地球科学进展 ›› 2012, Vol. 27 ›› Issue (12): 1326 -1336. doi: 10.11867/j.issn.1001-8166.2012.12.1326

综述与评述 上一篇    下一篇

海洋溶解态黑碳的研究进展
黄国培 1,2,陈颖军 1*,田崇国 1,唐建辉 1,潘晓辉 1,王艳 1,李军 3   
  1. 1.中国科学院烟台海岸带研究所,海岸带环境过程重点实验室,山东烟台264003;
    2.中国科学院大学,北京100049; 3.中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东广州510640
  • 收稿日期:2012-06-04 修回日期:2012-09-10 出版日期:2012-12-10
  • 通讯作者: 陈颖军(1971-),男,湖北天门人,研究员,主要从事环境地球化学研究. E-mail:yjchen@yic.ac.cn
  • 基金资助:

    国家自然科学基金面上项目“渤海水体中的黑碳总量、输入通量与源解析研究”(编号: 41073064);中国科学院知识创新工程重要方向项目“典型海岸带沉积物柱样黑碳和陆源有机质的定量解析及其生态环境意义”(编号: KZCX2-YW-QN210);2011年中国科学院研究生科技创新和社会实践专项“海水溶解态黑碳分析方法的建立及其在渤海湾的应用”资助.

Research Progress of Dissolved Black Carbon in Seawater

Huang Guopei 1,2,Chen Yingjun 1,Tian Chongguo 1,Tang Jianhui 1,Pan Xiaohui 1,Wang Yan 1,Li Jun 3   

  1. 1.Key Laboratory of Coastal Zone Environmental Processes,Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences,Yantai264003,China; 
    2.University of Chinese Academy of Sciences,Beijing100049,China; 
    3.State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou510640,China
  • Received:2012-06-04 Revised:2012-09-10 Online:2012-12-10 Published:2012-12-10

溶解态黑碳(DBC)作为黑碳(BC)降解的中间产物,是海洋溶解有机碳碳库的重要组分,涉及全球海洋碳收支并进一步影响全球气候变化;是有色溶解有机质的重要组分,可改变水体光学环境从而对生态系统产生影响;也是一类良好的有机配体,在环境中易与金属离子形成络合物从而影响金属污染物的行为与毒性。鉴于其在气候变化、生态和环境等方面的重要影响,近年来研究者越来越关注DBC,并取得了一些基础性成果。目前,在DBC的定性认识上还存在一些模糊区域,所以DBC还没有一个明确的定义,DBC只是一个术语,特指一类由浓缩稠环母体和亲水性取代基(主要为羧基)组成的复杂有机物。在DBC的来源方面,已有证据证明BC降解能够产生DBC;但DBC很可能还存在其他来源,仍需进一步研究确认。DBC主要随水体进行迁移,并已观察到了DBC的降解现象,但目前对DBC的降解机理及速率仍不了解。在定量分析方法上,由于DBC的极性很强,且与其共存的基质相当复杂,分析DBC具有很大的挑战,其中苯多羧酸分子标志物法(BPCA)是定量分析DBC很有前景的方法之一,但目前仍存在一些难点需要解决。DBC在全球不同水体中含量变化很大,但目前的数据相当有限,不足以全面评估DBC的储量和循环周期。从DBC的定性识别、来源、迁移转化、定量分析及含量分布等方面综述DBC的研究进展,重点讨论BPCA法定量DBC的研究现状及存在问题,并展望DBC的研究方向。

