地球科学进展 ›› 2018, Vol. 33 ›› Issue (9): 885 -897. doi: 10.11867/j.issn.1001-8166.2018.09.0885

综述与评述    下一篇

全月球形貌类型分类方法初探
程维明 1, 2( ), 刘樯漪 1, 2, 王娇 3, 高文信 1, 4, 刘建忠 5   
  1. 1.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2. 中国科学院大学,北京 100049
    3.中国地质大学信息工程学院,北京 100083
    4.兰州理工大学土木工程学院,甘肃 兰州 730050
    5.中国科学院地球化学研究所,贵州 贵阳 550081
  • 收稿日期:2017-04-18 修回日期:2018-08-06 出版日期:2018-10-20
  • 基金资助:
    *国家自然科学基金项目“全月球形貌类型划分方法研究”(编号:41571388);中国科学院B类先导专项培育项目“数字月球与地月系统演化”(编号:XDPB11)资助.

A Preliminary Study of Classification Method on Lunar Topography and Landforms

Weiming Cheng 1, 2( ), Qiangyi Liu 1, 2, Jiao Wang 3, Wenxin Gao 1, 4, Jianzhong Liu 5   

  1. 1.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.School of Information Engineering, China University of Geosciences, Beijing 100083, China
    4.School of Civil Engineering, Lanzhou University of Technology,Lanzhou 730050, China
    5.Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Received:2017-04-18 Revised:2018-08-06 Online:2018-10-20 Published:2018-10-23
  • About author:

    First author:Cheng Weiming(1973-), male, Tianshui City, Gansu Province, Professor. Research areas include digital geomorphology and lunar topography and landforms. E-mail: chengwm@lreis.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Classification method on lunar morphological types"(No.41571388);The Key Research Program of the Chinese Academy of Sciences "Digital Moon and Earth-Moon system evolution"(No.XDPB11).

月球表面形貌科学研究是月球探测最基础的内容。月球形貌类型单元的划分、月貌图的编研是绕月探测工程遴选的4项科学目标之一。首先回顾了不同研究者提出的月球表面形貌类型,论述了月球形貌类型的划分方法及进展,分析了20世纪70年代美国地质调查局编制全月球1∶ 500万地质图以及中国新一代1∶ 250万地质图的形态及年代的类型划分依据等。考虑到月球表面形貌的现状特征、受宏观营力格局及作用方式、形态变异及组合特征等,提出了基于形态和年代两大类特征相结合全月球形貌类型的矩阵式多级分类方法。年代可分为哥白尼纪、爱拉托逊纪、雨海纪、前雨海纪以及两者之间的过渡年代等七大类。全月球形貌类型中,按照宏观形态及营力作用方式,将第一级划分为月海、盆地、月陆和撞击坑四大类。第二级中,按照大类的形态差异性,可将盆地分为盆底平原和环盆地山丘;月海分为月海平原和月海穹丘;月陆分为月陆平原、月陆丘陵和月陆高原;撞击坑按照形态和规模分为特大型撞击坑环形山、特大型撞击平原、次级形成小撞击坑、撞击坑链、带辐射纹撞击坑、不规则和边缘模糊坑、未分形态撞击坑等类型。根据坡面和物质差异,可细化出三级甚至四级形态类型。以H010幅为案例,对2种指标和组合形貌类型进行了制图试验。这将对全月球形貌类型的划分和制图具有一定的指导作用。

Lunar topography and landform, resulting from endogenous and exogenous geophysical processes of various spatial and temporal scales, carry information of these processes and target properties. Geoscientists use morphometric analysis at different scales to study lunar topography, which is one of the four scientific objectives of China's lunar exploration project. This article first reviewed the lunar topographic types from different researchers, analyzed classifying method and progress, discussed geological mapping method of 1∶ 5 000 000 complied by United States Geological Survey in the 1970s. In consideration of the present situation of the lunar surface morphological characteristics, the pattern of macroscopic forcing, morphologic variation and combination characteristics and function way, etc., a matrix combining multi-stage classification method was put forward based on the characteristics of the topography and geologic age, which included 7 geologic ages and 14 morphologic classes. Geological ages can be divided into Copernican System (C), Copernican-Eartosthenian System (CE), Eartosthenian System (E), Eartosthenian-Imbrian System (EI), Imbrian System (I), Imbrian-PreImbrian System (IpI) and Pre-Imbrian System (pI). As to topographic types, the first class can be divided into lunar mare, lunar basin, lunar terra and lunar crater. As to their second class according to morphological differences, the lunar basin can be divided into basin plain and circum-basin, and lunar mare can be divided into mare plain and mare dome; lunar terra can be divided into terra plain, plateau and hill, and craters can be divided into main sequence crater, crater plain, secondary crater, crater chains and clusters, rayed craters, irregular crater and undivided crater. Thus, 46 subclasses including geologic and morphologic features were obtained in this classification system. The test mapping method was addressed in Sheet H010, which shows the combination classification method is reasonable.

中图分类号: 

表1 不同时期研究者提出的月球表面形貌类型对比
Table 1 Different types of lunar landform classifications
表1 不同时期研究者提出的月球表面形貌类型对比
Table 1 Different types of lunar landform classifications
表2 美国月球地质图中涵盖的月球形貌类型特征 [ 27 , 28 , 29 , 30 , 31 , 32 ]
Table 2 Landform types included by geologic maps of the moon compiled by USGS [ 27 , 28 , 29 , 30 , 31 , 32 ]
表2 美国月球地质图中涵盖的月球形貌类型特征 [ 27 , 28 , 29 , 30 , 31 , 32 ]
Table 2 Landform types included by geologic maps of the moon compiled by USGS [ 27 , 28 , 29 , 30 , 31 , 32 ]
图1 基于形态特征和地质年代的月球形貌类型分类体系
Fig.1 Classification system of lunar landform based on morphologic feature and geologic age
图1 基于形态特征和地质年代的月球形貌类型分类体系
Fig.1 Classification system of lunar landform based on morphologic feature and geologic age
表3 基于形态特征和地质年代的月球形貌类型的矩阵式组合分类体系
Table 3 Matrix combination classification system of lunar morphology based on morphologic feature and geologic age
表3 基于形态特征和地质年代的月球形貌类型的矩阵式组合分类体系
Table 3 Matrix combination classification system of lunar morphology based on morphologic feature and geologic age
图2 基于形态类型和地质年代组合而成的H010幅形貌类型制图 (a)一级形态;(b)二级形态;(c)年代;(d)形貌组合类型
Fig.2 Maps of morphologic feature, geologic age and landforms of Sheet H010 (a)First class morphologic types;(b)Second class morphologic types; (c)Geologic Age; (d) Combined landform types
图2 基于形态类型和地质年代组合而成的H010幅形貌类型制图 (a)一级形态;(b)二级形态;(c)年代;(d)形貌组合类型
Fig.2 Maps of morphologic feature, geologic age and landforms of Sheet H010 (a)First class morphologic types;(b)Second class morphologic types; (c)Geologic Age; (d) Combined landform types
[1] Ouyang Ziyuan.Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005 .
