Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (4): 416-424    DOI: 10.11867/j.issn.1001-8166.2018.04.0416
研究论文     
致密砂岩储层岩石物理模型的优化建立
贾凌云1(), 李琳1, 王千遥2, 马劲风1, 王大兴3
1.西北大学地质学系,二氧化碳捕集与封存技术国家地方联合工程研究中心,陕西 西安 710069
2.中煤科工集团西安研究院有限公司,陕西 西安 710077
3.中国石油长庆油田公司勘探开发研究院,陕西 西安 710018
Optimization of the Rock Physical Model in Tight Sandstone Reservoir
Lingyun Jia1(), Lin Li1, Qianyao Wang2, Jinfeng Ma1, Daxing Wang3
1.National & Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Department of Geology of Northwest University, Xi’an 710069, China;
2.China Coal Technology Engineering Group Xi’an Research Institute, Xi’an 710077, China;
3.Research Institute of Exploration and Development, Changqing Oil Field Company, PetroChina, Xi’an 710018,China;
 全文: PDF(8854 KB)   HTML
摘要:

Krief模型、Nur模型和Pride-Lee模型通常被用于计算砂岩储层干岩石模量,但对于致密砂岩储层却效果不佳。基于Krief模型和Nur模型,在满足纵波或横波预测值与实测值差值最小的条件下,通过Gassmann方程求出模型中的岩性指数m或临界孔隙度?c,进而将模型中通常采用的经验参数表示成随采样点变化的值,提高了Krief模型和Nur模型估算纵横波速的精度,称为变参数Krief模型和变参数Nur模型。此外,对比不同约束条件下纵横波预测精度,可知在致密砂岩储层中3种模型的剪切模量公式的精度更高、适用性更好。Han提出的Kdryudry关系式不受孔隙度、岩性等因素的影响,将该关系式与上述3种模型中任意一种剪切模量公式结合建立干岩石模型,应用到Gassmann方程中对鄂尔多斯盆地苏里格气藏盒8致密砂岩储层横波速度进行预测,提高了预测横波速度的精度,同时获得了3种模型中每个采样点对应的岩性指数m、临界孔隙度?c和固结参数c的值,这些参数值可以反映出储层的岩性差异、孔隙结构、压实程度等特征,映射了储层的地质特征。

关键词: 致密砂岩储层体积模量岩石物理模型Kdryudry的关系    
Abstract:

Krief model, Nur model and Pride-Lee model are usually used to calculate dry rock modulus of sandstone reservoirs, but they are not effective for tight sandstone reservoirs. Based on Krief model and Nur model, and minimizing the difference between predicted P-wave or S-wave velocities and measured velocities, we acquireed lithologic index m in Krief model and critical porosity ?c in Nur model by Gassmann relationship. The empirical parameters used in the models are expressed as the values changing with depth, so the accuracy of Krief and Nur models to estimate the P-wave and S-wave velocities was improved, and these two models are called as the variable parameter Krief model and the variable parameter Nur model. In addition, comparing with prediction accuracy of P-wave and S-wave velocities under different constraints, we can see that the shear modulus formulas in the three models are more accurate and more suitable in the tight sandstone reservoir. Han’s relationship about Kdry and udry is not affected by porosity, lithology and other factors, and the paper established dry rock model by Han’s relationship and any one of the above three models. The new dry rock model was applied in the Gassmann relationship to predict S-wave velocity of H8 tight sandstone reservoir in Sulige Gas Filed, Ordos Basin, which improved the accuracy of predicting S-wave velocity. At the same time, lithology index m in Krief model, critical porosity ?c in Nur model and consolidation parameters c in Pride-Lee model which are corresponding to each sample can be obtained. The values of these parameters can reflect lithology difference, pore structure, compaction degree and other characteristics, which indicate the geological characteristics of the reservoir.

Key words: Tight sandstone reservoir    Bulk modulus    Rock physical model    The relationship of Kdry and udry.
收稿日期: 2017-09-08 出版日期: 2018-05-24
ZTFLH:  P316  
基金资助: *国家高技术研究发展计划项目“二氧化碳地质封存关键技术”(编号:2012AA050103)资助.
作者简介:

作者简介:贾凌云(1983-),女,山西大同人,博士研究生,主要从事地震资料解释、反演等研究.E-mail:1027314266@qq.com

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贾凌云
李琳
王千遥
马劲风
王大兴

引用本文:

贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.

