地球科学进展 ›› 2007, Vol. 22 ›› Issue (5): 480 -485. doi: 10.11867/j.issn.1001-8166.2007.05.0480

综述与评述 上一篇    下一篇

月球表面温度物理模型研究现状
李雄耀 1,2,王世杰 1,程安云 1,2   
  1. 中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550002;2.中国科学院研究生院,北京 100039
  • 收稿日期:2006-11-09 修回日期:2007-03-26 出版日期:2007-05-10
  • 通讯作者: 王世杰(1966-),男,浙江温岭人,研究员,主要从事月球与行星地质地球化学等研究E-mail:wangshijie@vip.skleg.cn E-mail:wangshijie@vip.skleg.cn
  • 基金资助:

    国家自然科学基金项目“系列化模拟月壤的研制”(编号:40473036);“月表温度分布实时模型研究”(编号:40673053)资助.

A Review of Lunar-surface Temperature Model

LI Xiong-yao 1,2, WANG Shi-jie 1, CHENG An-yun 1,2   

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002,China;2.Graduate School of the Chinese Academy of Sciences, Beijing 100039,China
  • Received:2006-11-09 Revised:2007-03-26 Online:2007-05-10 Published:2007-05-10

总结了前人对月球表面温度的研究方法,对他们的研究进行了归类,分析了它们各自的优劣。直接测量和基于绕月飞行器的遥感测量均需投入昂贵的发射和维护费用,基于探测数据或月球样品分析数据的研究局限于某些时间段和地点,地基遥感探测的空间分辨率太低,这些方法自身的局限限制它们不可能用于全月的温度变化研究,只有通过建立比较完善的月球表面温度物理模型才可能达到这一目的。重点对月球表面温度物理模型进行讨论,分析了已有的模型,总结了影响月球表面温度的影响因素,包括月球表面太阳辐射、月球内部热流、月球表面物质的热吸收率、发射率、热导率、热容以及密度等,对这些因素的研究现状进行了概括,并提出了进一步研究这些参数的一些想法。

The studied methods of lunar-surface temperature are concluded. They are divided into direct method and indirect method. Their features are analyzed. It is expensive for the launch and maintenance of detector in direct measurement and remote sensing based on spacecraft; the studies based on explored data and analyzed data of lunar samples are limited in time and space; and earth-based remote sensing has a low spatial resolution. Because of these limitations, the above methods couldnot be used in the study of global variation of lunar-surface temperature. To attain such a purpose, the accurate lunar-surface temperature physical model must be made. By analyzing the physical models which have been made, we conclude the factors which influence the lunar-surface temperature, such as lunar-surface solar radiation, lunar interior heat flow, the thermal absorptivity, thermal emissivity, heat capacity, and density of lunar materials. The progress of studies in these factors is depicted. And some proposals are made at last.

中图分类号: 