Ouyang Ziyuan.Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005 .
[欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社,2005.]
[欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社,2005.]
[2] Cheng Weiming, Zhou Zengpo, Wan Cong, et al.Introduction to Lunar Morphology and Landform Science[M]. Beijing: Geological Publishing House, 2016 .
Cheng Weiming, Zhou Zengpo, Wan Cong, et al.Introduction to Lunar Morphology and Landform Science[M]. Beijing: Geological Publishing House, 2016 .
[程维明,周增坡,万丛,等. 月球形貌科学概论[M]. 北京:地质出版社,2016.]
[程维明,周增坡,万丛,等. 月球形貌科学概论[M]. 北京:地质出版社,2016.]
[3] Cheng Weiming, Wang Jiao, Zhou Chenghu.Analysis on research progress and tendency of lunar morphological characteristics[J].Geographical Research, 2014, 33(6): 1 003-1 014 .
Cheng Weiming, Wang Jiao, Zhou Chenghu.Analysis on research progress and tendency of lunar morphological characteristics[J].Geographical Research, 2014, 33(6): 1 003-1 014 .
[程维明,王娇,周成虎. 月球表面形貌特征研究进展及趋势分析[J]. 地理研究, 2014, 33(6): 1 003-1 014.]
[程维明,王娇,周成虎. 月球表面形貌特征研究进展及趋势分析[J]. 地理研究, 2014, 33(6): 1 003-1 014.]
[4] Eliason E, Isbell C, Lee E, et al. The Clementine UVVIS Global Lunar Mosaic[R]. Houston: Lunar and Planetary Institute, 1999.
Eliason E, Isbell C, Lee E, et al. The Clementine UVVIS Global Lunar Mosaic[R]. Houston: Lunar and Planetary Institute, 1999.
[5] Bussey B, Spudis P.The Clementine Atlas of the Moon[M]. Cambridge: Cambridge University Press, 2004.
Bussey B, Spudis P.The Clementine Atlas of the Moon[M]. Cambridge: Cambridge University Press, 2004.
[6] Rosiek M R, Kirk R, Howington-Kraus E.Color-coded Topography and Shaded Relief Maps of the Lunar Hemispheres[M]//33rd Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2002.
Rosiek M R, Kirk R, Howington-Kraus E.Color-coded Topography and Shaded Relief Maps of the Lunar Hemispheres[M]//33rd Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2002.
[7] Zisk S H.A new, Earth-based radar technique for the measurement of lunar topography[J]. The Moon, 1972, 4(3/4): 296-306.
doi: 10.1007/BF00561997     URL    
Zisk S H.A new, Earth-based radar technique for the measurement of lunar topography[J]. The Moon, 1972, 4(3/4): 296-306.
doi: 10.1007/BF00561997     URL    
[8] Smith D E, Zuber M T, Neumann G A, et al. Topography of the Moon from theclementine lidar[J]. Journal of Geophysical Research, 1997, 102(1): 1 591-1 611.
doi: 10.1029/96JE02940     URL    
Smith D E, Zuber M T, Neumann G A, et al. Topography of the Moon from theclementine lidar[J]. Journal of Geophysical Research, 1997, 102(1): 1 591-1 611.
doi: 10.1029/96JE02940     URL    
[9] Cook A C, Spudis P D, Robinson M S, et al. Lunar topography and basins mapped using a Clementine stereo digital elevation model[C]//33rd Annual Lunar and Planetary Science Conference. Houston, Texas, 2002, 33: 1 281-1 282.
Cook A C, Spudis P D, Robinson M S, et al. Lunar topography and basins mapped using a Clementine stereo digital elevation model[C]//33rd Annual Lunar and Planetary Science Conference. Houston, Texas, 2002, 33: 1 281-1 282.
[10] Burns K N, Speyerer E J, Robinson M S, et al. Digital elevation models and derived products from LROC NAC stereo observations[J].International Society for Photogrammetry and Remote Sensing, 2012, 39(6): 483-488.
doi: 10.5194/isprsarchives-XXXIX-B4-483-2012     URL    
Burns K N, Speyerer E J, Robinson M S, et al. Digital elevation models and derived products from LROC NAC stereo observations[J].International Society for Photogrammetry and Remote Sensing, 2012, 39(6): 483-488.
doi: 10.5194/isprsarchives-XXXIX-B4-483-2012     URL    
[11] Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J].Science, 2009, 323(5 916): 897-900.
doi: 10.1126/science.1164146     URL     pmid: 19213910
Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J].Science, 2009, 323(5 916): 897-900.
doi: 10.1126/science.1164146     URL     pmid: 19213910
[12] Li Chunlai, Liu Jianjun, Ren Xin, et al. The global image of the Moon obtained by the Chang'E-1: Data processing and lunar cartography[J]. Science in China (Series D), 2010, 53(8): 1 091-1 102.
Li Chunlai, Liu Jianjun, Ren Xin, et al. The global image of the Moon obtained by the Chang'E-1: Data processing and lunar cartography[J]. Science in China (Series D), 2010, 53(8): 1 091-1 102.
