地球科学进展 ›› 2012, Vol. 27 ›› Issue (6): 603 -612. doi: 10.11867/j.issn.1001-8166.2012.06.0603

综述与评述 上一篇    下一篇

月壤颗粒微观环带的太空风化成因
李阳 1,2,李雄耀 1*,王世杰 1,唐红 1,李世杰 1   
  1. 1.中国科学院地球化学研究所月球与行星科学研究中心,贵州贵阳550002;2.中国科学院研究生院,北京100049
  • 收稿日期:2011-12-28 修回日期:2012-03-18 出版日期:2012-06-10
  • 通讯作者: 李雄耀(1978-),男,广西南宁人,副研究员,主要从事月球与行星科学研究. E-mail:lixiongyao@vip.skleg.cn
  • 基金资助:

    国家高技术研究发展计划项目“月表物质微波传输特性及月壤厚度反演技术与模型研究”(编号:2010AA122204);国家自然科学基金项目“太空风化作用形成的单质铁对UVVISNIR光谱特征的影响”(编号:40803019)和“南极陨石GRV020043的矿物岩石地球化学特征以及与Acapulcoite陨石的关系研究”(编号:41003027)资助

Space Weathering Origin of Microstructure Rims of Lunar Soil Grains

Li Yang 1,2, Li Xiongyao 1, Wang Shijie 1, Tang Hong 1, Li Shijie 1   

  1. 1.Lunar and Planetary Science Research Center,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang550002,China;
    2. Graduate University of the Chinese Academy of Sciences, Beijing100049, China
  • Received:2011-12-28 Revised:2012-03-18 Online:2012-06-10 Published:2012-06-10

太空风化是迄今31亿年以来影响月球表面物质演化过程的主要因素,主要包括陨石、微陨石的轰击,太阳风粒子的注入,太阳/银河宇宙射线的辐射以及周期性的加热作用等。通过深入剖析太阳风粒子的注入与溅射、微陨石轰击的蒸发与沉积、宇宙射线辐射的辐射损伤等过程的作用机理,探讨了不同太空风化过程对矿物颗粒环带厚度、化学组成、晶体结构等特征的影响,认为微陨石轰击与太阳风注入是形成月壤颗粒微观环带的主导因素,宇宙射线辐射与周期性加热的影响可忽略不计。进一步结合非晶质环带、富内含物环带、多环环带以及小泡环带等月壤颗粒主要环带的基本特征,在总结和对比分析各类型环带的厚度、结构以及化学组成特征基础上,对不同类型环带的成因进行初步推断,认为非晶质环带、小泡环带以及多环环带的内层环带具有太阳风作用特征,而富内含物环带、多环环带的外层环带则具有微陨石轰击的成因特征。根据目前单纯依靠环带的化学组成分析解释环带成因存在的不足,指出了通过补充分析矿物晶体结构在模拟太空风化实验过程中的变化特征来研究环带成因的新思路。

Space weathering plays an important role in the evolution of lunar surface material in the last 3.1 Ga, which includes bombardment of meteorites and micrometeorites, implantation and sputtering of solar wind particles, radiation of solar/galaxy cosmic ray, as well as periodical heating. By analyzing the mechanisms of implantation and sputtering of solar wind particles, vaporization and deposition in micrometeorite bombardment, radiation damage of solar and galaxy cosmic rays, and periodical heating, the thickness, chemical composition and microstructure characteristics of grain rims are related to the difference processes of lunar space weathering. With these analysis, the micrometeorites bombardment and implantation and sputtering of solar wind are thought to be the main source, and radiation of solar and galaxy cosmic rays and periodical heating make little effect on the change of mineral grains properties. Based on the conclusions and comparison of the thickness, chemical composition and microstructure of different types grain rims, the origin of these rims are deduced. Amorphous rim, vesicular rim and the inner part of multi-rim are thought to be formed by the solar wind implantation and sputtering, inclusion-rich rim and the outer part of multi-rim might be formed in micrometeorites bombardment. For the disadvantage in explaining the origin of grain rims depend on chemical property, microstructure analysis of grain rim and simulated experiment are proposed to comprehend the origin of grain rims supplemental.