[1]Langseth M G, Wechsler A E, Drake E M, et al.Apollo 13 lunar heat flow experiment[J].Science,1970, 168:211-217.
[2]Heiken G, Vaniman D, French B M. Lunar Sourcebook: A User's Guide to the Moon[M]. Cambridge: Cambridge University Press, 1991.
[3]Lucas J W, Conel J E, Hagemeyer W A. Lunar surface thermal characteristics from surveyor I[J].Journal of Geophysical Research,1967,72:779-789.
[4]Vitkus G, Garipay R R, Hagemeyer W A,et al. Lunar Surface Temperatures and Thermal Characteristics, Surveyor VZZ A Preliminary Report[R]. NASA SP-173,1968:163.
[5]Vitkus G, Garipay R R, Hagemeyer W A,et al. Lunar Surface Temperatures and Thermal Characteristics, Surveyor VI A Preliminary Report[R]. NASA SP-166,1968.
[6]Vitkus G, Lucas J W, Saari J M. Lunar Surface Thermal Characteristics during Eclipse from Surveyors 111, V and after Sunset from Surveyor V[R]. AIAA Paper 68-747, Los Angeles, Califunia, 1968.
[7]Cremers C J, Birkebak R C. Thermal conductivity of fines from Apollo 12[C]//Proceeding of the Seciety Lunar Science Conference 3th. Cambridge:MIT Press, 1971:2 311-2 315.
[8]Cremers C J, Birkebak R C, Dawson J P. Thermal conductivity of fines from Apollo 11[C]//Proceedings of Apollo 11 Lunar Science Conference.1970, 3:2 045-2 050.
[9]Keihm S J,Langseth M G. Surface brightness temperatures at the Apollo 17 heat flow site[C]//Thermal Conductivity of the Upper 15 cm of Regolith. Proceeding of the Lunar Science Conference, 4th.1973:2 053-2 513.
[10]Lawson S L, Jakosky B M. Brightness Temperatures of the Lunar Surface[C]//The Clementine Long-Wave Infrared Global Data Set, 30th Annual Lunar and Planetary Science Conference. TX, abstract No.1892, 1999.
[11]Lawson S L. Brightness temperatures of the lunar surface: Calibration and analysis of Clementine long-wave infrared camera images[D]. Boulder: University of Colorado, 2000.
[12]Lawson S L, Jakosky B M. Lunar surface thermophysical properties derived from Clementine LWIR and UVVIS images[J].Journal of Geophysical Research,2001,106:27 911-27 932.
[13]Lawson S L, Jakosky B M, Park H S, et al. Brightness temperatures of the lunar surface: Calibration and global analysis of the Clementine long-wave infrared camera data[J].Journal of Geophysical Research,2000,105:4 273-4 290.
[14]Hagermann A, Tanaka S, Yoshida S, et al. Regolith thermal property inversion in the LUNAR-A heat-flow experiment[J].Bulletin of the American Astronomical Society,2001, 33:1 147.
[15]Little R C, Feldman W C, Maurice S, et al. Latitude Variation of the Subsurface Lunar Temperature: Lunar Prospector Thermal Neutrons[C]//American Geophysical Union, Spring Meeting, Abstract #P22A-01, 2001.
[16]Pettit E,Nicholson S B. Lunar radiation and temperatures[J]. Astrophysical Journal,1930,71:102-135.
[17]Sinton W M. Physics and Astronomy of the Moon[M]. New York: Academic Press, 1962.
[18]Murray B C, Wildey M J. Surface temperature variations during the lunar nighttime[J]. The Astrophysical Journal,1964,139:734-750.
[19]Saari J M.The surface temperature of the antisolar point of the Moon[J]. Icarus,1964,3:161-163.
[20]Low F J. Lunar Nighttime Temperatures Measured at 20 Microns[J]. Astrophysical Journal, 1965, 142:806-808.
[21]Ingrao H C, Young A T, Linsky J L. The Nature of the Lunar Surface[M]. Baltimore: The Johns Hopkins Press, 1966.
[22]Stimpson L D, Lucas J W. Revised Lunar Surface Thermal Characteristics Obtained from the Surveyor V Spacecraft[R]. AIAA Paper 69-594, San Francisco, California, 1969.
[23]Pugh M J,Bastin J A. Infrared observations of the Moon and their interpretation[J]. Earth, Moon and Planets,1972,5:16-30.
[24]Wesselink A J. Heat conductivity and nature of the lunar surface material[J]. Bulletin of the Astronomical Institutes of the Netherlands,1948,10:351-363.
[25]Jaeger J C. The Surface Temperature of the Moon[J]. Australian Journal of Physics,1953,6:10-21.
[26]Jones W P, Watkins J R, Calvert T A. Temperatures and thermophysical properties of the lunar outermost layer[J]. The Moon,1975,13:475-494.
[27]Racca G D. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis[J]. Planetary Space Science,1995, 43:835-842.
[28]Hale A S,Hapke B. A time-dependent model of radiative and conductive thermal energy transport in planetary regoliths with applications to the Moon and Mercury[J].Icarus,2002,156:318-334.
[29]Cremers C J, Birkebak R C, White J E. Lunar surface temperatures from Apollo 12[J]. The Moon,1971,3:346-351.
[30]Conel J E, Morton J B. Interpretation of lunar heat flow data[J]. The Moon,1975, 14:263-289.
[31]Langseth M G, Keihm S J, Peters K.Revised lunar heat-flow values[C]//Proceedings of the Lunar Science Conference, 7th,1976:3 143-3 171.
