地球科学进展 ›› 2018, Vol. 33 ›› Issue (4): 416 -424. doi: 10.11867/j.issn.1001-8166.2018.04.0416

研究论文 上一篇    下一篇

致密砂岩储层岩石物理模型的优化建立
贾凌云 1( ), 李琳 1, 王千遥 2, 马劲风 1, 王大兴 3   
  1. 1.西北大学地质学系,二氧化碳捕集与封存技术国家地方联合工程研究中心,陕西 西安 710069
    2.中煤科工集团西安研究院有限公司,陕西 西安 710077
    3.中国石油长庆油田公司勘探开发研究院,陕西 西安 710018
  • 收稿日期:2017-09-08 修回日期:2018-01-25 出版日期:2018-04-20
  • 基金资助:
    *国家高技术研究发展计划项目“二氧化碳地质封存关键技术”(编号:2012AA050103)资助.

Optimization of the Rock Physical Model in Tight Sandstone Reservoir

Lingyun Jia 1( ), Lin Li 1, Qianyao Wang 2, Jinfeng Ma 1, Daxing Wang 3   

  1. 1.National & Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Department of Geology of Northwest University, Xi’an 710069, China;
    2.China Coal Technology Engineering Group Xi’an Research Institute, Xi’an 710077, China;
    3.Research Institute of Exploration and Development, Changqing Oil Field Company, PetroChina, Xi’an 710018,China;
  • Received:2017-09-08 Revised:2018-01-25 Online:2018-04-20 Published:2018-05-24
  • About author:

    First author:Jia Lingyun(1983-),female,Datong City,Shanxi Province,Ph. D student. Research areas include seismic data interpretation, inversion and others.E-mail:1027314266@qq.com

  • Supported by:
    Project supported by the National High Technology Research and Development Program of China “Key technique for CO 2 sequestration” (No.2012AA050103).

Krief模型、Nur模型和Pride-Lee模型通常被用于计算砂岩储层干岩石模量,但对于致密砂岩储层却效果不佳。基于Krief模型和Nur模型,在满足纵波或横波预测值与实测值差值最小的条件下,通过Gassmann方程求出模型中的岩性指数m或临界孔隙度?c,进而将模型中通常采用的经验参数表示成随采样点变化的值,提高了Krief模型和Nur模型估算纵横波速的精度,称为变参数Krief模型和变参数Nur模型。此外,对比不同约束条件下纵横波预测精度,可知在致密砂岩储层中3种模型的剪切模量公式的精度更高、适用性更好。Han提出的Kdryudry关系式不受孔隙度、岩性等因素的影响,将该关系式与上述3种模型中任意一种剪切模量公式结合建立干岩石模型,应用到Gassmann方程中对鄂尔多斯盆地苏里格气藏盒8致密砂岩储层横波速度进行预测,提高了预测横波速度的精度,同时获得了3种模型中每个采样点对应的岩性指数m、临界孔隙度?c和固结参数c的值,这些参数值可以反映出储层的岩性差异、孔隙结构、压实程度等特征,映射了储层的地质特征。

Krief model, Nur model and Pride-Lee model are usually used to calculate dry rock modulus of sandstone reservoirs, but they are not effective for tight sandstone reservoirs. Based on Krief model and Nur model, and minimizing the difference between predicted P-wave or S-wave velocities and measured velocities, we acquireed lithologic index m in Krief model and critical porosity ?c in Nur model by Gassmann relationship. The empirical parameters used in the models are expressed as the values changing with depth, so the accuracy of Krief and Nur models to estimate the P-wave and S-wave velocities was improved, and these two models are called as the variable parameter Krief model and the variable parameter Nur model. In addition, comparing with prediction accuracy of P-wave and S-wave velocities under different constraints, we can see that the shear modulus formulas in the three models are more accurate and more suitable in the tight sandstone reservoir. Han’s relationship about Kdry and udry is not affected by porosity, lithology and other factors, and the paper established dry rock model by Han’s relationship and any one of the above three models. The new dry rock model was applied in the Gassmann relationship to predict S-wave velocity of H8 tight sandstone reservoir in Sulige Gas Filed, Ordos Basin, which improved the accuracy of predicting S-wave velocity. At the same time, lithology index m in Krief model, critical porosity ?c in Nur model and consolidation parameters c in Pride-Lee model which are corresponding to each sample can be obtained. The values of these parameters can reflect lithology difference, pore structure, compaction degree and other characteristics, which indicate the geological characteristics of the reservoir.