中图分类号: 

[1]Hapke B W. Space weathering from Mercury to the asteroid belt[J]. Journal of Geophysical Research,2001,106 (E5):10 039-10 073.
[2]Dran J C, Durrieu L, Jouret C, et al. Habit and texture studies of lunar and meteoritic materials with a 1 MeV electron microscope[J]. Earth and Planetary Science Letters,1970,9(5):391-400.
[3]Bibring J P, Duraud J P, Durrieu L, et al.Ultrathin amorphous coatings on lunar dust grains[J]. Science,1972,175(4 023):753-755.
[4]Keller L P, McKay D S. Discovery of vapor deposits in the lunar regolith[J]. Science,1993,261(5 126):1 305-1 307.
[5]Bernatowicz T J, Nichols Jr R H, Hohenberg C M, et al. Vapor deposits in the lunar regolith[J]. Science,1994,264(5 166):1 779-1 780.
[6]Christoffersen R, Mckay D S, Keller L P. Grain rims on ilmenite in the lunar regolith:Comparison to vapor deposits on regolith silicates[C]Proceedings of the Lunar and Planetary Science Conference,25th. Houston: Lunar and Planetary Institute,1994,1(A/G): 259-260.
[7]Christoffersen R, Keller L P, Mckay D S. Microstructure,chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction[J]. Meteoritics & Planetary Science,1996,31:835-848.
[8]Lee M R.Transmission Electron Microscopy (TEM) of Earth and planetary materials: A review[J]. Mineralogical Magazine,2010,74(1):1-27.
[9]Bradley J P,Dai Z R. Analytical SuperSTEM for extraterrestrial materials research[J]. Meteoritics & Planetary Science,2009,44(10):1 627-1 642.
[10]Davoisne C, Leroux H, Frère M, et al.Chemical and morphological evolution of a silicate surface under low-energy ion irradiation[J]. Astronomy & Astrophysics, 2008,482(2):541-548.
[11]Dukes C A, Baragiola R A, McFadden L A. Surface modification of olivine by H+ and He+ bombardment[J]. Journal of Geophysics Research,1999,104(E1):1 865-1 872.
[12]Demyk K, Carrez P, Lerouxet H, et al. Structural and chemical alteration of crystalline olivine under low energy He+ irradiation[J]. Astronomy & Astrophysics,2001,368(3):L38-L41.
[13]Carrez P, Demyk K, Cordier P, et al. Low-energy helium ion irradiation-induced amorphization and chemical changes in olivine: Insights for silicate dust evolution in the interstellar medium[J]. Meteoritics & Planetary Science,2002, 37(11):1 599-1 614.
[14]Jäger C, Fabian D, Schrempel F, et al. Structural processing of enstatite by ion bombardment[J]. Astronomy & Astrophysics,2003,401(1):57-65.
[15]Brunetto R, Strazzulla G. Elastic collisions in ion irradiation experiments: A mechanism for space weathering of silicates[J]. Icarus,2005,179(1):265-273. 
[16]Loeffler M J, Dukes C A, Baragiola R A. Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind[J]. Journal of Geophysical Research,2009, 114(E03003):1-13.
[17]Yamada M, Sasaki S, Nagahara H, et al. Simulation of space weathering of planet-forming materials:Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples[J]. Earth Planets Space,1999,51(11): 1 255-1 265.
[18]Sasaki S, Nakamura K, Hamabe Y, et al. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering[J]. Nature, 2001,410(6 828):555-557.
[19]Sasaki S, Hiroi T, Nakamura K, et al. Simulation of space weathering by nanosecond pulse laser heating:Dependence on mineral composition,weathering trend of asteroids and discovery of nanophase iron particles[J]. Advances in Space Research,2002,29(5):783-788.
[20]Brunetto R, Romano F, Blanco A, et al.Space weathering of silicates simulated by nanosecond pulse UV excimer laser[J]. Icarus,2006,180(2):546-554.
[21]Loeffler M J, Baragiola R A, Murayama M. Laboratory simulations of redeposition of impact ejecta on mineral surfaces[J]. Icarus,2008,196(1):285-292.
[22]Keller L P, Mckay D S. The nature and origin of rims on lunar soil grains[J]. Geochimica et Cosmochimica Acta,1997,61(11):2 331-2 341.
[23]McFadden L A, Robert P, Johnson T V. Encyclopedia of the Solar System[M]. USA: Academic Press,San Diego,2007:99-117.
[24]Wehner G K, Kenknight C, Rosenberg D L. Sputtering rates under solar-wind bombardment[J]. Planetary and Space Science,1963,11(8):885-895.
[25]Flavill R P, Carey W C, McDonnell J A M, et al. Progress in defining the solar wind sputter rate on protoplanets and interplanetary matter[J]. Planetary and Space Science,1980,28(5):511-524.
[26]McDonnell J A M, Ashworth D G, Flavill R P, et al. Simulated microscale erosion on the lunar surface by hypervelocity impact,solar wind sputtering,and thermal cycling[C]Proceedings of the Lunar Science Conference.Geochimica et Cosmochimica Acta Supplement,1972,3:2 755-2 765.
[27]McDonnell J A M, Flavill R P. Solar wind sputtering on the lunar surface: Equilibrium crater densities related to past and present microparticle in flux rates[C]Proceedings of Lunar Science Conference,5th.Geochimica et Cosmochimica Acta Supplement 5,1974,3:2 441-2 449.
[28]McDonnell J A M, Carey W C. Solar-wind sputter erosion of microcrater populations on the lunar surface[C]Proceedings of Lunar Science Conference, 6th.New York:Pergammon Press,1975:3 391-3 402.[29]Sigmund P. A mechanism of surface micro-roughening by ion bombardment[J]. Journal of Materials Science,1973,8(11):1 545-1 553.
