地球科学进展 ›› 2012, Vol. 27 ›› Issue (12): 1337 -1343. doi: 10.11867/j.issn.1001-8166.2012.12.1337

综述与评述 上一篇    下一篇

月球探测中月面热环境影响的研究现状
于雯 1, 2, 李雄耀 1*, 王世杰 1   
  1. 1.中国科学院地球化学研究所月球与行星科学研究中心,贵州贵阳550002;2.中国科学院大学,北京100039
  • 收稿日期:2012-06-19 修回日期:2012-09-07 出版日期:2012-12-10
  • 通讯作者: 李雄耀(1978-),男,广西南宁人,副研究员,主要从事月球与行星科学研究. E-mail:lixiongyao@vip.skleg.cn
  • 基金资助:

    国家自然科学基金项目“太空风化作用形成的单质铁对UVVIS-NIR光谱特征的影响”(编号:40803019);国家高技术研究发展计划项目“月表物质微波传输特性及月壤厚度反演技术与模型研究”(编号:2010AA122204); 探月工程“月球样品物性、主量元素和铂族元素分析技术”(编号:TY3Q20110029)资助.

Effect of Thermal Environment on Lunar Exploration: A Review

Yu Wen 1,2, Li Xiongyao 1, Wang Shijie 1   

  1. 1.Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550002, China;
    2. University of Chinese Academy of Sciences, Beijing100039, China
  • Received:2012-06-19 Revised:2012-09-07 Online:2012-12-10 Published:2012-12-10

在月球探测中,多光谱、热红外、被动微波辐射等探测技术被广泛应用于月表物质组分和物理特性的探测,也积累了大量探测数据。月球太阳辐照、月球表面温度、地球反照和内部热流等月面热环境的变化,改变了月表物质反射率、热发射率以及其他电磁学等基本性质,制约了探测数据的准确解译;同时,大幅度的太阳辐射强度和月面温度变化也直接威胁月面探测中巡视探测器和宇航员的安全。但是,目前月球表面热环境对探测活动的影响认识还比较欠缺,月面热环境的时空变化规律认识还不够充分,在实验研究不足的情况下对各种探测方式的影响缺乏系统的理解。结合月球探测的发展,进一步立足实验手段和探测结果,通过开展不同地形条件下月面太阳辐射和物理温度的时间变化和空间分布规律研究、探测数据与月面热环境参数时空匹配问题研究、建设具备类似物质组成和月面热环境特征的实验场地以及开展系统的热环境影响模拟实验研究,全面认识月面热环境参数的时空变化规律,探讨月面热环境对不同探测方式的影响将是月面热环境研究的重要内容。

In lunar exploration, multispectral remote sensing, thermal infrared remote sensing, and passive microwave remote sensing are widely used to investigate the mineral component and physical property of lunar regolith. And lots of data is obtained by these techniques. Lunar solar irradiance, lunar surface-temperature, earthshine and internal heat flow may influence the reflectivity, thermal emissivity as well as other electromagnetic properties of the lunar regolith, which restricts the accurate interpretation of explored data. And the variations of solar irradiance and lunar surfacetemperature also threaten the safety of lunar rover and the health of astronauts  in future lunar surface activity. However, the effect of thermal environment on lunar exploration activities is rarely studied, the temporal and spatial variation of the thermal environment on the lunar surface is insufficiently understood, and limited experimental researches do not allow us to evaluate the effect of different exploration methods. With the development of the lunar exploration, the experiment and detection need to be strengthened. By studying on temporal variation and spatial distribution of the surface solar radiation and the physical temperature in the different lunar topography, matching the explored data to the lunar surface thermal environment parameters , building experimental sites with similar material composition and lunar thermal environment, and carrying out systematic experimental study,  the temporal and spatial change of lunar surface thermal environment parameter are comprehenced and  the effect of lunar surface thermal environment on different explored methods are  analyzed. All of these are important contents of the study of lunar environment in the coming years.

中图分类号: 

[1]Ouyang Ziyuan. International lunar exploration progress and chinese lunar exploration [J]. Geological Science and Technology Information, 2004, 23(4): 1-5.[欧阳自远. 月球探测的进展与中国的月球探测[J]. 地质科技情报, 2004, 23(4): 1-5.]

[2]Xiong Shengqing. A review of lunar exploration and study[J]. Remote Sensing for Land & Resources, 2009, 82(4): 1-7.[熊盛青. 月球探测与研究进展[J]. 国土资源遥感, 2009, 82(4): 1-7.]

