地球科学进展 ›› 2020, Vol. 35 ›› Issue (3): 259 -274. doi: 10.11867/j.issn.1001-8166.2020.029

综述与评述 上一篇    下一篇

石墨化碳质物质拉曼光谱温度计原理与应用
田野( ),田云涛( )   
  1. 中山大学地球科学与工程学院,广东 广州 510275
  • 收稿日期:2020-01-13 修回日期:2020-02-28 出版日期:2020-03-10
  • 通讯作者: 田云涛 E-mail:tiany45@mail2.sysu.edu.cn;tianyuntao@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目“龙门山新生代构造格架的横向差异:来自三维热—动力模拟的制约”(41772211)

Fundamentals and Applications of Raman Spectroscopy of Carbonaceous Material( RSCM) Thermometry

Ye Tian( ),Yuntao Tian( )   

  1. School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou 519082, China
  • Received:2020-01-13 Revised:2020-02-28 Online:2020-03-10 Published:2020-04-10
  • Contact: Yuntao Tian E-mail:tiany45@mail2.sysu.edu.cn;tianyuntao@mail.sysu.edu.cn
  • About author:Tian Ye (1996-), male, Xixian County, Henan Province, Ph. D student. Research areas include structural geology. E-mail: tiany45@mail2.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Cenozoic segmentation of the Longmen Shan: Insights from 3D thermo-kinematic modelling"(41772211)

总结了石墨化碳质物质拉曼光谱温度计的原理、样品制备、测试流程、影响因素和地质应用。该温度计基于沉积岩变质过程中发生的不可逆的碳质物质石墨化,利用拉曼光谱量化石墨化的程度,进而限制峰期变质的温度。近年来的研究量化了温度计算模型;同时发现除温度外,石墨化碳质物质拉曼光谱的影响因素还包括:石墨结构与成分的非均匀性、抛光制靶时引起的结构损伤、测试激光的波长和能量、赤铁矿含量等。因此,石墨化碳质物质拉曼光谱温度计的应用需要注意如下事项:野外需采集新鲜样品,排除风化产物赤铁矿的影响;使用标准的样品制备与测试流程,避免抛光和激光烧蚀的影响;并通过多点测试(通常为25个以上)的方式,统计测试结果的平均值与误差,以提高温度计算结果的准度。该方法适用的温度范围为100~700 ℃,在变质—变形分析、沉积岩埋藏历史、断层泥与有机质成熟度等研究领域均有较为广泛的应用。

This contribution attempts to summarize the principles, sample preparation, analytical procedures, influencing factors, and geological applications of Raman Spectroscopy of Carbonaceous Material (RSCM) thermometry. Irreversible graphitization of carbonaceous material in sedimentary rocks occurs during the process of reaching peak metamorphic temperature and can be effectively quantified by Raman spectroscopy. However, in addition to temperature, other factors, such as structural and compositional heterogeneity of carbonaceous materials, structural damage caused by polishing, wavelength and energy of laser used for analyses, hematite content,etc., also have significant influence on the Raman signals of carbonaceous materials. Therefore, fresh samples should be collected for analyses to eliminate the influence of hematite. Further, standard experimental procedure should be practiced to avoid the effects of polishing and laser parameter setups. Additionally, multiple (usually more than 25) analyses per sample should be carried out for deriving statistical average and uncertainty values so as to minimize the influence of sample heterogeneity. RSCM thermometry is applicable to a temperature range between 100~700 ℃, and has been widely used in many fields of geological studies, including metamorphism and deformation of orogens, sediment burial history, fault gouge characteristics and evolution, and maturation grade of carbonaceous materials,etc.

中图分类号: 