[13] Li Chunlai, Ren Xin, Liu Jianjun, et al. Laser altimetry data of Chang'E-1 and the global lunar DEM model[J].Science in China(Series D), 2011, 53(11): 1 582-1 593.
doi: 10.1007/s11430-010-4020-1     URL    
Li Chunlai, Ren Xin, Liu Jianjun, et al. Laser altimetry data of Chang'E-1 and the global lunar DEM model[J].Science in China(Series D), 2011, 53(11): 1 582-1 593.
doi: 10.1007/s11430-010-4020-1     URL    
[14] Fok H S, Shum C K, Yi Yuchan, et al. Accuracy assessment of lunar topography models[J]. Earth, Planets and Space, 2011, 63(1): 15-23.
doi: 10.5047/eps.2010.08.005     URL    
Fok H S, Shum C K, Yi Yuchan, et al. Accuracy assessment of lunar topography models[J]. Earth, Planets and Space, 2011, 63(1): 15-23.
doi: 10.5047/eps.2010.08.005     URL    
[15] Ping Jinsong, Huang Qian, Yan Jianguo, et al. Lunar topographic model CLTM-s01 from Chang'E-1 laser altimeter[J]. Science in China (Series G), 2009, 52(7): 1 105-1 114.
doi: 10.1007/s11433-009-0144-8     URL    
Ping Jinsong, Huang Qian, Yan Jianguo, et al. Lunar topographic model CLTM-s01 from Chang'E-1 laser altimeter[J]. Science in China (Series G), 2009, 52(7): 1 105-1 114.
doi: 10.1007/s11433-009-0144-8     URL    
[16] Wu Bo, Guo Jian, Zhang Yunsheng, et al. Integration of Chang'E-1 imagery and laser altimeter data for precision lunar topographic modeling[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4 889-4 903.
doi: 10.1109/TGRS.2011.2153206     URL    
Wu Bo, Guo Jian, Zhang Yunsheng, et al. Integration of Chang'E-1 imagery and laser altimeter data for precision lunar topographic modeling[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4 889-4 903.
doi: 10.1109/TGRS.2011.2153206     URL    
[17] Sawabe Y, Matsunaga T, Rokugawa S.Automated detection and classification of lunar craters using multiple approached[J].Advances in Space Research, 2006, 37(1): 21-27.
doi: 10.1016/j.asr.2005.08.022     URL    
Sawabe Y, Matsunaga T, Rokugawa S.Automated detection and classification of lunar craters using multiple approached[J].Advances in Space Research, 2006, 37(1): 21-27.
doi: 10.1016/j.asr.2005.08.022     URL    
[18] Baldwin R B.The Face of the Moon[M]. Chicago: University of Chicago Press, 1949.
Baldwin R B.The Face of the Moon[M]. Chicago: University of Chicago Press, 1949.
[19] Ronca L B, Green R R.Statistical geomorphology of the lunar surface[J].Geological Society of America Bulletin, 1970, 81(2): 337-352.
doi: 10.1130/0016-7606(1970)81[337:SGOTLS]2.0.CO;2     URL    
Ronca L B, Green R R.Statistical geomorphology of the lunar surface[J].Geological Society of America Bulletin, 1970, 81(2): 337-352.
doi: 10.1130/0016-7606(1970)81[337:SGOTLS]2.0.CO;2     URL    
[20] Lewis H A G. The Times Atlas of the Moon[M]. London: Times Newspapers, 1969.
Lewis H A G. The Times Atlas of the Moon[M]. London: Times Newspapers, 1969.
[21] Bowker D E, Hughes J K.Lunar Orbiter Photographic Atlas of the Moon[R]. Houston: Lunar and Planetary Institute, 1971.
Bowker D E, Hughes J K.Lunar Orbiter Photographic Atlas of the Moon[R]. Houston: Lunar and Planetary Institute, 1971.
[22] Sheehan W, Dobbins T A.EpicMoon: A history of Lunar Exploration in the Age of the Telescope[M]. Richmond, Virginia: Willmann-Bell, 2001.
Sheehan W, Dobbins T A.EpicMoon: A history of Lunar Exploration in the Age of the Telescope[M]. Richmond, Virginia: Willmann-Bell, 2001.
[23] Whitaker E A.Mapping and Naming the Moon: A History of Lunar Cartography and Nomenclature[M]. Cambridge: Cambridge University Press, 2003.
Whitaker E A.Mapping and Naming the Moon: A History of Lunar Cartography and Nomenclature[M]. Cambridge: Cambridge University Press, 2003.
[24] International Astronomical Union Working Group for Planetary System Nomenclature. Gazetteer of Planetary Nomenclature[EB/OL] .[2017-03-11]. .
URL    
International Astronomical Union Working Group for Planetary System Nomenclature. Gazetteer of Planetary Nomenclature[EB/OL] .[2017-03-11]. .
URL    
[25] Zhou Zengpo, Cheng Weiming, Zhou Chenghu, et al. Characteristic analysis of the lunar surface and automatically extracting of the lunar morphology based on CE-1[J]. Chinese Science Bulletin, 2011, 56(1): 18-26 .
doi: 10.1360/972010-1375     URL    
Zhou Zengpo, Cheng Weiming, Zhou Chenghu, et al. Characteristic analysis of the lunar surface and automatically extracting of the lunar morphology based on CE-1[J]. Chinese Science Bulletin, 2011, 56(1): 18-26 .
[周增坡, 程维明, 周成虎, 等. 基于“嫦娥一号”的月球表面形貌特征分析与自动提取[J]. 科学通报, 2011, 56(1): 18-26.]
doi: 10.1360/972010-1375     URL    
[周增坡, 程维明, 周成虎, 等. 基于“嫦娥一号”的月球表面形貌特征分析与自动提取[J]. 科学通报, 2011, 56(1): 18-26.]
doi: 10.1360/972010-1375     URL    
[26] Wang Jiao, Cheng Weiming, Zhou Chenghu.A global inventory of lunar craters: Identification, classification, and distribution[J].Progress in Geography, 2015, 34(3): 330-342 .
doi: 10.11820/dlkxjz.2015.03.008     URL    
Wang Jiao, Cheng Weiming, Zhou Chenghu.A global inventory of lunar craters: Identification, classification, and distribution[J].Progress in Geography, 2015, 34(3): 330-342 .
[王娇, 程维明, 周成虎. 全月球撞击坑识别, 分类及空间分布[J]. 地理科学进展, 2015, 34(3): 330-342.]
doi: 10.11820/dlkxjz.2015.03.008     URL    
[王娇, 程维明, 周成虎. 全月球撞击坑识别, 分类及空间分布[J]. 地理科学进展, 2015, 34(3): 330-342.]
doi: 10.11820/dlkxjz.2015.03.008     URL    
[27] Wilhelms D E, McCauley J F. Geologic Map of the Near Side of the Moon[M]. Arizona: US Geological Survey, Map I-703, 1971.
Wilhelms D E, McCauley J F. Geologic Map of the Near Side of the Moon[M]. Arizona: US Geological Survey, Map I-703, 1971.