中图分类号: 

图1 预测纵波速度对比
Fig.1 Comparison of predicted P-wave velocity
图1 预测纵波速度对比
Fig.1 Comparison of predicted P-wave velocity
图2 预测横波速度对比
Fig.2 Comparison of predicted S-wave velocity
图2 预测横波速度对比
Fig.2 Comparison of predicted S-wave velocity
图3 岩性指数与孔隙度交汇
Fig.3 Cross plot of lithological index and porosity
图3 岩性指数与孔隙度交汇
Fig.3 Cross plot of lithological index and porosity
图4 临界孔隙度与孔隙度交汇
Fig.4 Cross plot of critical porosity and porosity
图4 临界孔隙度与孔隙度交汇
Fig.4 Cross plot of critical porosity and porosity
图5 固结参数与孔隙度交汇
Fig.5 Cross plot of consolidation parameters and porosity
图5 固结参数与孔隙度交汇
Fig.5 Cross plot of consolidation parameters and porosity
图6 预测横波速度对比
Fig.6 Comparison of predicted S-wave velocity
图6 预测横波速度对比
Fig.6 Comparison of predicted S-wave velocity
图7 预测纵波速度对比
Fig.7 Comparison of predicted P-wave velocity
图7 预测纵波速度对比
Fig.7 Comparison of predicted P-wave velocity
图8 预测横波速度对比
Fig.8 Comparison of predicted S-wave velocity
图8 预测横波速度对比
Fig.8 Comparison of predicted S-wave velocity
图9 岩性指数与孔隙度交汇
Fig.9 Cross plot of lithological index and porosity
图9 岩性指数与孔隙度交汇
Fig.9 Cross plot of lithological index and porosity
图10 临界孔隙度 ?c与孔隙度交汇
Fig.10 Cross plot of critical porosity ?c and porosity
图10 临界孔隙度 ?c与孔隙度交汇
Fig.10 Cross plot of critical porosity ?c and porosity
图11 固结参数与孔隙度交汇
Fig.11 Cross plot of consolidation parameters and porosity
图11 固结参数与孔隙度交汇
Fig.11 Cross plot of consolidation parameters and porosity
图12 苏46井盒8段纵横波速度预测对比
Fig.12 Comparison of prediction velocity methods of He 8 formation of well Su 46
图12 苏46井盒8段纵横波速度预测对比
Fig.12 Comparison of prediction velocity methods of He 8 formation of well Su 46
[1] Zou Caineng, Tao Shizhen, Hou Lianhua, et al.Unconventional Oil and Gas Geology[M]. Beijing: Geological Publishing House, 2011.
[邹才能,陶士振,侯连华,等. 非常规油气地质[M]. 北京:地质出版社, 2011.]
[2] Mao Keyu.Logs fluid typing methods and adaptive analysis of tight sandstone reservoir of Yingcheng formation in Lishu Fault[J]. Advances in Earth Science, 2016, 31(10):1 056-1 066.
[毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10):1 056-1 066.]
doi: 10.11867/j.issn.1001-8166.2016.10.1056     URL    
[3] Gassmann F.Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(3): 673-682.
doi: 10.1190/1.1437718     URL    
[4] Yang Yang, Ma Jinfeng, Li Lin.Research progress of carbon dioxide capture and storage technique and 4D seismic monitoring technique[J]. Advances in Earth Science, 2015, 30(10): 1 119-1 126.
[杨扬,马劲风,李琳. CO2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1 119-1 126.]
doi: 10.11867/j.issn.1001-8166.2015.10.1119     URL    
[5] Wang Peng, Zhong Guangfa.Application of rock physics models to the deep-sea sediment drift at ODP site 1144, northern South China Sea[J]. Advances in Earth Science, 2012, 27(3): 359-366.
[汪鹏,钟广法.南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.]
doi: 10.11867/j.issn.1001-8166.2012.03.0359     URL    
[6] Brown R, Korringa J.On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[J]. Geophysics, 1975, 40(4): 608-616.
doi: 10.1190/1.1440551     URL    
[7] Mavko G, Mukerji T.Seismic pore space compressibility and Gassmann’s relation[J]. Geophysics, 1995, 60(6):1 743-1 749.
doi: 10.1190/1.1443907     URL    
[8] Krief M, Garat J, Stellingwerff J, et al. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic)[J]. Log Analyst, 1990, 31:355-369.
URL    
[9] Biot M A.Theory of propagation of elastic waves in a fluid saturated porous solid. Ⅰ. Low-frequency range[J]. Journal of Acoustical Society of America, 1956, 28(2):168-178.
doi: 10.1121/1.1908239     URL    
[10] Nur A.Critical porosity and the seismic velocities in rocks[J]. Eos Transactions American Geophysical Union, 1992, 73(1): 43-66.
URL    
[11] Nur A, Mavko G.Critical porosity: A key to relating physical properties to porosity in rocks[J]. The Leading Edge, 1998, 17(3): 357-362.