图1 碳质物质拉曼光谱特征、光谱拟合及经历了不同变质温度样品光谱信号
(a)光谱拟合示意图(据参考文献[ 19 ]修改),其中实线为原始光谱图像,虚线为分峰拟合结果:G(graphite)峰表示石墨峰,D(defect)峰表示缺陷峰;(b)不同峰期变质温度样品的拉曼光谱图像与对应温度计算结果;用于分析的石墨化碳质物质分别来自龙门山映秀断裂断层泥、松潘—甘孜地体东部的复理石、龙门山腹地志留纪云母片岩和胶北矽线石榴片麻岩样品;随着样品峰期变质温度增高,G峰信号增强、D峰信号减弱
Fig.1 Images of typical raman spectra, spectral fitting results and the spectra of samples that have experienced different peak metamorphic temperatures
(a) Images of typical raman spectra and spectral fitting results (modified after reference [ 19 ]), where the solid line is the original spectral signal, and the dash lines are the peak fitting results: The G-band represents the graphite peak and the D-bands represent defect peaks; (b) Raman spectra of samples with different peak metamorphic temperatures and corresponding temperature calculation results; The samples are fault gouge of the Yingxiu fault in the Longmenshan, Triassic flysch in the eastern Songpan-Ganzi terrane, Silurian mica schist in the hinterland of the Longmenshan, and metamorphic rocks in the Khondalite belt of North China; As shown, the G-band signal increases and the D-band signal decreases with the increase of sample peak temperatures
图2 龙门山云母片岩样品
(a)透射光显微照片; (b)反射光显微照片
Fig.2 Micrographs of a mica schist sample from the Longmenshan
(a) Transmitted; (b) Reflected lights
图3 不同峰期变质温度样品的荧光背景
(a)中高温变质碳质物质拉曼光谱(实线)具有近线性荧光背景(虚线);(b)低温变质样品具有非线性荧光背景(虚线)
Fig.3 Fluorescent background of samples with different peak metamorphic temperatures
(a) Samples with a moderate peak metamorphic temperature often show linear fluorescent background (dashed line); (b) Samples with a peak metamorphic temperature often yield non-linear fluorescent background (dashed line)
图4 温度计算模型对比图
(a)高温样品的经验公式计算结果对比图,结果显示,除个别异常点,公式(4)与(6)的计算温度明显高于公式(2);(b)适用于相对低温样品的经验公式(6)(横坐标)与公式(7)(纵坐标)低温(<400 ℃)计算结果对比,二者计算相对误差均较大,整体上公式(7)计算结果小于公式(6);拉曼数据源自参考文献[ 21 ]和图1b中的样品
Fig.4 Comparison of different Raman spectroscopy of carbonaceous material thermometry models
(a) Comparison of the temperatures calculated by equations (2) (x-axis) and (4), (6) (y-axis) that are suitable for a relatively higher temperature range; The calculation results show that except for several outliners, the calculated temperatures by formula (4) and (6) are higher than that by formula (2); (b) Comparison of equation 6 (x-axis) and 7 (y-axis) at low temperature (<400 ℃). Both errors are large, and the calculated results of equation 7 are relatively smaller than those of equation 6. Raman data are derived from reference[ 21 ] and Fig.1b
图5 石墨拉曼光谱各向异性分析图(据参考文献[ 57 ]修改)
由上至下为在石墨不同晶轴方向上的测试结果;由左至右为使用不同波长激光的分析结果,右下角双向箭头为激光偏振方向
Fig.5 Raman spectra of graphite anisotropy (modified after reference [ 57 ])
From top to bottom are the Raman spectra of graphite in different crystal axis directions; From left to right are the analysis results using lasers with different wavelengths. The double-headed arrows in the lower right corner of the panels mark the laser polarization direction
图6 碳质物质高分辨率透射电镜显微形貌照片(据参考文献[ 58 ]修改)
(a)002晶面:可见到洋葱式结构,外圈比内圈有序度要高;(b)002晶面:有序度小于(a),发育显微气孔结构,不同区域有序度不同;(a)和(b)来自同一个样品的不同位置
Fig.6 HRTEM pictures from carbonaceous material (modified after reference [ 58 ])
(a) 002 lattice fringes image showing onion ring microtextures, the core is poorly organized in comparison with the outer part; (b) 002 lattice fringes image of microporous poorly organized carbonaceous material. The two pictures are taken from different locations of the same sample
图7 激光波长对碳质拉曼光谱的影响(据参考文献[ 67 ]修改)
随波长增加,石墨峰(G峰)频移基本不变,缺陷峰(D1峰)频移增大,同时石墨峰信号相对于缺陷峰减弱
Fig.7 Effect of laser wavelength on Raman spectroscopy of carbonaceous material (modified after reference [ 67 ])
