地球科学进展 ›› 2018, Vol. 33 ›› Issue (5): 473 -482. doi: 10.11867/j.issn.1001-8166.2018.05.0473

综述与评述 上一篇    下一篇

月表太阳风成因水的研究现状和意义
曾献棣 1, 2, 3, 唐红 1, 3, *, 李雄耀 1, 3, 欧阳自远 1, 王世杰 4   
  1. 1.中国科学院地球化学研究所月球与行星科学研究中心,贵州 贵阳 550081
    2.中国科学院大学, 北京 100049
    3.中国科学院太空制造技术重点实验室,北京 100094
    4.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550081
  • 收稿日期:2018-01-01 修回日期:2018-04-10 出版日期:2018-05-20
  • 通讯作者: 唐红
  • 基金资助:
    *国家自然科学基金项目“月表主要硅酸盐矿物中太阳风成因水的实验对比研究”(编号:41773066);中国科学院青年创新促进会资助.

Research Review and Significance of Lunar Water Originated from Solar Wind

Xiandi Zeng 1, 2, 3, Hong Tang 1, 3, *, Xiongyao Li 1, 3, Ziyuan Ouyang 1, Shijie Wang 4   

  1. 1.Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
    2.University of Chinese Academy of Sciences, Beijing 100049,China
    3.Key Laboratory of Space Manufacturing Technology, Chinese Academy of Sciences, Beijing 100094,China
    4.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Received:2018-01-01 Revised:2018-04-10 Online:2018-05-20 Published:2018-06-13
  • Contact: Hong Tang
  • About author:

    First author:Zeng Xiandi(1992-), male, Guangzhou City, Guangdong Province, Master student. Research areas include lunar planetary science.E-mail:zengxiandi@mail.gyig.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Experimental comparison of the solar wind-produced water in lunar main silicates minerals”(No.41773066);Youth Innovation Promotion Association CAS.

水是生命活动的基础,也是天体演化的重要部分。月球一直被认为是“无水”星体,但这一观点被最新的研究成果推翻。月球遥感红外光谱和Apollo样品分析结果均证实了月球表面能通过太阳风质子与月壤矿物相互作用来产生OH甚至是H2O。为探讨其反应过程,相关理论分析和离子注入模拟实验等研究已逐步开展。但是,目前对于太阳风成因水的成因机制,形成时的影响因素,产生后在月表的赋存、迁移和保留机制仍缺乏系统研究。针对这些问题,未来立足于嫦娥五号样品分析,建立月球表面太阳风成因水的形成和迁移运动的模型将会是推进月球水研究的重要部分。这不仅能为月球水资源开发利用提供线索,还可能为太阳系内其他无大气类地行星水来源和演化研究提供参考。

Water plays an important role in the evolution history of terrestrial planets and is also an indispensable resource for space exploration. The moon was used to be thought as “bone-dry”. However, this view was challenged by the latest achievements. Both the infrared remote sensing data and Apollo sample results have shown that some hydroxyl (and even H2O) can be produced by the reaction between the solar wind proton and regolith mineral on the Moon. A series of theoretical analysis and simulated ion implantation experiments have been carried out to discuss such processes. Many issues related to the solar wind-produced water have not been well understood yet, e.g., the formation mechanism, influencing factors, occurrence state, migration, and retention. To answer these questions, it is necessary to investigate the formation mechanism and migration of solar wind-produced water based on the Change’e-5 returned samples in the future. These studies can not only can provide clues for the exploitation and utilization of water on the Moon, but also help us to understand the origin and evolution of water on other airless terrestrial planets.

中图分类号: 