doi: 10.1190/1.1437977     URL    
[12] Pride S R.Relationships between seismic and hydrological properties[M]∥Hydrogeophysics. New York:Kluwer Academy, 2005: 217-255.
[13] Lee M W.A simple method of predicting S-wave velocity[J]. Geophysics, 2006, 69(5):161-164.
doi: 10.1190/1.2357833     URL    
[14] Knackstedt M A, Arns C H.Velocity-porosity relationships, 1: Accurate velocity model for clean consolidated sandstones[J]. Geophysics, 2003, 68(6): 1 822-1 834.
doi: 10.1190/1.1635035     URL    
[15] Arns C H, Knackstedt M A, Pinczewski W V, et al. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment[J]. Geophysics, 2002, 67(5):1 396-1 405.
doi: 10.1190/1.1512785     URL    
[16] Zhang Jiajia, Li Hongbing, Liu Huaishan, et al. Accuracy of dry frame models in the study of rock physics[J]. Progress in Geophysics, 2010, 25(5): 1 697-1 702.
[张佳佳,李宏兵,刘怀山,等.几种岩石骨架模型的适用性研究[J].地球物理学进展,2010, 25(5): 1 697-1 702.]
doi: 10.3969/j.issn.1004-2903.2010.05.024     URL    
[17] Raymer L L, Hunt E R, Gardner J S.An improved sonic transit time to porosity transform[C]∥Transactions of the SPWLA 21st Annual Logging Symposium, 1980: 1-13.
[18] Zhang Jinzhong.The physical basis and simplified form of the acoustic formation factor formula[C]∥Third Annual Logging Conference, 1988.
[张金钟. 声波地层因素公式的物理基础及其简化形式[C]∥全国第三届测井年会论文,1988.]
[19] Zhang Jinzhong.Matrix lithology exponent of porous formation versus porosity exponent[J]. Journal of Xian Shiyou University, 1989, 4(4): 1-8.
[张金钟. 多孔地层的骨架岩性指数和孔隙结构指数[J].西安石油学院学报,1989,4(4):1-8.]
[20] Han D H, Nur A.Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, (51):2 093-2 107.
[21] Brie A, Pampuri F, Marsala A F, et al. Shear sonic interpretation in gas-bearing sands[C]∥SPE Annual Technical Conference and Exhibition. Dallas, Texas: SPE. 1995: 701-710.
[22] Blangy J P, Strandenes S, Moos D, et al. Ultrasonic velocities in sands- revisited[J]. Geophysics, 1993, 58(3): 344-356.
[23] Yin H, Han D H, Nur A.Study of Velocities and Compaction on Sand-clay Mixture[R]. S. R. B. Report, Stanford University, 1988: 33.
[24] Pickett G R.Acoustic character log and their application in formation evaluation[J]. Journal of Petroleum Technology, 1963, 15(6): 659-667.
doi: 10.2118/452-PA     URL    
[25] Murphy W F, Schwartz L M, Hornby B.Interpretation physics of Vp and Vs in sedimentary rocks[C]∥Transactions SPWLA 32nd Annual Logging Symposium, 1991: 1-24.
[26] Han D H.Estimate shear velocity based on dry P-wave and shear modulus relationship[C]∥SEG Int’l Exposition and 74th Annual Meeting, 2004: 10-15.
[27] Batzle M, Wang Z.Seismic properties of pore fluids[J]. Geophysics, 1992, 57(1):1 396-1 468.
doi: 10.1190/1.1443207     URL    
[28] Wang Daxing.Study on the rock physics model of gas reservoirs in tight sandstone[J]. Chinese Journal of Geophysics, 2016, 59(12): 4 603-4 622.
[王大兴. 致密砂岩气储层的岩石物理模型研究[J].地球物理学报,2016,59(12): 4 603-4 622.]
doi: 10.6038/cjg20161222     URL    
[29] Fu Bin, Lin Jinbu, Chen Long, et al. The gas/water identification method and its application in tight sandstone reservoir in the west of sulige gas field[J]. Special Oil and Gas Reservoirs, 2014, 21(3): 66-69.
[付斌,李进步,陈龙,等. 苏里格气田西区致密砂岩气水识别方法与应用[J]. 特种油气藏,2014,21(3):66-69.]
doi: 10.3969/j.issn.1006-6535.2014.03.015     URL    
[30] Jia Peifeng, Yang Zhengming, Xiao Qianhua, et al. A new method to evaluate tight oil reservoirs[J]. Special Oil and Gas Reservoirs, 2015,22(4): 33-36.
[贾培锋,杨正明,肖前华,等. 致密油藏储层综合评价新方法[J]. 特种油气藏,2015,22(4): 33-36.]
doi: 10.3969/j.issn.1006-6535.2015.04.009     URL    
[31] Li Lin, Ma Jinfeng.Study of shear wave velocity prediction during CO2-EOR and sequestration in Gao 89 area of Shengli Oilfield[J]. Applied Geophysics, 2017,14(3): 372-380.
doi: 10.1007/s11770-017-0638-5     URL    
[1] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
阅读次数
全文


摘要