With an increasing laser wavelength, the Raman shift of the G-band is relatively stable; The Raman shift of the D1-band increases; The
G-band signal is weakened compare to the D1-band
图8 测试前(a)与经过不同能量激光测试后(b~e)的碳质物质显微照片,及对应的拉曼光谱结果(f)(据参考文献[ 69 ]修改)
Fig.8 Images of carbonaceous material before(a)and after Raman spectroscopy analysis using different laser energy(b~e),and the corresponding Raman spectra(f)(modified after reference 69 ])
图9 抛光对拉曼测试结果的影响(据参考文献[ 9 , 72 ]修改)
(a)显微镜下石墨照片,部分石墨直被抛光暴露(黑色点标注的透射光下的不透明、反射光下灰白色强反射的区域),部分处于透明矿物之下(白点所标注的反射光下的较虚的灰白色区域);(b)抛光暴露的与透明矿物下的石墨拉曼光谱测试结果
Fig.9 Raman spectra of polished graphite and that of grains beneath quartz (modified after references [9,72])
(a) Microscopic photos of graphite exposed by polishing (opaque under transmitted light and gray-white under reflected light, marked by black spots) and those beneath transparent miners (marked by white spots); (b) Raman spectra of those two types of graphite
图10 赤铁矿对拉曼光谱影响(据参考文献[ 73 ]修改)
(a)为石墨光谱形态与同频移段内赤铁矿光谱形态,其中赤铁矿谱峰位置为1 320 cm -1,与石墨D1缺陷峰位置(1 350 cm -1)接近,插图为氧化(灰色)与未氧化(黑色)样品的测试谱图,显示氧化样品受赤铁矿谱峰影响而产生虚假的强D1缺陷峰;(b)为是否经HF酸处理的碳质物质 R1与 R2值的变化:未经过HF处理的氧化样品(灰色) R1与 R2值明显大于未氧化样品(黑色);处理后两类样品基本相同
Fig.10 Effect of hematite on Raman Spectra of graphite (modified after reference [ 73 ])
(a) Raman spectra of hematite (grey) and graphite (black). The Raman shift of hematite is located at 1 320 cm -1, close to D1 band (1 350 cm -1) of graphite. The insetted panel shows a comparison of Raman spectra of oxidized (grey) and non-oxidised (black) samples, and the former shows a fake and strong D1 band due to influence of hematite. (b) R1 and R2 plots for untreated and HF-treated samples. Blue points indicate non-oxidised samples. Red points indicate oxidised samples. After treatment, the two types of samples yield similar R1 and R2 values
图11 尼泊尔西部地质图、拉曼测温结果及NE-SWA-A'构造—变质温度剖面(据参考文献[ 74 ]修改)
图中给出构造地层的接触关系及一些样品的拉曼测温结果,(a)图为地质图所属地理位置;(b)NE-SW向剖面AA';LH: 低喜马拉雅;MCT:主中央逆冲断层;MBT:主边界逆冲断层;MFT:主前缘逆冲断层
Fig.11 Geological map of western Nepal, on which Raman Spectroscopy of Carbonaceous Material (RSCM) thermometer results are compiled, and there also have a NE-SW cross-section A-A' with temperature and main thrusts (modified after reference[ 74 ])
There are major tectonostratigraphic zones and tectonic contacts and some RSCM thermometer results in the map. (a) Location of the studied area at the scale of Nepal. (b) A simplified NE-SW crosssection AAV with temperature and main thrusts. Abbreviation: LH:Lesser Himalaya,MCT:Main Central Thrust,MBT:Main Boundary Thrust,MFT:Main Frontal Thrust
图12 剪切摩擦实验后样品拉曼光谱特征,及其与初始材料的对比(据参考文献[ 88 ]修改)
(a) 初始样品与剪切摩擦实验后样品拉曼光谱D1/G峰宽值与D1/G强度值的变化;(b) 经初始样品标准化后的剪切样品D1/G半高宽值与D1与G峰拉曼频移位置
Fig.12 Raman spectra analyses of gouges sheared in rock friction experiments, and comparison with the initial material (modified after reference [ 88 ])
(a) Defect band to graphite band (D1/G) width versus intensity ratios of samples before and after friction experiments; (b) Plots of D1 and G peak widths of sheared gouges verseus the D1/G width ratio normalized by average starting material
图13 汶川地震科学钻井-1岩芯照片及不同位置拉曼分析结果(据参考文献[ 88 ]修改)
(a)龙门山断裂主要岩芯照片;(b)断层泥与角砾岩D1/G峰宽度比值与强度比值对比图;(c) 断层泥与角砾岩G、D1峰宽比及G峰与D1峰拉曼频移位置。插图显示断层泥G峰频移相对角砾岩增大;PSZ: 主滑动区域
Fig.13 Wenchuan Earthquake Fault Scientific Drilling WFSD-1 borehole core with sample depth locations and results of Raman analyses (modified after reference [ 88 ])
(a) Core images of the WFSD-1 borehole; (b) Defect to graphite band (D1/G) peak width ratio versus D1/G intensity ratio; (c) Ratio of G and D1 peak width of gouge to average breccia peak width versus G band peak position. Inset shows systematic shift toward higher frequencies of G band observed in black gouge with respect to fault breccia; PSZ denotes the Principal Slip Zone