Lingyun Jia, Lin Li, Qianyao Wang, Jinfeng Ma, Daxing Wang. Optimization of the Rock Physical Model in Tight Sandstone Reservoir. Advances in Earth Science, 2018, 33(4): 416-424.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.04.0416        http://www.adearth.ac.cn/CN/Y2018/V33/I4/416

图1  预测纵波速度对比
图2  预测横波速度对比
图3  岩性指数与孔隙度交汇
图4  临界孔隙度与孔隙度交汇
图5  固结参数与孔隙度交汇
图6  预测横波速度对比
图7  预测纵波速度对比
图8  预测横波速度对比
图9  岩性指数与孔隙度交汇
图10  临界孔隙度?c与孔隙度交汇
图11  固结参数与孔隙度交汇
图12  苏46井盒8段纵横波速度预测对比
[1] Zou Caineng, Tao Shizhen, Hou Lianhua, et al.Unconventional Oil and Gas Geology[M]. Beijing: Geological Publishing House, 2011.[邹才能,陶士振,侯连华,等. 非常规油气地质[M]. 北京:地质出版社, 2011.]
[2] Mao Keyu.Logs fluid typing methods and adaptive analysis of tight sandstone reservoir of Yingcheng formation in Lishu Fault[J]. Advances in Earth Science, 2016, 31(10):1 056-1 066.[毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10):1 056-1 066.]
doi: 10.11867/j.issn.1001-8166.2016.10.1056
[3] Gassmann F.Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(3): 673-682.
doi: 10.1190/1.1437718
[4] Yang Yang, Ma Jinfeng, Li Lin.Research progress of carbon dioxide capture and storage technique and 4D seismic monitoring technique[J]. Advances in Earth Science, 2015, 30(10): 1 119-1 126.[杨扬,马劲风,李琳. CO2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1 119-1 126.]
doi: 10.11867/j.issn.1001-8166.2015.10.1119
[5] Wang Peng, Zhong Guangfa.Application of rock physics models to the deep-sea sediment drift at ODP site 1144, northern South China Sea[J]. Advances in Earth Science, 2012, 27(3): 359-366.[汪鹏,钟广法.南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.]
doi: 10.11867/j.issn.1001-8166.2012.03.0359
[6] Brown R, Korringa J.On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[J]. Geophysics, 1975, 40(4): 608-616.
doi: 10.1190/1.1440551
[7] Mavko G, Mukerji T.Seismic pore space compressibility and Gassmann’s relation[J]. Geophysics, 1995, 60(6):1 743-1 749.
doi: 10.1190/1.1443907
[8] Krief M, Garat J, Stellingwerff J, et al. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic)[J]. Log Analyst, 1990, 31:355-369.
[9] Biot M A.Theory of propagation of elastic waves in a fluid saturated porous solid. Ⅰ. Low-frequency range[J]. Journal of Acoustical Society of America, 1956, 28(2):168-178.
doi: 10.1121/1.1908239
[10] Nur A.Critical porosity and the seismic velocities in rocks[J]. Eos Transactions American Geophysical Union, 1992, 73(1): 43-66.
[11] Nur A, Mavko G.Critical porosity: A key to relating physical properties to porosity in rocks[J]. The Leading Edge, 1998, 17(3): 357-362.
doi: 10.1190/1.1437977
[12] Pride S R.Relationships between seismic and hydrological properties[M]∥Hydrogeophysics. New York:Kluwer Academy, 2005: 217-255.
[13] Lee M W.A simple method of predicting S-wave velocity[J]. Geophysics, 2006, 69(5):161-164.
doi: 10.1190/1.2357833
[14] Knackstedt M A, Arns C H.Velocity-porosity relationships, 1: Accurate velocity model for clean consolidated sandstones[J]. Geophysics, 2003, 68(6): 1 822-1 834.
doi: 10.1190/1.1635035
[15] Arns C H, Knackstedt M A, Pinczewski W V, et al. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment[J]. Geophysics, 2002, 67(5):1 396-1 405.