[28] Wilhelms D E, El-Baz F. Geologic Map of the East Side of the Moon[M]. Arizona: US Geological Survey, Map I-948, 1977.
Wilhelms D E, El-Baz F. Geologic Map of the East Side of the Moon[M]. Arizona: US Geological Survey, Map I-948, 1977.
[29] Scott D H, McCauley J F, West M N. Geologic Map of the West Side of the Moon[M]. Arizona: US Geological Survey, Map I-1034, 1977.
Scott D H, McCauley J F, West M N. Geologic Map of the West Side of the Moon[M]. Arizona: US Geological Survey, Map I-1034, 1977.
[30] Stuart-Alexander D E. Geologic Map of the Central Far Side of the Moon[M]. Arizona: US Geological Survey, Map I-1047, 1978.
Stuart-Alexander D E. Geologic Map of the Central Far Side of the Moon[M]. Arizona: US Geological Survey, Map I-1047, 1978.
[31] Lucchitta B K.Geologic Map of the North Side of the Moon[M]. Arizona: US Geological Survey, Map I-1062, 1978.
Lucchitta B K.Geologic Map of the North Side of the Moon[M]. Arizona: US Geological Survey, Map I-1062, 1978.
[32] Wilhelms D E, Howard K A, Wilshire H G. Geologic Map of the South Side of the Moon[M]. Arizona: US Geological Survey, Map I-1162, 1979.
Wilhelms D E, Howard K A, Wilshire H G. Geologic Map of the South Side of the Moon[M]. Arizona: US Geological Survey, Map I-1162, 1979.
[33] Ding Xiaozhong, Han Kunying, Han Tonglin, et al. Compilation of the geological map of Sinus Iridum Quadrangle of the Moon (LQ-4)[J]. Earth Science Frontiers, 2012, 19(6): 15-27 .
URL    
Ding Xiaozhong, Han Kunying, Han Tonglin, et al. Compilation of the geological map of Sinus Iridum Quadrangle of the Moon (LQ-4)[J]. Earth Science Frontiers, 2012, 19(6): 15-27 .
[丁孝忠, 韩坤英, 韩同林, 等. 月球虹湾幅(LQ-4)地质图的编制[J]. 地学前缘, 2012, 19(6): 15-27.]
URL    
[丁孝忠, 韩坤英, 韩同林, 等. 月球虹湾幅(LQ-4)地质图的编制[J]. 地学前缘, 2012, 19(6): 15-27.]
URL    
[34] Chen Jianping, Wang Xiang, Xu Yanbo, et al. Compilation of the lunar geotectonic outline map based on multisource data:A case study of LQ-4 Area[J]. Earth Science Frontiers, 2012, 19(6): 1-14 .
URL    
Chen Jianping, Wang Xiang, Xu Yanbo, et al. Compilation of the lunar geotectonic outline map based on multisource data:A case study of LQ-4 Area[J]. Earth Science Frontiers, 2012, 19(6): 1-14 .
[陈建平, 王翔, 许延波, 等. 基于多源数据的月球大地构造纲要图编制:以LQ-4地区为例[J]. 地学前缘, 2012, 19(6): 1-14.]
URL    
[陈建平, 王翔, 许延波, 等. 基于多源数据的月球大地构造纲要图编制:以LQ-4地区为例[J]. 地学前缘, 2012, 19(6): 1-14.]
URL    
[35] Ouyang Ziyuan, Liu Jianzhong.The origin and evolution of the Moon and its geological mapping[J]. Earth Science Frontiers, 2014, 21(6): 1-6 .
doi: 10.13745/j.esf.2014.06.001     URL    
Ouyang Ziyuan, Liu Jianzhong.The origin and evolution of the Moon and its geological mapping[J]. Earth Science Frontiers, 2014, 21(6): 1-6 .
[欧阳自远, 刘建忠. 月球形成演化与月球地质图编研[J]. 地学前缘, 2014, 21(6): 1-6.]
doi: 10.13745/j.esf.2014.06.001     URL    
[欧阳自远, 刘建忠. 月球形成演化与月球地质图编研[J]. 地学前缘, 2014, 21(6): 1-6.]
doi: 10.13745/j.esf.2014.06.001     URL    
[36] Chen Jianping, Wang Xiang, Wang Nan, et al. The lunar geological mapping based on Chang'E data: Serenitatis-Tranquillitatis area as an example[J]. Earth Science Frontiers, 2014, 21(6): 7-18 .
Chen Jianping, Wang Xiang, Wang Nan, et al. The lunar geological mapping based on Chang'E data: Serenitatis-Tranquillitatis area as an example[J]. Earth Science Frontiers, 2014, 21(6): 7-18 .
[陈建平, 王翔, 王楠, 等. 基于嫦娥数据澄海—静海幅地质图编研[J]. 地学前缘, 2014, 21(6): 7-18.]
[陈建平, 王翔, 王楠, 等. 基于嫦娥数据澄海—静海幅地质图编研[J]. 地学前缘, 2014, 21(6): 7-18.]
[37] Florinsky I V.Global Morphometric Maps of Mars, Venus, and the Moon[M]. Berlin, Germany: Springer, 2008.
Florinsky I V.Global Morphometric Maps of Mars, Venus, and the Moon[M]. Berlin, Germany: Springer, 2008.
[38] Rosenburg M A, Aharonson O, Head J W, et al. Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter[J].Journal of Geophysical Research: Planets, 2011, 116(E2): 1-11.
Rosenburg M A, Aharonson O, Head J W, et al. Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter[J].Journal of Geophysical Research: Planets, 2011, 116(E2): 1-11.
[39] Xi Xiaoxu, Liu Shaofeng, Wu Zhiyuan, et al. The interpretation of land form of Sinus Iridum on the Moon based on the roughness[J].Remote Sensing for Land and Resources, 2012, 92(1): 95-99 .
doi: 10.6046/gtzyyg.2012.01.17     URL    
Xi Xiaoxu, Liu Shaofeng, Wu Zhiyuan, et al. The interpretation of land form of Sinus Iridum on the Moon based on the roughness[J].Remote Sensing for Land and Resources, 2012, 92(1): 95-99 .