图1 月表上遥感红外水吸收峰分布
(a)VIMS检测在月表不同纬度范围的水吸收峰变化 [ 11 ];(b)M 3检测3 μm吸收峰主要在月球极地区域分布 [ 12 ];(c)Deep Impact检测2.8 μm吸收峰在北半球月面含量变化图 [ 13 ]
Fig.1 Infrared remote sensing of water absorption peaks on lunar surface
(a) Varying water absorbance distribute on lunar surface in different latitudes from VIMS [ 11 ]; (b) Measured 3 μm absorption strength on the polar region of the moon from M 3[ 12 ]; (c) The strength of the continuum-removed 2.8 μm hydration feature on lunar surface of the Northern Hemisphere from the Deep Impact [ 13 ]
图1 月表上遥感红外水吸收峰分布
(a)VIMS检测在月表不同纬度范围的水吸收峰变化 [ 11 ];(b)M 3检测3 μm吸收峰主要在月球极地区域分布 [ 12 ];(c)Deep Impact检测2.8 μm吸收峰在北半球月面含量变化图 [ 13 ]
Fig.1 Infrared remote sensing of water absorption peaks on lunar surface
(a) Varying water absorbance distribute on lunar surface in different latitudes from VIMS [ 11 ]; (b) Measured 3 μm absorption strength on the polar region of the moon from M 3[ 12 ]; (c) The strength of the continuum-removed 2.8 μm hydration feature on lunar surface of the Northern Hemisphere from the Deep Impact [ 13 ]
图2 对比1/4天内月海和高地区域在不同纬度和不同时间的水吸收峰变化 [ 13 ]
(a)不同纬度月海区域的水吸收峰变化;(b)不同纬度高地区域的水吸收峰变化;(c)月海区域在不同时间的水吸收峰变化; (d)高地区域在不同时间的水吸收峰变化;(e)1,2,3,9,M为月海区域,5,6,7,8,H为高地区域
Fig.2 Comparisons of mare and highland terrains as a function of latitude and time of day as observed over a quarter of a lunar day [ 13 ]
(a)Variation of water absorption in mare region at different latitude;(b)Variation of water absorption in highland region at different latitude; (c)Variation of water absorption in mare region at different time;(d)Variation of water absorption in highland region at different time;(e)1, 2, 3, 9, M for mare region, 5,6,7,8, H for highland region
图2 对比1/4天内月海和高地区域在不同纬度和不同时间的水吸收峰变化 [ 13 ]
(a)不同纬度月海区域的水吸收峰变化;(b)不同纬度高地区域的水吸收峰变化;(c)月海区域在不同时间的水吸收峰变化; (d)高地区域在不同时间的水吸收峰变化;(e)1,2,3,9,M为月海区域,5,6,7,8,H为高地区域
Fig.2 Comparisons of mare and highland terrains as a function of latitude and time of day as observed over a quarter of a lunar day [ 13 ]
(a)Variation of water absorption in mare region at different latitude;(b)Variation of water absorption in highland region at different latitude; (c)Variation of water absorption in mare region at different time;(d)Variation of water absorption in highland region at different time;(e)1, 2, 3, 9, M for mare region, 5,6,7,8, H for highland region
Fig.3 FTIR spectra and SIMS data of two agglutinates [ 20 ]
δD(‰)=[(D/H) measured/(D/H) standard-1]×1 000,(D/H) standard=1.5576×10 -4; ppm为×10 -6
Fig.3 FTIR spectra and SIMS data of two agglutinates [ 20 ]
δD(‰)=[(D/H) measured/(D/H) standard-1]×1 000,(D/H) standard=1.5576×10 -4; ppm为×10 -6
[1] Watson K, Murray B C, Brown H.The behavior of volatiles on the lunar surface[J]. Journal of Geophysical Research, 1961, 66(9):3 033-3 045.
doi: 10.1029/JZ066i009p03033     URL    
[2] Jolliff B L,Wieczorek M A, Shearer C K, et al. Review in Mineralogy and Geochemistry Vol.60: New Views of the Moon[M]. Chantilly V A: Mineralogical Society of America, 2006:365-518.
[3] Stacy N J S, Campbell D B, Ford P G. Arecibo radar mapping of the Lunar Poles: A search for ice deposits[J]. Science, 1997, 276(5 318):1 527-1 530.
doi: 10.1126/science.276.5318.1527     URL    
[4] Nozette S, Lichtenberg C L, Spudis P, et al.The clementine bistatic radar experiment[J]. Science, 1996, 274(5 292):1 495-1 498.
doi: 10.1126/science.274.5292.1495     URL     pmid: 8929403
[5] Weidenschilling S J, Nozette S, Shoemaker E M, et al.The possibility of ice on the moon[J]. Science, 1997, 278(5 335):144-145.
doi: 10.1126/science.278.5335.144     URL    
[6] Feldman W C, Maurice S, Binder A B, et al.Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles[J]. Science, 1998, 281(5 382):1 496-1 500.
doi: 10.1126/science.281.5382.1496     URL     pmid: 9727973
[7] Feldman W C, Lawrence D J, Elphic R C, et al.Polar hydrogen deposits on the Moon[J]. Journal of Geophysical Research Planets, 2000, 105(E2):4 175-4 195.