doi: 10.1190/1.1512785
[16] Zhang Jiajia, Li Hongbing, Liu Huaishan, et al. Accuracy of dry frame models in the study of rock physics[J]. Progress in Geophysics, 2010, 25(5): 1 697-1 702.[张佳佳,李宏兵,刘怀山,等.几种岩石骨架模型的适用性研究[J].地球物理学进展,2010, 25(5): 1 697-1 702.]
doi: 10.3969/j.issn.1004-2903.2010.05.024
[17] Raymer L L, Hunt E R, Gardner J S.An improved sonic transit time to porosity transform[C]∥Transactions of the SPWLA 21st Annual Logging Symposium, 1980: 1-13.
[18] Zhang Jinzhong.The physical basis and simplified form of the acoustic formation factor formula[C]∥Third Annual Logging Conference, 1988.[张金钟. 声波地层因素公式的物理基础及其简化形式[C]∥全国第三届测井年会论文,1988.]
[19] Zhang Jinzhong.Matrix lithology exponent of porous formation versus porosity exponent[J]. Journal of Xian Shiyou University, 1989, 4(4): 1-8.[张金钟. 多孔地层的骨架岩性指数和孔隙结构指数[J].西安石油学院学报,1989,4(4):1-8.]
[20] Han D H, Nur A.Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, (51):2 093-2 107.
[21] Brie A, Pampuri F, Marsala A F, et al. Shear sonic interpretation in gas-bearing sands[C]∥SPE Annual Technical Conference and Exhibition. Dallas, Texas: SPE. 1995: 701-710.
[22] Blangy J P, Strandenes S, Moos D, et al. Ultrasonic velocities in sands- revisited[J]. Geophysics, 1993, 58(3): 344-356.
[23] Yin H, Han D H, Nur A.Study of Velocities and Compaction on Sand-clay Mixture[R]. S. R. B. Report, Stanford University, 1988: 33.
[24] Pickett G R.Acoustic character log and their application in formation evaluation[J]. Journal of Petroleum Technology, 1963, 15(6): 659-667.
doi: 10.2118/452-PA
[25] Murphy W F, Schwartz L M, Hornby B.Interpretation physics of Vp and Vs in sedimentary rocks[C]∥Transactions SPWLA 32nd Annual Logging Symposium, 1991: 1-24.
[26] Han D H.Estimate shear velocity based on dry P-wave and shear modulus relationship[C]∥SEG Int’l Exposition and 74th Annual Meeting, 2004: 10-15.
[27] Batzle M, Wang Z.Seismic properties of pore fluids[J]. Geophysics, 1992, 57(1):1 396-1 468.
doi: 10.1190/1.1443207
[28] Wang Daxing.Study on the rock physics model of gas reservoirs in tight sandstone[J]. Chinese Journal of Geophysics, 2016, 59(12): 4 603-4 622.[王大兴. 致密砂岩气储层的岩石物理模型研究[J].地球物理学报,2016,59(12): 4 603-4 622.]
doi: 10.6038/cjg20161222
[29] Fu Bin, Lin Jinbu, Chen Long, et al. The gas/water identification method and its application in tight sandstone reservoir in the west of sulige gas field[J]. Special Oil and Gas Reservoirs, 2014, 21(3): 66-69.[付斌,李进步,陈龙,等. 苏里格气田西区致密砂岩气水识别方法与应用[J]. 特种油气藏,2014,21(3):66-69.]
doi: 10.3969/j.issn.1006-6535.2014.03.015
[30] Jia Peifeng, Yang Zhengming, Xiao Qianhua, et al. A new method to evaluate tight oil reservoirs[J]. Special Oil and Gas Reservoirs, 2015,22(4): 33-36.[贾培锋,杨正明,肖前华,等. 致密油藏储层综合评价新方法[J]. 特种油气藏,2015,22(4): 33-36.]
doi: 10.3969/j.issn.1006-6535.2015.04.009
[31] Li Lin, Ma Jinfeng.Study of shear wave velocity prediction during CO2-EOR and sequestration in Gao 89 area of Shengli Oilfield[J]. Applied Geophysics, 2017,14(3): 372-380.
doi: 10.1007/s11770-017-0638-5
[1] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.