol. 27 ›› Issue (12): 1319 -1325. doi: 10.11867/j.issn.1001-8166.2012.12.1319

综述与评述 上一篇    下一篇

页岩孔隙研究新进展
崔景伟 1,邹才能 1,2,朱如凯 1,2,白斌 1,2,吴松涛 1,2,王拓 1   
  1. 1.中国石油勘探开发研究院,北京100083;2.提高采收率国家重点实验室,北京100083
  • 收稿日期:2012-07-09 修回日期:2012-09-13 出版日期:2012-12-10
  • 通讯作者: 崔景伟(1980-),男,河北衡水人,博士后,主要从事非常规页岩油气地质综合研究 E-mail:jingwei.cui@126.com
  • 基金资助:

    中国博士后科学基金项目“鄂尔多斯盆地延长组长7泥页岩孔喉表征与石油聚集机制”(编号:2012M510481);国家油气重大专项“国家大型气田及煤层气开发项目”(编号:20082X05001)资助.

New Advances in Shale Porosity Research

Cui Jingwei 1, Zou Caineng 1,2,Zhu Rukai 1,2,Bai Bin 1,2, Wu Songtao 1,2, Wang Tuo 1   

  1. 1.Research Institute of Petroleum Exploration & Development, Beijing100083, China;2.State Key Laboratory of Enhanced Oil Recovery, Beijing100083, China
  • Received:2012-07-09 Revised:2012-09-13 Online:2012-12-10 Published:2012-12-10

随着非常规油气勘探的兴起页岩孔隙研究备受重视,如何研究页岩孔隙已经成为非常规油气首要解决的问题之一,其对页岩油气勘探层位选取、资源潜力评价和油气渗流能力计算具有重要意义。对页岩微—纳米孔隙表征技术、页岩孔隙类别的划分以及页岩孔隙演化规律分别进行了综述并指出存在问题,同时结合最新研究进展对页岩孔隙研究进行展望。提出工业CT—微米CT—纳米CT/FIB系列辐射扫描方法和压汞(MICP)—氮气吸附(N2)—二氧化碳吸附(CO2)流体法是孔隙定量表征的最优方法,通过单井孔隙度测井资料与实验室测定结果建立校正图版指导储层孔隙发育段优选;页岩孔隙分类研究还应该考虑含油气性,利用原子力显微镜等工具加强孔隙含油性研究;孔隙演化规律研究应该采用模拟实验和真实剖面样品对比并结合矿物组成分析等寻找主控因素。

With the rise of unconventional oil and gas exploration, the study of shale reservoirs gets attention gradually and how to carry out the  research of the shale reservoirs has become the primary problem in the study of unconventional oil and gas. Research on the shale reservoirs has great significance to the layer selection in exploration of shale oil and gas, to the evaluation of resource potential and to the calculation of seepage capacity of oil and gas. The micro-nano pore characterization techniques of shale, the division of pore types in shale and the mechanism of porosity evolution in shale are respectively overviewed and evaluated, and available problems are pointed out by combining with the newest research progress. We propose that the industrial CT-micro CT-nano CT/FIB series of radiation scanning and pressure mercury injection (MICP)-nitrogen gas adsorption (N2)carbon dioxide adsorption (CO2) fluid method are the optimal methods of the quantitative characterization of reservoirs and the regression of experiment and porosity log should guide the favorite site of higher porosity. The classification of shale reservoir space should take oil and gas containing into consideration and AFM was suggested to study the reservoir continent ability for hydrocarbon. We suggest using rock diagensis simulation experiment and real profile samples to understand the shale porosity evolution and to find the main controlling factors with the aid of XRD analysis.

中图分类号: 

[1]Curtis J B. Fracture shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1 921-1 938.

[2]Law B E, Curtis J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11): 1 851-1 852.

[3]Pollastro R M, Jarvie D M, Hill R J. Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch-Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4):405-436.

[4]Kinley T J, Cook L W, Breyer J A, et al. Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico[J]. AAPG Bulletin, 2008, 92(8):967-991.

[5]Martineau D F. History of the newark east field and the barnett shale as a gas reservoir[J]. AAPG Bulletin, 2007, 91(4):399-403.

[6]Chen Z H, Osadetz K G, Jiang C Q, et al.Spatial variation of Bakken or Lodgepole oils in the Canadian Williston Basin[J]. AAPG Bulletin, 2009, 93(6):829-851.

[7]Jarvie D M. Williston Basin petroleum systems: Inferences from oil geochemistry and geology[J]. The Mountain Geologist, 2001, 38:19-41.

[8]Treadgold G, Campbell B, Mclain B, et al. Eagle ford shale prospecting with 3-D seismic data within a tectonic and depositional system framework[C]∥AAPG Hedberg Conference. Austin, Texas, 2010.

[9]Schmoker J W. National assessment report of USA oil and gas resources [DB/CD]. Reston: USGS, 1995.

[10]Schmoker J W. U.S. Geological Survey assessment concepts for continuous petroleum accumulations[EB/OL]. http:∥certmapper.cr.usgs. gov/data/noga00/natl/text/CH_13.pdf, 2005.

[11]Ruppel S, Loucks R G. Black mudrocks: Lessons and questions from the mississippian barnett shale in the Southern Midcontinent[J].The Sedimentary Record, 2008,6(2):4-8.

[12]Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research, 2009, 79(12):848-861. 

[13]Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks(Shales and Siltstone)[J]. Journal of Canadian Petroleum Technology,2009, 48(8):16-21.

[14]Sondergeld C H, Ambrose R J, Rai C S, et al.Micro-structural studies of gas shales[C]∥SPE Unconventional Gas Conference. Pittsburgh, Pennsyvania USA,2010.