[3]Jiang Jingshan, Wang Zhenzhan, Zhang Xiaohui, et al. China probe CE-1 unveils world first moon-globe microwave emossion map—The micrwave moon some exploration results of chang’e-1 microwave sounder[J]. Remote Sensing Technology and Application, 2009, 24(4): 409-422.[姜景山, 王振占, 张晓辉, 等. 微波月亮——人类对月球的全新视角——中国“嫦娥一号”卫星微波探测仪若干探测结果[J]. 遥感技术与应用, 2009, 24(4): 409-422.]

[4]Xu Xianghua, Liang Xingang, Ren Jianxun. Numerical analysis of thermal environment of lunar surface[J]. Journal of Astronautics, 2006, 27(2): 153-157.[徐向华, 梁新刚, 任建勋. 月球表面热环境数值分析[J]. 宇航学报, 2006, 27(2): 153-157.]

[5]Ouyang Ziyuan. Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005.[欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005.]

[6]Fröhlich C. Solar irradiance variability since 1978: Revision of the PMOD composite during solar cycle 21[J]. Space Science Reviews, 2006, 125: 53-65.

[7]Fröhlich C, Judith L. Solar radiative output and its variability: Evidence and mechanisms[J]. The Astronomy and Astrophysics Review, 2004, 12: 273-320.

[8]Heiken G H, Vaniman D T, French B M. Lunar Sourcebook: A User’s Guide to the Moon[M]. Cambridge: Cambridge University Press, 1991.

[9]Guo Ruitao. Introduction to the Earth[M]. Beijing: Beijing Normal University Press, 1988.[郭瑞涛. 地球概论[M]. 北京: 北京师范大学出版社, 1988.]

[10]Duke M B, Eckart P. The Lunar Base Handbook[M]. New York: McGraw-Hill, 1999.

[11]Cremers C J, Birkebak R C, White J E. Lunar surface temperatures from Apollo 12[J]. Earth, Moon,  and Planets, 1971, 3: 346-351.

[12]Pugh M J, Bastin J A. Infrared observations of the moon and their interpretation[J]. Earth, Moon, and Planets, 1972, 5: 16-30.

[13]Racca G D. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis[J]. Planetary and Space Science, 1995, 43(6): 835-842. 

[14]Jones W P, Watkins J R, Calvert T A. Temperatures and thermophysical properties of the lunar outermost layer[J]. Earth, Moon, and Planets, 1975, 13(4): 475-494.

[15]Watson K, Murray B C, Brown H. The behavior of volatiles on the lunar surface[J]. Journal of  Geophysical Research, 1961, 66(9): 3 033-3 045.

[16]Dalton C, Hohman E. Conceptual design of a lunar colony[M]. Washington: NASA/ASEE Engineering Systems Design Institute, 1972.

[17]Li Yun, Wang Zhenzhan, Jiang Jingshan. Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature[J]. Science China(Series D), 2009, 39(8): 1 045-1 058.[李芸, 王振占, 姜景山. 月表温度剖面对于“嫦娥一号”卫星微波探测仪探测亮温影响的模拟研究[J]. 中国科学:D辑, 2009, 39(8): 1 045-1 058.]

[18]Li Xiongyao, Wang Shijie, Cheng Anyun. A review of lunar-surface temperature model[J].Advances in Earth Science, 2007, 22(5): 480-485.[李雄耀, 王世杰, 程安云. 月球表面温度物理模型研究现状[J]. 地球科学进展, 2007, 22(5): 480-485.]

[19]Wesselink A J. Heat conductivity and nature of the lunar surface material[J]. Bulletin of the Astronomical Institutes of the Netherlands, 1948, 10: 351-363.

[20]Jaeger J C. The surface temperature of the moon[J]. Australian Journal of Physics, 1953, 6: 10-21.

[21]Calvert T A, George C. Themal and Dielectric Properties of A Homogeneous Moon Based on Microwave and Infrared Temperature Observations[M]. Washington: National Aeronautics and Space Asministration, 1969.

[22]Racca G D. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis[J]. Planetary and Space Science, 1995, 43(6): 835-842.

[23]Vasavada A R, Paige D A, Wood S E. Near-surface temperatures on mercury and the moon and the stability of polar ice deposits[J]. Icarus, 1999, 141: 179-193.

[24]Hale A S, Hapke B. A time-dependent model of radiative and conductive thermal energy transport in planetary regoliths with applications to the moon and mercury[J]. Icarus, 2002, 156: 318-334.

[25]Langseth M G, Keihm S J, Peters K. Revised lunar heat-flow values[C]∥Lunar Science Conference 7th.New York: Pergamon Press,Inc., 1976, 3 (A77-34651 15-91): 3 143-3 171.

[26]Baldwin J E. Thermal radiation from the moon and the heat flow through the lunar surface[J]. Monthly Notices of the Royal Astronomical Society, 1961, 122: 513-522.