doi: 10.1029/1999JE001129     URL    
[8] Starukhina L V, Shkuratov Y G.The lunar poles: Water ice or chemically trapped hydrogen?[J]. Icarus, 2000, 147(2):585-587.
doi: 10.1006/icar.2000.6476     URL    
[9] Starukhina L.Water detection on atmosphereless celestial bodies: Alternative explanations of the observations[J]. Journal of Geophysical Research Planets, 2001, 106(E7):14 701-14 710.
doi: 10.1029/2000JE001307     URL    
[10] Goldstein D B, Nerem R S, Barker E S, et al.Impacting lunar prospector in a cold trap to detect water ice[J]. Geophysical Research Letters, 1999, 26(12):1 653-1 656.
doi: 10.1029/1999GL900384     URL    
[11] Clark R N.Detection of adsorbed water and hydroxyl on the Moon[J]. Science, 2009, 326(5 952):562-564.
doi: 10.1126/science.1178105     URL     pmid: 19779152
[12] Pieters C M, Goswami J N, Clark R N, et al.Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1[J]. Science, 2009, 326(5 952):568-572.
doi: 10.1126/science.1178658     URL     pmid: 19779151
[13] Sunshine J M, Farnham T L, Feaga L M, et al.Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft[J]. Science, 2009, 326(5 952):565-568.
doi: 10.1126/science.1179788     URL     pmid: 19779149
[14] Spudis P D, Bussey D B J, Baloga S M, et al. Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission[J]. Geophysical Research Letters, 2010, 37(6):401-408.
[15] Mitrofanov I G, Sanin A B, Boynton W V, et al.Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND[J]. Science, 2010, 330(6 003):483-486.
doi: 10.1126/science.1185696     URL    
[16] Colaprete A, Schultz P, Heldmann J, et al.Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6 003):463-468.
doi: 10.1126/science.1186986     URL     pmid: 20966242
[17] Saal A E, Hauri E H, Cascio M L, et al.Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior[J]. Nature, 2008, 454(7 201):192-195.
doi: 10.1038/nature07047     URL     pmid: 18615079
[18] Boyce J W, Liu Y, Rossman G R, et al.Lunar apatite with terrestrial volatile abundances[J]. Nature, 2010, 466(7 305):466-469.
doi: 10.1038/nature09274     URL     pmid: 20651686
[19] Hui Hejiu, Peslier A H, Zhang Youxue, et al.Water in lunar anorthosites and evidence for a wet early Moon[J]. Nature Geoscience, 2013, 6(3):177-180.
doi: 10.1038/ngeo1735     URL    
[20] Liu Yang, Guan Yunbin, Zhang Youxue, et al.Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water[J]. Nature Geoscience, 2012, 5(11):779-782.
doi: 10.1038/ngeo1601     URL    
[21] Hauri E H, Orman J A V. High pre-eruptive water contents preserved in lunar melt inclusions[J]. Science, 2011, 333(6 039):213-215.
doi: 10.1126/science.1204626     URL     pmid: 21617039
[22] Greenwood J P, Itoh S, Sakamoto N, et al.Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon[J]. Nature Geoscience, 2011, 4(2):79-82.
doi: 10.1038/ngeo1050     URL    
[23] Arnold J R.Ice in the lunar polar regions[J]. Journal of Geophysical Research, 1979, 84(B10):5 659-5 668.
doi: 10.1029/JB084iB10p05659     URL    
[24] Lucey P G.A lunar ater world[J]. Science, 2009, 326(5 952):531-532.
doi: 10.1126/science.1181471     URL    
[25] Anand M.Lunar water: A brief review[J]. Earth Moon & Planets, 2010, 107(1):65-73.
doi: 10.1007/s11038-010-9377-9     URL    
[26] Barnes J J, Kring D A, Tartèse R, et al.An asteroidal origin for water in the Moon[J]. Nature Communications, 2016, 7:11 684.
doi: 10.1038/ncomms11684     URL     pmid: 4895054
[27] Stewart B D, Pierazzo E, Goldstein D B, et al.Simulations of a comet impact on the Moon and associated ice deposition in polar cold traps[J]. Icarus, 2011, 215(1):1-16.
doi: 10.1016/j.icarus.2011.03.014     URL    
[28] Butler B J.The migration of volatiles on the surfaces of Mercury and the Moon[J]. Journal of Geophysical Research Planets, 1997, 102(E8):19 283-19 291.