[奚晓旭,刘少峰,吴志远,等. 基于粗糙度的月球表面虹湾地区地形地貌解译[J]. 国土资源遥感, 2012, 92(1): 95-99.]
doi: 10.6046/gtzyyg.2012.01.17     URL    
[奚晓旭,刘少峰,吴志远,等. 基于粗糙度的月球表面虹湾地区地形地貌解译[J]. 国土资源遥感, 2012, 92(1): 95-99.]
doi: 10.6046/gtzyyg.2012.01.17     URL    
[40] Wang Chenzhi, Tang Guoan, Yuan Sai, et al. A method for identifying the lunar morphology based on texture from DEMs[J].Journal of Geo-information Science, 2015, 17(1): 45-53 .
doi: 10.3724/SP.J.1047.2015.00045     URL    
Wang Chenzhi, Tang Guoan, Yuan Sai, et al. A method for identifying the lunar morphology based on texture from DEMs[J].Journal of Geo-information Science, 2015, 17(1): 45-53 .
[王琛智,汤国安,袁赛,等. 基于DEM 纹理特征的月貌自动识别方法探究[J]. 地球信息科学学报, 2015, 17(1): 45-53.]
doi: 10.3724/SP.J.1047.2015.00045     URL    
[王琛智,汤国安,袁赛,等. 基于DEM 纹理特征的月貌自动识别方法探究[J]. 地球信息科学学报, 2015, 17(1): 45-53.]
doi: 10.3724/SP.J.1047.2015.00045     URL    
[41] Bue B D, Stepinski T F.Automated classification of landforms on Mars[J].Computers and Geosciences, 2006, 32(5): 604-614.
doi: 10.1016/j.cageo.2005.09.004     URL    
Bue B D, Stepinski T F.Automated classification of landforms on Mars[J].Computers and Geosciences, 2006, 32(5): 604-614.
doi: 10.1016/j.cageo.2005.09.004     URL    
[42] Li Jing, Chen Jianping, Wang Nan, et al. A new automated approach to detecting and extracting the linear structures on the lunar surface: A case study on the lunar mare ridge of Mare Serenitatis[J]. Earth Science Frontiers, 2014, 21(6): 223-228 .
Li Jing, Chen Jianping, Wang Nan, et al. A new automated approach to detecting and extracting the linear structures on the lunar surface: A case study on the lunar mare ridge of Mare Serenitatis[J]. Earth Science Frontiers, 2014, 21(6): 223-228 .
[李婧, 陈建平, 王楠, 等. 月球表面线性构造自动提取新方法研究: 以澄海地区月岭为例[J]. 地学前缘, 2014, 21(6): 223-228.]
[李婧, 陈建平, 王楠, 等. 月球表面线性构造自动提取新方法研究: 以澄海地区月岭为例[J]. 地学前缘, 2014, 21(6): 223-228.]
[43] Li Ke, Chen Jianping, Tarolli P, et al. Geomorphometric multi-scale analysis for the automatic detection of linear structures on the lunar surface[J]. Earth Science Frontiers, 2014, 21(6):212-222 .
doi: 10.13745/j.esf.2014.06.021     URL    
Li Ke, Chen Jianping, Tarolli P, et al. Geomorphometric multi-scale analysis for the automatic detection of linear structures on the lunar surface[J]. Earth Science Frontiers, 2014, 21(6):212-222 .
[李珂,陈建平,Tarolli Paolo,等. 基于多尺度数字地形定量分析的月球线性构造自动提取研究[J]. 地学前缘, 2014, 21(6): 212-222.]
doi: 10.13745/j.esf.2014.06.021     URL    
[李珂,陈建平,Tarolli Paolo,等. 基于多尺度数字地形定量分析的月球线性构造自动提取研究[J]. 地学前缘, 2014, 21(6): 212-222.]
doi: 10.13745/j.esf.2014.06.021     URL    
[44] Wang Nan.Automated Extraction and Evolution Analysis of the Lineaments on Mare Tranquillitatis of the Moon[D]. Beijing: China University of Geosciences, 2015 .
Wang Nan.Automated Extraction and Evolution Analysis of the Lineaments on Mare Tranquillitatis of the Moon[D]. Beijing: China University of Geosciences, 2015 .
[王楠. 月球静海地区线性构造自动提取与演化分析[D]. 北京: 中国地质大学, 2015.]
[王楠. 月球静海地区线性构造自动提取与演化分析[D]. 北京: 中国地质大学, 2015.]
[45] Chabot N L, Hoppa G V, Strom R G.Analysis of lunar lineaments: Far side and polar mapping[J].Icarus, 2000, 147(1): 301-308.
doi: 10.1006/icar.2000.6433     URL    
Chabot N L, Hoppa G V, Strom R G.Analysis of lunar lineaments: Far side and polar mapping[J].Icarus, 2000, 147(1): 301-308.
doi: 10.1006/icar.2000.6433     URL    
[46] Neukum G, K?nig B, Arkani-Hamed J.A study of lunar impact crater size-distributions[J]. Moon, 1975, 12(2):201-229.
doi: 10.1007/BF00577878     URL    
Neukum G, König B, Arkani-Hamed J.A study of lunar impact crater size-distributions[J]. Moon, 1975, 12(2):201-229.
doi: 10.1007/BF00577878     URL    
[47] Yue Zongyu, Liu Jianzhong, Wu Ganguo.Automated detection of lunar craters based on object-oriented approach[J]. Chinese Science Bulletin, 2008, 53(23): 3 699-3 704.
doi: 10.1007/s11434-008-0413-3     URL    
Yue Zongyu, Liu Jianzhong, Wu Ganguo.Automated detection of lunar craters based on object-oriented approach[J]. Chinese Science Bulletin, 2008, 53(23): 3 699-3 704.
doi: 10.1007/s11434-008-0413-3     URL    
[48] Moutsoulas M, Preka P.Morphological characteristics of lunar craters with small depth/diameter ratio I[J].Earth, Moon and Planets, 1979, 21(3): 299-305.
Moutsoulas M, Preka P.Morphological characteristics of lunar craters with small depth/diameter ratio I[J].Earth, Moon and Planets, 1979, 21(3): 299-305.
[49] Grieve R A F, Pesonen L J. Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies[M]//Worlds in Interaction: Small Bodies and Planets of the Solar System. Netherlands: Springer Netherlands, 1996: 357-376.
Grieve R A F, Pesonen L J. Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies[M]//Worlds in Interaction: Small Bodies and Planets of the Solar System. Netherlands: Springer Netherlands, 1996: 357-376.