Dissolved black carbon (DBC) is a series of intermediate products from black carbon (BC) degradation. It is an important part of dissolved organic carbon pool which relates to oceanic carbon budget and thereby plays a key role in global climate change. DBC is probably the main component of chromophoric dissolved organic matter, which can absorb solar radiation and change the optical environment of water, and then influences the functions and structures of aquatic ecosystems. It is also an organic coordination center which can easily form complex with metal ions and then influences the fate and toxicity of metal pollutants. For these reasons, DBC has received more and more attentions in recent years and some basic knowledge on DBC is available for us. However, ①There is still ambiguity in qualitative DBC so that DBC is a terminology more than a definition specially to describe a series of complicated compounds which consists of condensed aromatics as parent core and substituted with hydrophilic groups (mainly carboxyl). ②BC degradation is not the only source of DBC, other sources are urgently needed to be confirmed. ③The quantification of DBC is a great challenge for the high polarity of DBC and the complex matrices, which are difficult to be separated with DBC. Using benzene polycarboxylic acids (BPCA) as molecule markers is a prospective method for the measurement of DBC, but there are still some problems that needed to be solved. ④The data on concentrations of DBC are sparse and varied in a wide range, making it difficult to estimate the pool and cycle period of DBC. This article summarizes the research progress in molecular level identification, sources, migration and transformation, measurement methods, concentrations and spatial distributions of DBC. One of the key points is the present status and problems of BPCA method. Finally, some suggestions are provided for further study.

中图分类号: 

[1]Goldberg E D. Black Carbon in the Environment[M]. New York: A Wiley-Interscience Publication,1985.

[2]Masiello C A. Black Carbon in Deep-Sea Sediments[J]. Science,1998,280(5 371): 1 911-1 913.

[3]Masiello C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry,2004,92(1/4): 201-213.

[4]Han Yongming,Cao Junji. Black carbon in the environments and its global biogechemical cycle [J]. Marine Geology & Quaternary Geology, 2005,25(1): 125-132.[韩永明,曹军骥. 环境中的黑碳及其全球生物地球化学循环 [J]. 海洋地质与第四纪地质,2005,25(1): 125-132.]

[5]Penner J E,Eddleman H,Novakov T. Towards the development of a global inventory for black carbon emissions[J]. Atmospheric Environment Part A General Topics,1993,27(8): 1 277-1 295.

[6]Kuhlbusch T A J,Crutzen P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2[J]. Global Biogeochem Cycles,1995,9(4): 491-501.

[7]Forbes M S,Raison R J,Skjemstad J O. Formation,transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems[J]. Science of the Total Environment,2006,370(1): 190-206.

[8]Flores-Cervantes D X,Plata D L,MacFarlane J K,et al. Black carbon in marine particulate organic carbon: Inputs and cycling of highly recalcitrant organic carbon in the Gulf of Maine[J]. Marine Chemistry,2009,113(3/4): 172-181.

[9]Ziolkowski L,Druffel E. Aged black carbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters,2010,37(16): L16601.

[10]Hedges J I. Why dissolved organics matter[C]∥A Hansell D,A Carlson C, eds. Biogeochemistry of Marine Dissolved Organic Matter. San Diego: Academic Press, 2002: 1-33.

[11]Hockaday W C,Grannas A M,Kim S,et al. The transformation and mobility of charcoal in a fire-impacted watershed [J]. Geochimica et Cosmochimica Acta,2007,71(14): 3 432-3 445.

[12]Hedges J,Keil R,Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry,1997,27(5/6): 195-212.

[13]Stubbins A,Niggemann J,Dittmar T. Photo-lability of deep ocean dissolved black carbon [J]. Biogeosciences,2012,9(5): 1 661-1 670.

[14]Dittmar T,Paeng J. A heat-induced molecular signature in marine dissolved organic matter [J]. Nature Geoscience,2009,2(3): 175-179.

[15]Dittmar T,Koch B. Thermogenic organic matter dissolved in the abyssal ocean [J]. Marine Chemistry,2006,102(3/4): 208-217.

[16]Sun Changying,Duan Zhibang,Zhang Siyuan. Lumlaeseence of Lanthanide Ions(Ш) and Yttrium (Ш) Arom atic Carboxylate Solid Complexes[J]. Chinese Rare Earths,1995,16(3): 36-41. [孙长英,段治邦,张思远. 镧系稀土及钇芳香羧酸固体配合物的发光 [J]. 稀土,1995,16(3): 36-41.]

[17]Wang Yan. Research progress of carboxylic acids coordination compounds [J]. Applied Chemical Industry,2011,40(3): 519-523. [王艳. 羧酸类配位聚合物的研究进展 [J]. 应用化工,2011,40(3): 519-523.]