[30]Rosenberg D L, Wehner G K. Darkening of powdered basalt by simulated solar wind bombardment[J]. Journal of Geophysical Research,1964,69(15):3 307-3 308.
[31]Hapke B W. Effects of a simulated solar wind on the photometric properties of rocks and powders[J]. Annals of the New York Academy of Sciences,1965,123(Geological Problems in Lunar Research):711-721.[32]Hapke B W, Cohen A J, Cassidy W A, et al. Solar radiation effects on the optical properties of Apollo 11 samples[C]Proceedings of the Apollo 11 Lunar Science Conference,Geochimica et Cosmochimica Acta Supplement 3.New York: Pergammon Press,1970:2 199-2 212.
[33]Hapke B W. Reflection spectra of lunar dust grains with amorphous coatings[J]. Science,1972,177(4 048):535-536.
[34]Hapke B. Darkening of silicate rock powders by solar wind sputtering[J]. Earth,Moon,and Planets,1973,7(3):342-355.
[35]Greer R T, Hapke B W. Electron microprobe analyses of powders darkened by simulated solar-wind irradiation[J]. Journal of Geophysical Research,1967,72(12): 3 131-3 133.
[36]KenKnight C E,Rosenberg D L,Wehner G K. Parameters of the optical properties of the lunar surface powder in relation to solar-wind bombardment[J]. Journal of Geophysical Research,1967,72(12):3 105-3 129.
[37]Nash D B. Proton-irradiation darkening of rock powders: Contamination and temperature effects, and applications to solar-wind darkening of the moon[J]. Journal of Geophsical Research,1967,72:3 089-3 104.
[38]Conel J E, Nash D B. Spectral reflectance and albedo of Apollo 11 lunar samples: Effects of irradiation and vitrification and comparison with telescopic observations[C]Proceedings of the Apollo 11 Lunar Science Conference,3rd.New York: Pergammon Press,1970:2 013-2 023.
[39]Cassidy W, Hapke B. Effects of darkening processes on surfaces of airless bodies[J]. Icarus,1975,25(3):371-383.
[40]Yin L, Tsang T, Adler I. ESCA studies on solar-wind reduction mechanisms[C]Proceedings of Lunar Science Conference,6th.New York: Pergamon Press, 1975:3 277-3 284.
[41]Bell P M, Mao H K. Optical spectra of thin metallic coatings with application to the spectra of lunar soil samples[C]Abstracts of the Lunar and Planetary Science Conference,1977,8:88-90.
[42]Townsend P D. Optical effects of ion implantation[J].Reports on Progress in Physics,1987,50(5):501-558.
[43]Pieters C M, Fischer E M, Rode O, et al.Optical Effects of space weathering: The role of the finest fraction[J]. Journal of Geophysical Research,1993,98(E11): 20 817-20 824.
[44]Housley R M, Cirlin E H, Paton N E, et al. Solar wind and micrometeorite alteration of the lunar regolith[C]Proceedings of the Lunar and Planetary Science Conference,5th.Geochimica et Cosmochimica Acta Supplement,1972,3:2 623-2 642.
[45]Housley R M. Solar wind and micrometeorite effects in the lunar regolith[J]. Philosophical Transactions of the Royal Society A,1977,285(1 327):363-367.
[46]Bilson E. Solar wind effects on the surface chemistry of lunar grains[J]. Geophysical Research Letters,1978,5(6):481-484.
[47]Pillinger C T, Gardiner L R, Jull A J T. Preferential sputtering as a method of producing metallic iron, inducing major element fractionation and trace element enrichment[J]. Earth and Planetary Science Letters,1976,33(2):289-299.
[48]Paruso D M, Cassidy W A, Hapke B W. An experimental investigation of fractionation by sputter deposition[C]Proceedings of Lunar and Planetary Science Conference,9th.New York: Pergamon Press,1978:1 711-1 724.
[49]Vernet N M. Basics of the Solar Wind[M].New York: Cambridge University Press,2007:1-37.
[50]Nastasi M, Mayer J W. Ions Implantation and Synthesis of Materials[M]. Berlin: Springer,2006.
[51]Maurette M, Price P B. Electron microscopy of irradiation effects in space[J]. Science,1975,187(4 172):121-129.
[52]Genge M J. Micrometeorites and their implications for meteors[J]. Earth, Moon, and Planets,2008,102(1):525-535.
[53]Bradley J P. Chemically anomalous,preaccretionally irradiated grains in interplanetary dust from comets[J]. Science,1994,265(5 174):925-929.
[54]Genge M J, Grady M M, Hutchison R. The textures and compositions of fine-grained Antarctic micrometeorites: Implications for comparisons with meteorites[J]. Geochimica et Cosmochimica Acta,1997,61(23):5 149-5 162.
[55]Fechtig H, Hartung J B, Nagel K, et al.Lunar micricrater studies, derived meteoroid fluxes, and comparison with satellite-borne experiments[C]Proceedings of the Lunar Science Conference,5th. New York: Pergamon Press,1974:2 463-2 474.
[56]Hapke B W. The vapor deposition model of space weathering: strawman pardigm for the moon[C]Workshop on New Views of the Moon:Integrated Remotely Sensed, Geophysical,and Sample Datesets.Houston: Lunar and Planetary Institute, 1998:34-35.
[57]Donald E G, Friedrich H, Hartung J B. Effects of microcratering on the lunar surface[C]Proceedings of the Third Lunar Science Conference,3rd. Cambridge: Massachusetts Institute of Technology Press,1972:2 713-2 734.