[27]Schloerb F P, Muhleman D O, Berge G L. Lunar heat flow and regolith structure inferred from  interferometric observations at a wavelength of 49.3 cm[J]. Icarus, 1976, 29(3): 329-341.

[28]Yoshida S, Tanaka S, Hagermann A, et al. Derivation of a globally averaged lunar heat flow from the local heat flow values and thorium distribution at the surface[C]∥Expected improvement by the LUNAR-A mission, Lunar and Planetary Science Conference 32th. 2001: 1 571-1 572.

[29]Conel J E, Morton J B. Interpretation of lunar heat flow data[J]. The Moon, 1975, 14: 263-289.

[30]Saito Y, Hikida H, Yokota Y, et al. Reanalysis of the lunar heat flow[C]∥ ISAS Lunar Planetary Symposium 36th. 2003: 157-160.

[31]Grott M, Knollenberg J, Krause C. The apollo lunar heat flow experiment revisited: A critical reassessment of the in-situ thermal conductivity determination[C]∥European Planetary Science Congress. 2010: 11-12.

[32]Goode P R, Qiu J, Yurchyshyn V, et al. Earthshine observations of the Earth’s reflectance[J]. Geophysical Research Letters, 2001, 28(9): 1 671-1 674.

[33]Pardo J R, Serabyn E, Wiedner M C. Broadband submillimeter measurements of the full moon center brightness temperature and application to a lunar eclipse[J]. Icarus, 2005, 178: 19-26.

[34]Moroz L, Schade U, Wsch R. Reflectance spectra of olivine orthopyroxene bearing assemblages at decreased temperatures: Implications for remote sensing of asteroids[J]. Icarus, 2000, 147(1): 79-93.

[35]Hinrichs J L, Lucey P G. Temperature dependent near infrared spectral properties of minerals, meteorites, and lunar soil[J]. Icarus, 2002, 155(1): 169-180.

[36]Zeng Chaoyang, Zhang Xiaoyong. Effect of temperature on the laser radar[J]. Sichuan Ordnance Journal, 2010, 31(4): 1-3.[曾朝阳, 张晓永. 温度变化对激光雷达的影响[J]. 四川兵工学报, 2010, 31(4): 1-3.]

[37]Ihle E C, Ritsher J B, Kanas N. Positive psychological outcomes of spaceflight: An empirical study[J]. Aviation, Space, and Environmental Medicine, 2006, 77(2): 93-101.

[38]Kanas N, Ritsher J. Leadership issues with multiculturalcrews on the internationalspace station: Lessonslearned from shuttle/mir[J]. Acta Astronautica , 2005, 56(9/12): 932-936.

[39]Ritsher J B, Ihle E C, Kanas N. Positive psychological effects of space missions[J]. Acta Astronautica, 2005, 57(2/8): 630-633.

[40]Ritsher J B. Cultural factors and the international space station[J]. Aviation, Space, and Environmental Medicine, 2005, 76(6 Suppl.): B135-144.

[41]Lan Ailan, Zhang Shengwei. Study on the thickness of lunar soil with microwave radiometer[J]. Remote Sensing Technology and Appl ication, 2004, 19(3):154-158.[蓝爱兰,张升伟.利用微波辐射计对月壤厚度进行研究[J].遥感技术与应用, 2004,19(3):154-158.]

[42]Fa Wenzhe, Jin Yaqiu. Inversion of lunar regolith layer thickness using optical data and microwave emission simulation[J]. Chinese Journal of Radio Science, 2006, 21(3): 347-356.[法文哲, 金亚秋. 光学观测与微波辐射模拟对月壤厚度的反演[J].电波科学学报,2006, 21(3): 347-356.]

[43]Fa Wenzhe, Jin Yaqiu. Inversion of lunar regolith layer thickness using microwave radiance sim ulation of three layer model and clementine UV-VIS data[J]. Chinese Journal of Space Science, 2007, 27(1):55-65.[法文哲,金亚秋. 三层月壤模型的多通道微波辐射模拟与月壤厚度的反演[J]. 空间科学学报,2007, 27(1):55-65.]

[1] 刘清超, 陈晓东, 徐建桥, 孙和平. 潮汐摩擦对月球轨道与地球自转影响的研究综述[J]. 地球科学进展, 2021, 36(5): 472-479.
[2] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[3] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[4] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[5] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[6] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[7] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[8] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[9] 程维明, 刘樯漪, 王娇, 高文信, 刘建忠. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9): 885-897.
[10] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[11] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[12] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[13] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[14] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[15] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
阅读次数
全文


摘要