[18]Stubbins A,Spencer R G M,Chen H,et al. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry[J].Limnology and Oceanography,2010,55(4): 1 467-1 477.

[19]Guo Weidong,Cheng Yuanyue,Yu Xiangxiang,et al. An overview of the photochemistry of marine chromophoric dissolved organic matter[J]. Marine Science Bulletin,2008,27(3): 107-114.[郭卫东,程远月,余翔翔,等.海洋有色溶解有机物的光化学研究进展 [J]. 海洋通报,2008,27(3): 107-114.]

[20]Dittmar T. The molecular level determination of black carbon in marine dissolved organic matter [J]. Organic Geochemistry,2008,39(4): 396-407.

[21]Kim S,Kaplan L,Benner R,et al. Hydrogen-deficient molecules in natural riverine water samples-evidence for the existence of black carbon in DOM [J]. Marine Chemistry,2004,92(1/4): 225-234.

[22]Hockaday W,Grannas A,Kim S,et al. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil [J]. Organic Geochemistry,2006,37(4): 501-510.

[23]Mannino A,Harvey H R. Black carbon in estuarine and coastal ocean dissolved organic matter [J]. Limnology and Oceanography,2004,49(3): 735-740.

[24]Ziolkowski L A,Druffel E R M. Quantification of extraneous carbon during compound specific radiocarbon analysis of black carbon[J]. Analytical Chemistry,2009,81(24): 10 156-10 161.

[25]Ziolkowski L A. Radiocarbon of Black Carbon in Marine Dissolved Organic Carbon [D]. Irvine: University of California,2010.

[26]Ziolkowski L A,Chamberlin A R,Greaves J,et al. Quantification of black carbon in marine systems using the benzene polycarboxylic acid method: A mechanistic and yield study [J]. Limnology and Oceanography: Methods,2011,9(4): 140-149.

[27]Kim S. Structure and Reactivity of Dissolved Organic Matter as Determined by Ultra-high Resolution Electrospray Ionization Mass Spectrometry[D]. The Ohio State University,2003.

[28]Kim S,Kramer R W,Hatcher P G. Graphical method for analysis of ultrahigh-Resolution broadband mass spectra of natural organic matter,the van krevelen diagram [J]. Analytical Chemistry,2003,75(20): 5 336-5 344.

[29]Kim S,Simpson A J,Kujawinski E B,et al. High resolution electrospray ionization mass spectrometry and 2D solution NMR for the analysis of DOM extracted by C18 solid phase disk[J]. Organic Geochemistry,2003,34(9):1 325-1 335.

[30]Stenson A C, Marshall A G,Cooper W T. Exact masses and chemical formulas of individual suwannee River Fulvic Acids from Ultrahigh resolution electrospray ionization fourier transform Ion Cyclotron resonance mass spectra[J]. Analytical Chemistry,2003,75(6): 1 275-1 284.

[31]Visser S A. Application of Van Krevelen’s graphical-statistical method for the study of aquatic humic material [J]. Environmental Science & Technology,1983,17(7): 412-417.

[32]Koch B P,Witt M,Engbrodt R,et al. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Geochimica et Cosmochimica Acta,2005,69(13): 3 299-3 308.

[33]Koch B P,Dittmar T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry,2006,20(5): 926-932.

[34]Koch B P,Ludwichowski K U,Kattner G,et al. Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS [J]. Marine Chemistry,2008,111(3/4): 233-241.

[35]Schmidt F,Elvert M,Koch B P,et al. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments[J]. Geochimica et Cosmochimica Acta,2009,73(11): 3 337-3 358.

[36]Humphreys J M,Chapple C. Rewriting the lignin roadmap[J]. Current Opinion in Plant Biology,2002,5(3): 224-229.

[37]Cope M J. Physical and chemical properties of coalified and charcoalified phytoclasts from some British Mesozoic sediments: An organic geochemical approach to palaeobotany[J]. Physics and Chemistry of the Earth,1980,12: 663-677.

[38]Baldock J A,Smernik R J. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood[J]. Organic Geochemistry,2002,33(9): 1 093-1 109.