doi: 10.1029/97JE01347     URL    
[29] Schorghofer N, Taylor G J.Subsurface migration of H2O at lunar cold traps[J]. Journal of Geophysical Research: Planets, 2007, 112(E2). DOI:10.1029/2006JE002779.
doi: 10.1029/2006JE002779     URL    
[30] Rayman M D, Fraschetti T C, Raymond C A, et al.Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres[J]. Acta Astronautica, 2006, 58(11):605-616.
doi: 10.1016/j.actaastro.2006.01.014     URL    
[31] De Sanctis M C, Combe J P, Ammannito E, et al. Detection of widespread hydrated materials on vesta by the VIR imaging spectrometer on board the dawn mission[J]. Astrophysical Journal Letters, 2012, 758(2):L36.
doi: 10.1088/2041-8205/758/2/L36     URL    
[32] Farrell W M, Hurley D M, Zimmerman M I.Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects[J]. Icarus, 2015, 255:116-126.
doi: 10.1016/j.icarus.2014.09.014     URL    
[33] Delitsky M L, Paige D A, Siegler M A, et al.Ices on mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region[J]. Icarus, 2016, 281:19-31.
doi: 10.1016/j.icarus.2016.08.006     URL    
[34] Bradley J P, Ishii H A, Gillis-Davis J J, et al. Detection of solar wind-produced water in irradiated rims on silicate minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5):1 732.
doi: 10.1073/pnas.1320115111     URL     pmid: 24449869
[35] Djouadi Z, Robert F, Sergeant D’Hendecourt L L, et al. Hydroxyl radical production and storage in analogues of amorphous interstellar silicates: A possible “wet” accretion phase for inner telluric planets[J]. Astronomy & Astrophysics, 2011, 531:725-734.
[36] Vattuone L, Rocca M.Accretion disc origin of the Earth’s water[J]. Philosophical Transactions: Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371(1 994):1-11.
doi: 10.1098/rsta.2011.0585     URL     pmid: 23734050
[37] Brown R H, Baines K H, Bellucci G, et al.The cassini visual and infrared mapping spectrometer (Vims) investigation[J]. Space Science Reviews, 2004, 115(1/4):111-168.
doi: 10.1007/s11214-004-1453-x     URL    
[38] Green R O, Pieters C, Mouroulis P, et al.The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation[J]. Journal of Geophysical Research Planets, 2011, 116(E10):1 241-1 249.
doi: 10.1029/2011JE003797     URL    
[39] Hampton D L, Baer J W, Huisjen M A, et al.An overview of the instrument suite for the deep impact mission[J]. Space Science Reviews, 2005, 117(1/2):43-93.
doi: 10.1007/s11214-005-3390-8     URL    
[40] Chen Lin, Tang Hong, Li Xiongyao, et al.The quantitative IR spectroscopic determination of OH in Apatite based on 1.4 μm[J]. Advances in Earth Science, 2016,31(4):403-408.
[陈林, 唐红, 李雄耀,等. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4):403-408.]
doi: 10.11867/j.issn.1001-8166.2016.04.0403.    
[41] Clarence K.Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals[M]. New York: Academic Press, 1975.
[42] Mccord T B, Taylor L A, Combe J P, et al.Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3)[J]. Journal of Geophysical Research Atmospheres, 2011, 116(4). DOI:10.1029/2010JE003711.
doi: 10.1029/2010JE003711     URL    
[43] Wöhler C, Grumpe A, Berezhnoy A A, et al.Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon[J]. Icarus, 2017, 285:118-136.
doi: 10.1016/j.icarus.2016.12.026     URL    
[44] Bandfield J L, Poston M J, Klima R L,et al.Widespread distribution of OH/H2O on the lunar surface inferred from spectral data[J]. Nature Geosciece, 2018, 11(3):173-177.
doi: 10.1038/s41561-018-0065-0     URL    
[45] Wöhler C, Grumpe A, Berezhnoy A A,et al.Time-of-day-dependent global distribution of lunar surficial water/hydroxyl[J]. Science Advances, 2017, 3(9):e1701286.
doi: 10.1126/sciadv.1701286     URL     pmid: 28913430
[46] Li Shuai, Milliken R E.Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins[J]. Science Advance, 2017, 3(9):e1701471.
doi: 10.1126/sciadv.1701471     URL     pmid: 28924612