[50] Ding Meng, Cao Yunfeng, Wu Qingxian.A method of craters detection from the surface imagery of Moon[J]. Journal of Astronautics, 2009, 30(3): 1 243-1 248.
doi: 10.1016/0021-9614(78)90029-0     URL    
Ding Meng, Cao Yunfeng, Wu Qingxian.A method of craters detection from the surface imagery of Moon[J]. Journal of Astronautics, 2009, 30(3): 1 243-1 248.
doi: 10.1016/0021-9614(78)90029-0     URL    
[51] Du Jun, Miao Fang, Lu Yuhang, et al. Research on appraisal of edge definition of impact craters[J]. Computer Engineering and Applications, 2013,49(15): 179-183 .
URL    
Du Jun, Miao Fang, Lu Yuhang, et al. Research on appraisal of edge definition of impact craters[J]. Computer Engineering and Applications, 2013,49(15): 179-183 .
[都骏, 苗放, 鲁宇航, 等. 月球撞击坑边缘清晰度评价方法的研究[J]. 计算机工程与应用, 2013,49(15): 179-183.]
URL    
[都骏, 苗放, 鲁宇航, 等. 月球撞击坑边缘清晰度评价方法的研究[J]. 计算机工程与应用, 2013,49(15): 179-183.]
URL    
[52] Bijaoui A, Froeschle M M.A new algorithm to determine image edges—Application to lunar craters[J]. Astronomy and Astrophysics, 1980, 87(1/2): 250-251.
URL    
Bijaoui A, Froeschle M M.A new algorithm to determine image edges—Application to lunar craters[J]. Astronomy and Astrophysics, 1980, 87(1/2): 250-251.
URL    
[53] Canny J.A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
URL    
Canny J.A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
URL    
[54] Salamuni?car G, Lon?ari? S, Mazarico E. LU60645GT and MA132843GT catalogues of Lunar and Martian impact craters developed using a Crater Shape—Based interpolation crater detection algorithm for topography data[J]. Planetary and Space Science, 2012, 60(1): 236-247.
doi: 10.1016/j.pss.2011.09.003     URL    
Salamunićcar G, Lončarić S, Mazarico E. LU60645GT and MA132843GT catalogues of Lunar and Martian impact craters developed using a Crater Shape—Based interpolation crater detection algorithm for topography data[J]. Planetary and Space Science, 2012, 60(1): 236-247.
doi: 10.1016/j.pss.2011.09.003     URL    
[55] Yuan Yuefeng, Zhu Peimin, Zhao Na, et al. Automatic identification of circular mare craters based on mathematical morphology[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2013,43(3): 324-332 .
Yuan Yuefeng, Zhu Peimin, Zhao Na, et al. Automatic identification of circular mare craters based on mathematical morphology[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2013,43(3): 324-332 .
[袁悦锋, 朱培民, 赵娜, 等. 基于数学形态学的月海圆形撞击坑自动识别方法[J]. 中国科学: 物理学, 力学, 天文学,2013, 43(3): 324-332.]
[袁悦锋, 朱培民, 赵娜, 等. 基于数学形态学的月海圆形撞击坑自动识别方法[J]. 中国科学: 物理学, 力学, 天文学,2013, 43(3): 324-332.]
[56] Michael G G.Coordinate registration by automated crater recognition[J]. Planetary and Space Science, 2003, 51(9): 563-568.
doi: 10.1016/S0032-0633(03)00074-6     URL    
Michael G G.Coordinate registration by automated crater recognition[J]. Planetary and Space Science, 2003, 51(9): 563-568.
doi: 10.1016/S0032-0633(03)00074-6     URL    
[57] Kim J R, Muller J P, Mor ley J G. Quantitative assessment of automated crater detection on Mars[C]//2004 ISPRS Congress. Istanbul, Turkey: ISPRS, 2004.
Kim J R, Muller J P, Mor ley J G. Quantitative assessment of automated crater detection on Mars[C]//2004 ISPRS Congress. Istanbul, Turkey: ISPRS, 2004.
[58] Leroy B, Medioni G, Johnson E, et al. Crater detection for autonomous landing on asteroids[J]. Image and Vision Computing, 2001, 19(11): 787-792.
doi: 10.1016/S0262-8856(00)00111-6     URL    
Leroy B, Medioni G, Johnson E, et al. Crater detection for autonomous landing on asteroids[J]. Image and Vision Computing, 2001, 19(11): 787-792.
doi: 10.1016/S0262-8856(00)00111-6     URL    
[59] He Jiang.Research on Crater Matching Based Navigation Method for Lunar Precise Landing[D]. Haerbing: Harbin Institute of Technology, 2010 .
He Jiang.Research on Crater Matching Based Navigation Method for Lunar Precise Landing[D]. Haerbing: Harbin Institute of Technology, 2010 .
[何江. 基于陨石坑匹配的月球精确着陆导航方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.]
[何江. 基于陨石坑匹配的月球精确着陆导航方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.]
[60] Plesko C S, Werner S C, Brumby S P, et al. A statistical analysis of automated crater counts in MOC and HRSC data[C]//37th Annual Lunar and Planetary Science Conference. League City,Texas: Lunar and Planetary Institute, 2006.
Plesko C S, Werner S C, Brumby S P, et al. A statistical analysis of automated crater counts in MOC and HRSC data[C]//37th Annual Lunar and Planetary Science Conference. League City,Texas: Lunar and Planetary Institute, 2006.
[61] Honda R, Iijima Y, Konishi O.Mining of topographic feature from heterogeneous imagery and its application to lunar craters[C]//Proceeding of the Progress of Discovery Science. Berlin, Germany: Springer, 2002.
Honda R, Iijima Y, Konishi O.Mining of topographic feature from heterogeneous imagery and its application to lunar craters[C]//Proceeding of the Progress of Discovery Science. Berlin, Germany: Springer, 2002.
[62] Sawabe Y, Matsunaga T, Rokugawa S.Automated detection and classification of lunar craters using multiple approaches[J].Advances in Space Research, 2006, 37(1): 21-27.
doi: 10.1016/j.asr.2005.08.022     URL    
Sawabe Y, Matsunaga T, Rokugawa S.Automated detection and classification of lunar craters using multiple approaches[J].Advances in Space Research, 2006, 37(1): 21-27.
doi: 10.1016/j.asr.2005.08.022     URL    
[63] Burl M C, Stough T, Colwell W, et al. Automated detection of craters and other geological features[C]//6th International Symposium on Artificial Intelligence, Robotics and Automation in Space. United States: NASA Technical Reports Server, 2001.