1 Bernard S,Papineau D.Graphitic carbons and biosignatures [J].Elements,2014,10(6):435-440.
2 Alleon J,Bernard S,Le Guillou C,et al.Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy [J].Nature Communications,2016,7(1):1-11.
3 Luque F J,Pasteris J D,Wopenka B,et al.Natural fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation [J].American Journal of Science,1998,298:471-498.
4 Luque F J,Ortega L,Barrenechea J F,et al.Deposition of highly crystalline graphite from moderate-temperature fluids [J].Geology,2009,37(3):275-278.
5 Rumble D.Hydrothermal graphitic carbon [J].Elements,2014,10(6):427-433.
6 Croat T K,Bernatowicz T J,Daulton T L.Presolar graphitic carbon spherules: Rocks from stars [J].Elements,2014,10(6):441-446.
7 Visser R,John T,Menneken M,et al.Temperature constraints by raman spectroscopy of organic matter in volatile-rich clasts and carbonaceous chondrites [J].Geochimica et Cosmochimica Acta,2018,241:38-55.
8 Lahfid A,Beyssac O,Deville E,et al.Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland) [J].Terra Nova,2010,22(5):354-360.
9 Beyssac O,Lazzeri M.Application of raman spectroscopy to the study of graphitic carbons in the Earth science [J].EMU Notes in Mineralogy,2012,12(12):415-454.
10 Beyssac O,Rumble D.Graphitic carbon: A ubiquitous, diverse, and useful geomaterial [J].Elements,2014,10(6):415-420.
11 Delarue F,Rouzaud J N,Derenne S,et al.The raman-derived carbonization continuum: A tool to select the best preserved molecular structures in Archean Kerogens [J].Astrobiology,2016,16(6):407-417.
12 Deldicque D,Rouzaud J N,Velde B.A Raman-HRTEM study of the carbonization of wood: A new raman-based paleothermometer dedicated to archaeometry [J].Carbon,2016,102:319-329.
13 Beyssac O,Brunet F,Petitet J P,et al.Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature [J].European Journal of Mineralogy,2004,15(6):937-951.
14 Grew E S.Carbonaceous material in some metamorphic rocks of New England and other areas [J].The Journal of Geology1974,82(1):50-73.
15 Diessel C F K,Brothers R N,Black P M.Petrology: Coalification and graphitization in high-pressure schists in New Caledonia [J].Contributions to Mineralogy and Petrology,1978,68(1):63-78.
16 Itaya T.Carbonaceousmaterialin pelitic schists of the: Sanbagawametamorphicbelt in central Shikoku,Japan [J].Lithos,1981,14(3):215-224.
17 Bonijoly M,Oberlin M,Oberlin A.A possible mechainsm for natural graphite formation [J].International Journal of Coal Geology,1982,1(4):283-312.
18 Buseck P R,Bo-Jun H.Conversion of carbonaceous material to graphite during metamorphism [J].Geochimica et Cosmochimica Acta,1985,49(10):2 003-2 016.
19 Aoya M,Kouketsu Y,Endo S,et al.Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks [J].Journal of Metamorphic Geology,2010,28(9):895-914.
20 T-F Yui,Huang E,Xu J.Raman spectrum of carbonaceous material: A possible metamorphic grade indicator for low-grade metamorphic rocks [J].Journal of Metamorphic Geology,1996,14(2):115-124.
21 Rahl J,Anderson K,Brandon M,et al.Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece [J].Earth and Planetary Science Letters,2005,240(2):339-354.
22 Rietmeijer F J M,Mackinnon I D R.Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials [J].Nature,1985,315(6 022):733-736.
23 Wada H,Tomita T,Matsuura K,et al.Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan [J].Contributions to Mineralogy and Petrology,1994,118(3):217-228.
24 Beyssac O,Goffé B,Chopin C,et al.Raman spectra of carbonaceous material in metasediments: A new geothermometer [J].Journal of Metamorphic Geology,2002,20(9):859-871.