[47] Housley R M, Grant R W, Paton N E.Origin and characteristics of excess Fe metal in lunar glass welded aggregates[C]//Proceedings of the Lunar Science Conference 4th. Houston: Lunar and Planetary Institute, 1973:2 737-2 749.
[48] Housley R M, Cirlin E H, Paton N E, et al.Solar wind and micrometeorite alteration of the lunar regolith[C]//Lunar and Planetary Science Conference 5th. New York: Lunar and Planetary Institute, 1974:2 623-2 642.
[49] Izawa M R M, Cloutis E A, Applin D M, et al. Laboratory spectroscopic detection of hydration in pristine lunar regolith[J]. Earth & Planetary Science Letters, 2014, 390(4):157-164.
doi: 10.1016/j.epsl.2014.01.007     URL    
[50] Brandt J C, Öpik E J.Introduction to the Solar Wind[M]. San Francisco: Astronomy and Astrophysics Series, 1970:73-74.
[51] Starukhina L V.Computer simulation of sputtering of lunar regolith by solar wind protons: Contribution to change of surface composition and to hydrogen flux at the lunar poles[J]. Solar System Research, 2003, 37(1):36-50.
doi: 10.1023/A:1022347821862     URL    
[52] Barabash S, Bhardwaj A, Wieser M, et al.Investigation of the solar wind-Moon interaction onboard Chandrayaan-1 mission with the SARA experiment[J]. Current Science, 2009, 96(4):526-532.
doi: 10.1371/journal.pone.0004525     URL    
[53] McKay D S, Heiken G, Basu A, et al. The lunar regolith[M]∥Heiken G, ed. Lunar Source Book. Cambridge: Cambridge University Press, 1991:285-356.
[54] Keller L P, Mckay D S.The nature and origin of rims on lunar soil grains[J]. Geochimica et Cosmochimica Acta, 1997, 61(11):2 331-2 341.
doi: 10.1016/S0016-7037(97)00085-9     URL    
[55] Johnson R E.Energetic Charged-Particle Interactions with Atmospheres and Surfaces[M]. Berlin Heidelberg:Springer, 1990.
[56] Zeller E J, Ronca L B, Levy P W.Proton-induced hydroxyl formation on the lunar surface[J]. Journal of Geophysical Research Atmospheres, 1966, 71(20):4 855-4 860.
doi: 10.1029/JZ071i020p04855     URL    
[57] Zent A P, Ichimura A I, Mccord T B, et al.Production of OH/H2O in lunar samples via proton bombardment[C]//Lunar and Planetary Science Conference 41st.Texas: Lunar and Planetary Institate, 2010:2 665.
[58] Managadze G G, Cherepin V T, Shkuratov Y G, et al.Simulating OH/H2O formation by solar wind at the lunar surface[J]. Icarus, 2011, 215(1):449-451.
doi: 10.1016/j.icarus.2011.06.025     URL    
[59] Ichimura A S, Zent A P, Quinn R C, ,et al. Hydroxyl (OH) production on airless planetary bodies: Evidence from H+/D+ ion-beam experiments[J]. Earth & Planetary Science Letters, 2012, 345/348:90-94.
doi: 10.1016/j.epsl.2012.06.027     URL    
[60] Burke D J, Dukes C A, Kim J H, et al.Solar wind contribution to surficial lunar water: Laboratory investigations[J]. Icarus, 2011, 211(2):1 082-1 088.
doi: 10.1016/j.icarus.2010.11.007     URL    
[61] Schaible M J, Baragiola R A.Hydrogen implantation in silicates: The role of solar wind in Si-OH bond formation on the surfaces of airless bodies in space[J]. Journal of Geophysical Research Planets, 2015, 119(9):2 017-2 028.
doi: 10.1002/2014JE004650     URL    
[62] Crider D H, Vondrak R R.The solar wind as a possible source of lunar polar hydrogen deposits[J]. Journal of Geophysical Research Planets, 2000, 105(E11):26 773-26 782.
doi: 10.1029/2000JE001277     URL    
[63] Crider D H, Vondrak R R.Hydrogen migration to the lunar poles by solar wind bombardment of the moon[J]. Advances in Space Research, 2002, 30(8):1 869-1 874.
doi: 10.1016/S0273-1177(02)00493-3     URL    
[1] 魏金娥,张洪海,陈岩,杨桂朋. 环境样品中氨基糖分析检测方法的研究进展[J]. 地球科学进展, 2019, 34(1): 84-92.
[2] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[3] 李阳,李雄耀,王世杰,唐红,李世杰. 月壤颗粒微观环带的太空风化成因[J]. 地球科学进展, 2012, 27(6): 603-612.
[4] 唐红,李雄耀,王世杰,李阳. 月壤中纳米金属铁的太空风化成因及模拟方法分析[J]. 地球科学进展, 2011, 26(5): 507-515.
[5] 涂传诒. 太阳风中磁流体湍流的特征和本质[J]. 地球科学进展, 2002, 17(6): 806-810.
阅读次数
全文


摘要