Burl M C, Stough T, Colwell W, et al. Automated detection of craters and other geological features[C]//6th International Symposium on Artificial Intelligence, Robotics and Automation in Space. United States: NASA Technical Reports Server, 2001.
[64] Wan Cong, Cheng Weiming, Zhou Zengpo, et al. Automatic extraction of lunar impact craters from Chang'E-1 satellite photographs[J]. Science China, Physics, Mechanics and Astronomy, 2012, 55(1): 162-169.
Wan Cong, Cheng Weiming, Zhou Zengpo, et al. Automatic extraction of lunar impact craters from Chang'E-1 satellite photographs[J]. Science China, Physics, Mechanics and Astronomy, 2012, 55(1): 162-169.
[65] Salamuni?car G, Lon?ari? S. Method for crater detection from Martian digital topography data using gradient value orientation, morphometry, votes-analysis, slip-tuning and calibration[J]. IEEE Transaction on Geoscience and Remote Sensing, 2010, 48(5): 2 317-2 329.
doi: 10.1109/TGRS.2009.2037750     URL    
Salamunićcar G, Lončarić S. Method for crater detection from Martian digital topography data using gradient value orientation, morphometry, votes-analysis, slip-tuning and calibration[J]. IEEE Transaction on Geoscience and Remote Sensing, 2010, 48(5): 2 317-2 329.
doi: 10.1109/TGRS.2009.2037750     URL    
[66] Salamuni?car G, Lon?ari? S, Vinkovi? D, et al. Test-field for evaluation of laboratory craters using a Crater Shape—Based interpolation crater detection algorithm and comparison with Martian and Lunar impact craters[J]. Planetary and Space Science, 2012, 71(1): 106-118.
doi: 10.1016/j.pss.2012.07.021     URL    
Salamunićcar G, Lončarić S, Vinković D, et al. Test-field for evaluation of laboratory craters using a Crater Shape—Based interpolation crater detection algorithm and comparison with Martian and Lunar impact craters[J]. Planetary and Space Science, 2012, 71(1): 106-118.
doi: 10.1016/j.pss.2012.07.021     URL    
[67] Luo Lei, Mu Lingli, Wang Xinyuan, et al. Global detection of large lunar craters based on the CE-1 digital elevation model[J].Frontiers of Earth Science, 2013, 7(4): 456-464.
doi: 10.1007/s11707-013-0361-3     URL    
Luo Lei, Mu Lingli, Wang Xinyuan, et al. Global detection of large lunar craters based on the CE-1 digital elevation model[J].Frontiers of Earth Science, 2013, 7(4): 456-464.
doi: 10.1007/s11707-013-0361-3     URL    
[68] Di Kaichang, Li Wei, Yue Zongyu, et al. A machine learning approach to crater detection from topographic data[J]. Advances in Space Research, 2014, 54(11): 2 419-2 429.
doi: 10.1016/j.asr.2014.08.018     URL    
Di Kaichang, Li Wei, Yue Zongyu, et al. A machine learning approach to crater detection from topographic data[J]. Advances in Space Research, 2014, 54(11): 2 419-2 429.
doi: 10.1016/j.asr.2014.08.018     URL    
[69] Bue B D, Stepinski T F.Machine detection of martian impact craters from digital topography Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45: 265-274.
doi: 10.1109/TGRS.2006.885402     URL    
Bue B D, Stepinski T F.Machine detection of martian impact craters from digital topography Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45: 265-274.
doi: 10.1109/TGRS.2006.885402     URL    
[70] Hawke B R, Blewett D T, Lucey P G, et al. The origin of lunar crater rays[J]. Icarus, 2004, 170(1):1-16.
doi: 10.1016/j.icarus.2004.02.013     URL    
Hawke B R, Blewett D T, Lucey P G, et al. The origin of lunar crater rays[J]. Icarus, 2004, 170(1):1-16.
doi: 10.1016/j.icarus.2004.02.013     URL    
[71] Salamuni?car G, Lon?ari? S, Grumpe A, et al. Hybrid method for crater detection based on topography reconstruction from optical images and the new LU78287GT catalogue of lunar impact craters[J]. Advances in Space Research, 2014, 53(12): 1 783-1 797.
doi: 10.1016/j.asr.2013.06.024     URL    
Salamunićcar G, Lončarić S, Grumpe A, et al. Hybrid method for crater detection based on topography reconstruction from optical images and the new LU78287GT catalogue of lunar impact craters[J]. Advances in Space Research, 2014, 53(12): 1 783-1 797.
doi: 10.1016/j.asr.2013.06.024     URL    
[72] Wang Jiao, Cheng Weiming, Zhou Chenghu.A Chang'E-1 global catalog of lunar impact craters[J].Planetary and Space Science, 2015, 112: 42-45.
doi: 10.1016/j.pss.2015.04.012     URL    
Wang Jiao, Cheng Weiming, Zhou Chenghu.A Chang'E-1 global catalog of lunar impact craters[J].Planetary and Space Science, 2015, 112: 42-45.
doi: 10.1016/j.pss.2015.04.012     URL    
[73] Luo Zhongfei, Kang Zhizhong, Liu Xinyi.The automatic extraction and recognition of lunar impact craters fusing CCD images and DEM data of Chang'E-1[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 924-930 .
doi: 10.13485/j.cnki.11-2089.2014.0137     URL    
Luo Zhongfei, Kang Zhizhong, Liu Xinyi.The automatic extraction and recognition of lunar impact craters fusing CCD images and DEM data of Chang'E-1[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 924-930 .
[罗中飞, 康志忠, 刘心怡.融合嫦娥一号CCD影像与DEM数据的月球撞击坑自动提取和识别[J].测绘学报, 2014, 43(9): 924-930.]
doi: 10.13485/j.cnki.11-2089.2014.0137     URL    
[罗中飞, 康志忠, 刘心怡.融合嫦娥一号CCD影像与DEM数据的月球撞击坑自动提取和识别[J].测绘学报, 2014, 43(9): 924-930.]
doi: 10.13485/j.cnki.11-2089.2014.0137     URL    
[74] Wood C A, Anderson L.New morphometric data for fresh lunar craters[J]. Lunar and Planetary Science Conference Proceedings, 1978, 9: 3 669-3 689.