[32]Rasmussen K L, Warren P H. Megaregolith thickness, heat flow, and the bulk composition of the Moon[J].Nature,1985, 313:121-124.
[33]Yoshida D T, Hagermann A, Hayakawa M,et al. Derivation of a globally averaged lunar heat flow from the local heat flow values and thorium distribution at the surface[C]//Expected improvement by the lunar-A mission, Lunar and Planetary Science Conference, 32th.No.1571,2001.
[34]Saito Y, Hikida H, Yokota Y, et al.Reanalysis of the lunar heat flow[C]//Proceeding 36rd ISAS Lunar Planetary Science,2003:157-160.
[35]Urquhart M L,  Jakosky B M. Lunar thermal emission and remote determination of surface properties[J]. Journal of Geophysical Research,1997,102:10 959-10 970.
[36]Pugacheva S G, Shevchenko V V. Lunar prospector data, surface roughness and IR thermal emission of the Moon[C]//Lunar and Planetary Science Conference, 35th,1225,2004.
[37]Margot J L, Campbell D B, Campbell B A,et al.Lunar dielectric constants from radio thermal emission measurements[J]. Lunar and Planetary Science.1996,27:805-806.
[38]Lawson S L, Jakosky B M, Colwell J E. Thermal emission from the lunar surface: Impact crater temperature modelling and Clementine long-wave infrared data[C]//Lunar and Planetary Science Conference, 29th,1823,1998.
[39]Smith R E, West G S. Space and planetary environment criteria guidelines for use in space vehicle development[R]. NASA TM 82478,1983.
[40]Tanaka S, Yoshida S, Hayakawa M,et al.Development of the heat flow measurement system by the lunar-A penetrators[J]. Advance Space Research,1999,23:1 825-1 828.
[41]Horai K, Simmons G. Thermal property measurements on lunar material returned by Apollo 11 and 12 mission, in thermal characteristics of the Moon[C]//Progress in Astronautics and Aeronautics, 28, MIT Press: Massachusetts,1972.
[42]Zou Y L, Liu J Z, Liu J J, et al.Reflectance spectral characteristics of Lunar Surface Materials[J]. China Journal of  Astronomical Astrophysical,2004,4:97-104.
[43]Birkebak R C, Dawson J P. Solar albedo and spectral reflectance for Apollo 15 and 16 lunar fines[C]//Proceedings of the Lunar Science Conference,1973,4:2 447-2 452.
[44]Lane A P, Irvine W M. Monochromatic phase curves and albedos for the lunar disk[J]. The Astronomical Journal,1973,78:267-277.
[45]Saari J M, Shorthill W R. The Sunlit Lunar Surface. I. Albedo Studies and Full Moon Temperature Distribution[J]. Earth, Moon and Planets,1972, 5:161-178.
[46]Gold T, Bilson E, Baron R L. Auger analysis of the lunar soil: Study of processes which change the surface chemistry and albedo[C]//Proceedings of the Lunar Science Conference,1975,6:3 285-3 303.
[47]Shevchenko V V. Albedo characteristics of the lunar globe[J]. Soviet Astronomy,1975,18:628-632.
[48]Shevchenko V V. Albedo distribution function of the lunar surface[J]. Lunar and Planetary Science,1980,11:1 027-1 029.
[49]Wildey R L. The lunar geometric albedo and the magnitude of the full Moon[J]. The Observatory,1976,96:235-239.
[50]Hapke B. the albedo of lunar soil[J]. Lunar and Planetary Science,1977,8:398-400.
[51]Janz S J, Hilsenrath E, Cebula R P,et al.Observation of the lunar geometric albedo during the ATLAS-3 mission[J]. Geophysical Research Letters,1996,23:2 297-2 300.
[52]Wilson T L, Andersen V,Pinsky L S. Lunar regolith abedos using monte carlos[C]//Lunar and Planetary Science Conference 34th, No.1392,2003.
[53]McEwen A S,Robinson M S. Global albedo variations on the Moon: Clementine 750-nm observations[J].Lunar and Planetary Science,1995, 26:931-932.
[54]Wildey R L. A digital file of the lunar normal albedo[J].The Moon,1977,16:231-277.

[1] 刘清超, 陈晓东, 徐建桥, 孙和平. 潮汐摩擦对月球轨道与地球自转影响的研究综述[J]. 地球科学进展, 2021, 36(5): 472-479.
[2] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[3] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[4] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[5] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[6] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[7] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[8] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[9] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[10] 程维明, 刘樯漪, 王娇, 高文信, 刘建忠. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9): 885-897.
[11] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[12] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[13] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[14] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[15] 罗齐彬, 杨亚新, 张叶, 吴信民, 郑勇明, 赵柏宇. 地气测量在隐伏铀矿找矿中的应用与现状[J]. 地球科学进展, 2018, 33(1): 75-83.
阅读次数
全文


摘要