[15]Gale F J, Reed R M, Holder J. Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4):603-622.

[16]Farshi M M, Javadpour F. Uncovering nanoscale issues in shale gas systems[C]∥Geological Society of America. USA, 2011, 43(3):48.

[17]Bustin A M M, Bustin R M, Cui X. Importance of Fabric on the Production of Gas Shales[C]∥SPE Unconventional Reservoirs Conference. Keystone, Colorado, USA, 2008.

[18]Golab A N, Knackstedt M A, Averdunk H, et al. 3D porosity and mineralogy characterization in tight gas sandstones[J]. Special Section: Tight Gas Sands, 2010,29(12): 1 476-1 483.

[19]Wang Xinzhou, Song Yitao, Wang Xuejun. Simulation of Petroleum Genesis and Expulsion Physical-methods,Mechanism and Application[M].Dongying: China University of Petroleum Press,1996.[王新洲, 宋一涛,王学军. 石油成因与排油物理模拟——方法、机理和应用[M].东营:石油大学出版社,1996.]

[20]Miao Jianyu, Zhu Zongqi, Liu Wenrong, et al. Characteristics of pore structures of paleogene-neogene argillaceous rocks in the Jiyang Depression[J]. Geological Review, 2003,49(3):330-336.[苗建宇,祝总祺,刘文荣,等.济阳坳陷古近系—新近系泥岩孔隙结构特征[J].地质论评,2003,49(3):330-336.]

[21]Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional Petroleum Geology[M]. Beijing:Geology Publishing House, 2011.[邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011.]

[22]Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011,27(6):1 857-1 864.[邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现极其科学价值[J].岩石学报,2011,27(6):1 857-1 864.][JP]

[23]Cui Jingwei, Zou Caineng, Zhu Rukai, et al. Shale reservoir 3D characterization technology[C]∥The 8th national Petroleum Experimental Technology Communication Metting. Wuxi,2012.[崔景伟,邹才能,朱如凯,等. 泥页岩储集空间三维表征技术[C]∥第8届石油地质实验技术学术交流会摘要集.无锡,2012.]

[24]Katsube T J, Issler D R. Pore-size distributions of shales from the Beaufort-Mackenzie Basin, northern Canada[M]∥Current Research, Part E. Geological Survey of Canada. Paper-lE, 1993:123-132.

[25]Katsube T J. Statistical analysis of poresize distribution data of tight shales from the Scotian Shelf[M]∥Current Research, Part E. Geological Survey of Canada.Paper-lE, 1992:65-372.

[26]Nelson P H. Pore-throat sizes in sandstones,tight sandstones,and shales [J]. AAPG Bulletin, 2009, 93(3):329-340.

[27]Curtis M E, Amobrose R J, Sondergeld C H, et al. Structural Characterization of Gas Shales on the Micro-and Nano-Scales[C]∥Canadian Unconventional Resources and International Petroleum Conference. Calgary, Alberta, Canada, 2010.

[28]Chalmers G R, Bustin R M, Power I. A pore by any other name would be as small: The importance of meso-and microporosity in shale gas capacity[C]∥AAPG Annual Convention and Exhibition. Denver,USA, 2009.

[29]Wang F P, Reed R M, John A, et al. Pore Networks and Fluid Flow in Gas Shales[C]∥SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, 2009.

[30]Loucks R G, Ruppel S C, Reed S C, et al. Origin and Classification of Pores in Mudstones from Shale-Gas Systems[R/OL].[2012-06-10] http:∥221.179.130.209:82/ 1Q2W3E4R5T6Y7U8I9O0P1Z2X3C4V5B/ www.searchanddiscovery.com/ documents/ 2011/40855loucks/ndx_loucks.pdf.

[31]Dorsch J. Determination of Effective Porosity of Mudrocks-A Feasibility Study[R/OL].[2012-06-10] http:∥www.osti.gov/ energy citations /servlets /purl /204203-pSaL2G /web viewable/204203.pdf.

[32]Freeze R A,Cherry J A. Groundwater. Prentice-Hall, Englewood Cliffs[M]. New Jersey, 1979: 604.

[33]Pearson F J. What is the porosity of a mudrock?[J]. Geological Society, Special Publications, 1999,158:9-21.

[34]Slatt R M, O’Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks [J]. AAPG Bulletin, 2011, 95(12):2 017-2 030.

[35]Balabin R M, Syunyaev R Z, Schmid T, et al. Asphaltene adsorption onto an Iron surface: Combined near-Infrared (NIR), Raman, and AFM study of the Kinetics, thermodynamics, and layer structure[J]. Energy Fuels, 2011, 25:189-196.

[36]Connell-Madore S, Katsube T J. Pore Structure Versus Texture Relationship of Sediment Samples from a Research Well in the Beaufort-Mackenzie Basin, Northwest Territories[R].Canada: Geological Survey of Canada, 2008.

[37]Reed R M, Loucks R G, Jarvie D M, et al. Morphology, distribution, and genesis of nanometer-scale pores in the Mississippian Barnett Shale[C]∥AAPG Annual Convention & Exhibition. San Antonio, Texas, USA, 2008.

[38]Jarvie M D, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.

[39]Loucks R G, Reed R M, Ruppel S C. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1 071-1 098.

[1] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[2] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[3] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[4] 琚宜文,戚宇,房立志,朱洪建,王国昌,王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[5] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[6] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.
[7] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[8] 张盼盼, 刘小平, 王雅杰, 孙雪娇. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249.
[9] 胡作维,李云,黄思静,吕杰,朱炳光. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.
[10] 丁文龙,许长春,久凯,李超,曾维特,吴礼明. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
[11] 张雪芬,陆现彩,张林晔,刘庆. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604.
阅读次数
全文


摘要