[58]Hapke B W, Cassidy W, Wells E. Effects of vapor-phase deposition processes on the optical,chemical,and magnetic properties of the lunar regolith[J]. The Moon, 1975,13:339-353.
[59]Keller L P, Mckay D S. Impact glasses and vapor condensates in Apollo 11 soil 10084[C]Proceedings of Lunar and Planetary Science Conference,1992,23rd: 673-674.
[60]Keller L P, Mckay D S. Micrometer-sized glass spheres in Apollo16 soil 61181:Implications for impact volatilization and condensation[C]Proceedings of Lunar and Planetary Science,1992,22nd:137-141.
[61]Hapke B W, Cassidy W. Vapor deposits in the lunar regolith[J]. Science,1994, 264(5 166): 1 779-1 780.
[62]Anand M, Taylor L A, Nazaraov M A, et al.New lunar mineral HAPKEITE: Product of impact-induced vapor-phase deposition in the regolith[C]Proceedings of Lunar and Planetary Science Conference 34th,2003:1 818-1 819.
[63]Anand M, Taylor L A, Nazaraov M A, et al. Space weathering on airless planetary bodies:Clues from the lunar mineral hapkeite[C]Proceedings of the National Academy of Sciences of the United States of America,2004,101(18): 6 847-6 851.
[64]Simpson J A. Elemental and isotopic composition of the galactic cosmic rays[J]. Annual Review of Nuclear and Particle Science,1983,33(1):323-381.
[65]Miroshnichenko L M. Solar Cosmic Rays[M]. Netherlands: Kluwer Academic Publishers, 2001:1-467.
[66]Mukherjee N R.Cosmic ray interactions with lunar materials:Nature and composition of species formed[J]. Earth,Moon,and Planets,1976,16(1):151-158.
[67]Heiken G H, Vaniman D T, French B M. Lunar Sourcebook:A User′s Guide to the Moon[M]. Cambridge: Cambridge University Press,1991:27-60.
[68]Wang Shijie, Li Xiongyao, Tang Hong, et al.Lunar surface enviroment and properties of lunar soil: A review[J]. Geochemica,2010,39(1):73-81.[王世杰,李雄耀,唐红,等.月面环境与月壤特性研究的主要问题探讨
[J]. 地球化学,2010,39(1):73-81.]
[69]Borg J, Maurette M, Durrieu L, et al. Ultramicroscopic features in micron-sized lunar dust grains and cosmophysics[C]Proceedings of Lunar and Planetary Science Conference,3rd.Massachusetts: The Massachusetts Institute of Technology, 1971:2 027-2 040.
[70]Bradley J P, Brownlee D E, Fraundorf P F. Discovery of nucler tracks in interplanetary dust[J]. Science,1984,226(4 681):1 432-1 434.
[71]Bradley J P. Interplanetary Dust Particles[C]Trearise on Geochemistry 1(26). Oxford: Elsevier-Pergavnon,2006:689-712.
[72]Noble S K, Keller L P, Pieters C M. Evidence of space weathering in regolith breccias I: Lunar regolith breccias[J]. Meteoritics & Planetary Science,2005,40(3): 397-408.
[73]Christoffersen R, Keller L P, Dukes C, et al. Experimental investigation of space radiation processing in lunar soil Ilmenite: Combining perspectives from surface science and transmission electron microscopy[C]Proceedings of the Lunar and Planetary Science Conference 41st,2010:1 532-1 533.
[74]Pillinger C T. Solar wind exposure effects in the lunar soil[J]. Reports on Progress in Physics,1979,42(5):897-961.
[75]Bradley J P, Dukes C, Baragiola R, et al. Radiation processing and the origins of interplanetary dust[C]Proceedings of Lunar and Planetary Science, 1996,27th:149-150.
[76]Brucato R, Strazzulla G, Baratta G, et al. Forsterite amorphisation by ion irradiation: Monitoring by infrared spectroscopy[J]. Astronomy & Astrophysics, 2004,413(2):395-401. 
[77]Bradley J P, Dai Z R. Mechanism of formation of glass with embedded metal and sulfides[J]. The Astrophysical Journal,2004,617(1):650-655.
[78]Carey W C, McDonnell J A M. lunar surface sputter erosion:A monte carlo approach to microcrater erosion and sputter redeposition[C]Proceedings of Lunar and Planetary Science Conference,7th.New York:Pergammon Press,1976:913-926.
[79]Keller L P, McKay D S. Vapor deposits in lunar regolith—Response[J]. Science, 1994,264(5 166):1 780.
[80]Brunetto R, Orofino V, Strazzulla G. Space weathering on minor bodies induced by ion irradiation—Some experimental results[J]. Memorie della Societ Astronomica Italiana Supplement,2005,6:45-50.
[81]Schrempel F, Jger C, Fabian D, et al. Study of the amorphization process of MgSiO3 by ion irradiation as a form of dust processing in astrophysical environments[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2002,191(1/4):411-415.
[82]Sasaki S, Hiroi T, Nakamura K, et al.Space weathering:Spectral change and formation of nanophase iron due to pulse laser irradiation simulating impact heating of interplantary dust flux[J].Dust in the Solar System and Other Planetary Systems,2002,15:314-319.
[83]Sasaki S, Kurahashi E, Yamanaka K, et al. Laboratory simulation of space weathering: Changes of optical properties and TEM/ESR confirmation of nanophase metallic iron[J]. Advances in Space Research,2003,31(12):2 537-2 542.
[84]Kurahashi E, Yamanaka C, Nakamura K, et al. Laboratory simulation of space weathering—ESR measurements of nanophase metallic iron in laser-irradiated materials[J].Earth Planetary Space,2002,54:9-11.