[39]Hammes K,Smernik R J,Skjemstad J O,et al. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition,colour,BET surface area and 13C NMR spectroscopy[J]. Applied Geochemistry,2008,23(8): 2 113-2 122.

[40]Kendrick E. A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds[J]. Analytical Chemistry,1963,35(13): 2 146-2 154.

[41]Hughey C A,Hendrickson C L,Rodgers R P,et al. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra[J]. Analytical Chemistry,2001,73(19): 4 676-4 681.

[42]Haumaier L,Zech W. Black carbon-possible source of highly aromatic components of soil humic acids[J]. Organic Geochemistry,1995,23(3): 191-196.

[43]Trompowsky P M,Benites V d M,Madari B E,et al. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal[J]. Organic Geochemistry,2005,36(11): 1 480-1 489.

[44]Hernes P J,Hedges J I. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts[J]. Analytical Chemistry,2000,72(20): 5 115-5 124.

[45]Bhatia M P,Das S B,Longnecker K,et al. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet[J]. Geochimica et Cosmochimica Acta,2010,74(13): 3 768-3 784.

[46]Stubbins A,Hood E,Raymond P A,et al. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers[J]. Nature Geosci,2012,5(3): 198-201.

[47]Douben P E T. PAHs: An Ecotoxicological Perspective[M]. John Wiley & Sons,2003.

[48]Elderfield H,Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean [J]. Annual Review of Earth and Planetary Sciences,1996,24:191-224.

[49]Simoneit B R T,Fetzer J C. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean [J]. Organic Geochemistry,1996,24(10/11): 1 065-1 077.

[50]Simoneit B R T,Lein A Y,Peresypkin V I,et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N) [J]. Geochimica et Cosmochimica Acta,2004,68(10): 2 275-2 294.

[51]Dong Chunming. Study on the Prokaryotic Diversity and PAH-degrading Bacteria in Deep-Sea Sediments of Lau Bain Hydrothermal Vent Field of Southwest Pacifi[D]. Wuhan: Huazhong Agricultural University,2009.[董纯明. 西南太平洋劳盆地(Lau Basin)深海热液区沉积物中微生物多样性及多环芳烃降解微生物的初步研究[D]. 武汉:华中农业大学,2009.]

[52]Artok L,Su Y,Hirose Y,et al. Structure and reactivity of petroleum-derived asphaltene[J]. Energy & Fuels,1999,13(2): 287-296.

[53]Fu Bin. Study on Synthesis of Perylenequinone Natural Products[D]. Beijing: Peking University,1999.[傅滨.苝醌天然产物合成研究[D].北京:北京大学,1999.]

[54]Guggenberger G,Rodionov A,Shibistova O,et al. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia [J]. Global Change Biology,2008,14(6): 1 367-1 381.

[55]Clairotte M,Adam T W,Chirico R,et al. Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: A chemometric approach [J]. Analytica Chimica Acta,2012,717: 28-38.

[56]Maruf Hossain A M M,Park S,Kim J S,et al. Volatility and mixing states of ultrafine particles from biomass burning[J]. Journal of Hazardous Materials,2012,205/206: 189-197.

[57]Chughtai A R,Jassim J A,Peterson J H,et al. Spectroscopic and solubility characteristics of oxidized soots[J]. Aerosol Science and Technology,1991,15(2): 112-126.

[58]Decesari S,Facchini M C,Matta E,et al. Water soluble organic compounds formed by oxidation of soot[J]. Atmospheric Environment,2002,36(11):1 827-1 832.

[59]Tritscher T,Juranyi Z,Martin M,et al. Changes of hygroscopicity and morphology during ageing of diesel soot[J]. Environmental Research Letters,2011,6(3): 2-10.

[60]Glaser B, Haumaier L,Guggenberger G,et al. Black carbon in soils: The use of benzenecarboxylic acids as specific markers[J]. Organic Geochemistry,1998,29(4): 811-819.

[61]Yarnes C,Santos F,Singh N,et al. Stable isotopic analysis of pyrogenic organic matter in soils by liquid chromatography-isotope-ratio mass spectrometry of benzene polycarboxylic acids [J]. Rapid Communications in Mass Spectrometry,2011,25(24): 3 723-3 731.