URL    
Wood C A, Anderson L.New morphometric data for fresh lunar craters[J]. Lunar and Planetary Science Conference Proceedings, 1978, 9: 3 669-3 689.
URL    
[75] Morota T, Furumoto M.Asymmetrical distribution of rayed craters on the Moon[J]. Earth and Planetary Science Letters, 2003, 206(3): 315-323.
doi: 10.1016/S0012-821X(02)01111-1     URL    
Morota T, Furumoto M.Asymmetrical distribution of rayed craters on the Moon[J]. Earth and Planetary Science Letters, 2003, 206(3): 315-323.
doi: 10.1016/S0012-821X(02)01111-1     URL    
[76] Oberbeck V R, Greeley R, Morgan R B, et al. Lunar Rilles: A Catalog and Method of Classification[R]. Space Sciences, 1971:83.
Oberbeck V R, Greeley R, Morgan R B, et al. Lunar Rilles: A Catalog and Method of Classification[R]. Space Sciences, 1971:83.
[77] Li Li, Liu Shaofeng, Wei Wei, et al. Interpretaion of landform of sinuous rilles on the moon based on multidata of remote sensing[J].Remote Sensing for Land and Resources, 2012, 94(3): 16-21 .
Li Li, Liu Shaofeng, Wei Wei, et al. Interpretaion of landform of sinuous rilles on the moon based on multidata of remote sensing[J].Remote Sensing for Land and Resources, 2012, 94(3): 16-21 .
[李力, 刘少峰, 韦蔚, 等. 基于多源遥感数据的弯曲月溪形貌特征解译[J]. 国土资源遥感, 2012, 94(3): 16-21.]
[李力, 刘少峰, 韦蔚, 等. 基于多源遥感数据的弯曲月溪形貌特征解译[J]. 国土资源遥感, 2012, 94(3): 16-21.]
[78] Fieder G.Lunar Geology[M]. London: Lutterworth Press, 1965.
Fieder G.Lunar Geology[M]. London: Lutterworth Press, 1965.
[79] Zhou Chenghu, Cheng Weiming, Qian Jinkai, et al. Research on the classification system of digital land geomorphology of 1∶ 1000000 in China[J].Journal of Geo-information Science, 2009, 11(6): 707-724 .
doi: 10.3969/j.issn.1560-8999.2009.06.006     URL    
Zhou Chenghu, Cheng Weiming, Qian Jinkai, et al. Research on the classification system of digital land geomorphology of 1∶ 1000000 in China[J].Journal of Geo-information Science, 2009, 11(6): 707-724 .
[周成虎, 程维明,钱金凯,等. 中国陆地1∶ 100万数字地貌分类体系研究[J]. 地球信息科学学报, 2009, 11(6): 707-724.]
doi: 10.3969/j.issn.1560-8999.2009.06.006     URL    
[周成虎, 程维明,钱金凯,等. 中国陆地1∶ 100万数字地貌分类体系研究[J]. 地球信息科学学报, 2009, 11(6): 707-724.]
doi: 10.3969/j.issn.1560-8999.2009.06.006     URL    
[80] Stuart-Alexander D E, Howard K A. Lunar maria and circular basins—A review[J]. Icarus, 1970, 12(3): 440-456.
doi: 10.1016/0019-1035(70)90013-8     URL    
Stuart-Alexander D E, Howard K A. Lunar maria and circular basins—A review[J]. Icarus, 1970, 12(3): 440-456.
doi: 10.1016/0019-1035(70)90013-8     URL    
[81] Lucey P G.Mineral maps of the Moon[J].Geophysical Research Letters, 2004, 31(8):1-4.
doi: 10.1029/2003GL019406     URL    
Lucey P G.Mineral maps of the Moon[J].Geophysical Research Letters, 2004, 31(8):1-4.
doi: 10.1029/2003GL019406     URL    
[82] Andersson L A, Whitaker E A.NASA Catalogue of Lunar Nomenclature[M]. United States: NASA Reference Publication, 1982.
Andersson L A, Whitaker E A.NASA Catalogue of Lunar Nomenclature[M]. United States: NASA Reference Publication, 1982.
[83] Whitaker E A.Mapping and Naming the Moon: A History of Lunar Cartography and Nomenclature[M]. Cambridge: Cambridge University Press, 2003.
Whitaker E A.Mapping and Naming the Moon: A History of Lunar Cartography and Nomenclature[M]. Cambridge: Cambridge University Press, 2003.
[84] Compiling Committee of the Chang'E-1 Image Atlas of the Moon. The Chang'E-1 Image Atlas of the Moon[M]. Beijing: SinoMaps Press, 2010 .
Compiling Committee of the Chang'E-1 Image Atlas of the Moon. The Chang'E-1 Image Atlas of the Moon[M]. Beijing: SinoMaps Press, 2010 .
[《嫦娥一号全月球影像图集》编辑委员会. 嫦娥一号全月球影像图集[M]. 北京:中国地图出版社,2010.]
[《嫦娥一号全月球影像图集》编辑委员会. 嫦娥一号全月球影像图集[M]. 北京:中国地图出版社,2010.]
[85] Compiling Committee of the Chang'E-1 Topographic Atlas of the Moon. The Chang'E-1 Topographic Atlas of the Moon[M]. Beijing: SinoMaps Press, 2013 .
Compiling Committee of the Chang'E-1 Topographic Atlas of the Moon. The Chang'E-1 Topographic Atlas of the Moon[M]. Beijing: SinoMaps Press, 2013 .
[《嫦娥一号全月球地形图集》编辑委员会. 嫦娥一号全月球地形图集[M]. 北京:中国地图出版社,2013.]
[《嫦娥一号全月球地形图集》编辑委员会. 嫦娥一号全月球地形图集[M]. 北京:中国地图出版社,2013.]
[1] 王飞宇,金之钧,吕修祥,肖贤明,彭平安,孙永革. 含油气盆地成藏期分析理论和新方法[J]. 地球科学进展, 2002, 17(5): 754-762.
[2] 郭进义;姜文英. 地球化学学科15年回顾[J]. 地球科学进展, 2001, 16(6): 858-861.
[3] 于晟;于贵华;艾印双;单新建. 地球物理与空间物理学15年回顾[J]. 地球科学进展, 2001, 16(6): 862-864.
[4] 刘宝珺,李廷栋. 地质学的若干问题[J]. 地球科学进展, 2001, 16(5): 607-616.
阅读次数
全文


摘要