[1] 刘清超, 陈晓东, 徐建桥, 孙和平. 潮汐摩擦对月球轨道与地球自转影响的研究综述[J]. 地球科学进展, 2021, 36(5): 472-479.
[2] 陈祖兴,曾志刚,王晓媛,殷学博,陈帅,张玉祥. 岩浆房持续的时间:矿物内元素扩散年代学研究进展及展望[J]. 地球科学进展, 2020, 35(12): 1232-1242.
[3] 程维明, 刘樯漪, 王娇, 高文信, 刘建忠. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9): 885-897.
[4] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[5] 于雯, 李雄耀, 王世杰. 月球探测中月面热环境影响的研究现状[J]. 地球科学进展, 2012, 27(12): 1337-1343.
[6] 唐红,李雄耀,王世杰,李阳. 月壤中纳米金属铁的太空风化成因及模拟方法分析[J]. 地球科学进展, 2011, 26(5): 507-515.
[7] 常远,许长海,周祖翼. (U-Th)/He测年技术:α离子射出效应及其校正[J]. 地球科学进展, 2010, 25(4): 418-427.
[8] 李雄耀,王世杰,程安云. 月球表面温度物理模型研究现状[J]. 地球科学进展, 2007, 22(5): 480-485.
[9] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展, 2004, 19(3): 351-358.
[10] 欧阳自远. 月球地质学[J]. 地球科学进展, 1994, 9(2): 80-81.
阅读次数
全文


摘要