[62]Brodowski S,Rodionov A,Haumaier L,et al. Revised black carbon assessment using benzene polycarboxylic acids [J]. Organic Geochemistry,2005,36(9): 1 299-1 310.

[63]Hammes K,Schmidt M W I,Smernik R J,et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil,water,sediment and the atmosphere [J]. Global Biogeochemical Cycles,2007,21(3): 1-8.

[64]Yang Xiaoqing,Huang Kama. Investigation of key problems of interaction between microwave and chemical reaction [J]. Chinese Journal of Radio Science, 2006,21(5): 802-809. [杨晓庆,黄卡玛. 微波与化学反应相互作用中的关键问题讨论 [J]. 电波科学学报,2006,21(5): 802-809.]

[65]Berger T A, Deye J F.Separation of benzene polycarboxylic acids by packed column supercritical fluid chromatography using methanol-carbon dioxide mixtures with very polar additives[J]. Journal of Chromatographic Science,1991,29(4): 141-146.

[66]Khaled M Y,McNair H M. Capillary zone electrophoretic separation of isomeric benzoic acids using cyclodextrin [J]. Journal of High Resolution Chromatography,1996,19(3): 143-150.

[67]Schneider M P W,Smittenberg R H,Dittmar T,et al. Comparison of gas with liquid chromatography for the determination of benzenepolycarboxylic acids as molecular tracers of black carbon [J]. Organic Geochemistry,2011,42(3): 275-282.

[68]Schneider M P W,Hilf M,Vogt U F,et al. The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 ℃ and 1000 ℃[J]. Organic Geochemistry,2010,41(10): 1 082-1 088.

[69]Haumaier L. Benzene polycarboxylic acids—A ubiquitous class of compounds in soils [J]. Journal of Plant Nutrition and Soil Science,2010,173(5): 727-736.

[70]Liao W,Christman R F,Johnson J D,et al. Structural characterization of aquatic humic material [J]. Environmental Science & Technology,1982,16(7): 403-410.

[71]He Jinxin. The Chemistry of Dyeing[M]. Beijing: China Textile & Apparel Press,2004. [何瑾馨. 染料化学[M]. 北京: 中国纺织出版社,2004.]

[72]Dai Minying,Zhou Chennian. PAHs in seawater from Bohai Bay [J]. Marine Sciences, 1983,7(4): 26-27.[戴敏英,周陈年. 渤海湾水中多环芳烃含量的分布 [J]. 海洋科学,1983,7(4): 26-27.]

[73]Cao Zhiguo,Liu Jingling,Luan Yun,et al. Pollution characteristics,risk assessment and source apportionment of polycyclic aromatic hydrocarbons ( PAHs) in sediments and water of the Luan River,China [J]. Acta Scientiae Circumstantiae, 2010,30(2): 246-253.[曹治国,刘静玲,栾芸,等. 滦河流域多环芳烃的污染特征、风险评价与来源辨析 [J]. 环境科学学报,2010,30(2): 246-253.]

[74]Liu Yan,Zhang Zulin,Hong Huasheng. Distribution and sources of Polycyclic Aromatic Hydrocarbons(PAHs) in the surface seawater of the Western Xiamen Harbor [J]. Marine Science Bullein, 1999,18(4): 38-43.[刘岩,张祖麟,洪华生. 厦门西港表层海水中多环芳烃(PAHs)含量分布特征及来源分析 [J]. 海洋通报,1999,18(4): 38-43.]

[75]Yang Qingshu,Lei Yaping,Ou Suying,et al. Vertical distribution,composition of polycyclic aromatic hydrocarbons in water column from Guangzhou Channel in the Pearl River[J]. Marine Science Bullein, 2008,27(6): 34-43.[杨清书,雷亚平,欧素英,等. 珠江广州河段水环境中多环芳烃的组成及其垂直分布特征[J]. 海洋通报,2008,27(6): 34-43.]

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[3] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[4] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[5] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[6] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[9] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[10] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[11] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[12] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[13] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[14] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[15] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
阅读次数
全文


摘要