25 Lünsdorf N K,Dunkl I,Schmidt B C,et al.Towards a higher comparability of geothermometric data obtained by raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer [J].Geostandards and Geoanalytical Research,2017,41(4):593-612.
26 Hu Kai,Liu Yingjun.Laser raman spectroscopy carbon geothermal thermometer and its geological application [J].Chinese Journal of Geology,1993,28(3):235-245.
胡凯,刘英俊.激光喇曼光谱碳质地温计及其地质应用 [J].地质科学,1993,28(3):235-245.
27 Duan Jingchun,Zhuang Xinguo,He Mouchun.Laser raman spectral characteristics of coals with different metamorphic degrees [J].Geological Science and Technology Information,2002,21(2):65-68.
段菁春,庄新国,何谋春.不同变质程度煤的激光拉曼光谱特征 [J].地质科技情报,2002,21(2):65-68.
28 Wang Yang,Hu Kai.Application of laser raman spectrum characteristic parameters to reflect the maturity of organic carbon [J].Mineralogy and Petrology,2002,22(3):57-60.
汪洋,胡凯.应用激光喇曼光谱特征参数反映有机碳质的成熟度 [J].矿物岩石,2002,22(3):57-60.
29 He Mouchun,Xinbiao Lü,Yao Shuzhen,et al.Raman spectral characteristics of residual organic matter in sedimentary rocks [J].Geological Science and Technology Information,2005,24(3):67-79.
何谋春,吕新彪,姚书振,等.沉积岩中残留有机质的拉曼光谱特征 [J].地质科技情报,2005,24(3):67-79.
30 Hu Daqian,Wang Yanquan,Sha Xi,et al.Very low grade metamorphic temperatures of the upper paleozoic strata in Northern Daxing'anling Area, NE China:Evidence from raman spectrum studies of carbonaceous materials [J].Journal of Jilin University (Science Edition)2015,45(1):188-197.
胡大千,王岩泉,沙茜,等.大兴安岭北部上古生界极低级变质温度——来自碳质物拉曼光谱的证据 [J].吉林大学学报:自然科学版,2015,45(1):188-197.
31 Yao Jie,Hu Daqian,Sun Guosheng,et al.Raman spectrum characteristics of organic materials of Middle Permian Zhesi Formation in Suolun area, Inner Mongolia and their geological implication [J].Global Geology,2016,35(3):760-770.
姚杰,胡大千,孙国胜,等.内蒙古索伦地区中二叠统哲斯组有机质的拉曼光谱特征及地质意义 [J].世界地质,2016,35(3):760-770.
32 Jiang Gaozhen,Li Yike,Wang Anjian,et al.Genetic features of Dawudian graphite deposit in Urad Middle Banner, Inner Mongolia [J].Earth Science Fronitier,2017,24(5):306-316.
姜高珍,李以科,王安建,等.内蒙古乌拉特中旗大乌淀石墨矿成因特征分析 [J].地学前缘,2017,24(5):306-316.
33 San Yun,Zou Yanrong,Min Yushun,et al.Characteristics and significance of maturity of Raman spectra of type I kerogen during maturation [J].Geochimica,2018,47(5):586-592
单云,邹艳荣,闵育顺,等.Ⅰ型干酪根热成熟过程中拉曼光谱特征及其成熟度意义 [J].地球化学,2018,47(5):586-592.
34 He Mouchun,Xinbiao Lü,Liu Yanrong.Elementary investigation on the application of laser raman microprobe in petroleum exploration [J].Spectroscopy and Spectral Analysis,2004,24(11):1 363-1 366.
何谋春,吕新彪,刘艳荣.激光拉曼光谱在油气勘探中的应用研究初探 [J].光谱学与光谱分析,2004,24(11):1 363-1 366.
35 Lünsdorf N K,Dunkl I,Schmidt B C,et al.Towards a higher comparability of geothermometric data obtained by raman spectroscopy of carbonaceous material. Part I: Evaluation of biasing factors [J].Geostandards and Geoanalytical Research,2014,38(1):73-94.
36 Reich S,Thomsen C.Raman spectroscopy of graphite [J].Philosophical Transactions of the Royal Society of London. Series A: Mathematical,Physical and Engineering Sciences,2004,362(1 824):2 271-2 288.
37 Hu Kai,Wilkins R W T.Laser raman spectroscopy carbon geothermometer—A new method of paleo-geothermal test [J].Chinese Science Bulletin,1992,37(14):1 302-1 305.
胡凯,Wilkins RWT.激光拉曼光谱碳质地温计——一种新的古地温测试方法 [J].科学通报,1992,37(14):1 302-1 305.
38 Kouketsu Y,Mizukami T,Mori H,et al.A new approach to develop the raman carbonaceous material geothermometer for low-grade metamorphism using peak width [J].Island Arc,2014,23:33-50.
39 Tuinstra F,Koenig J L.Raman spectrum of graphite [J].The Journal of Chemical Physics,1970,53(3):1 126-1 130.
40 Wang Y,Alsmeyer D C,McCreery R L.Raman spectroscopy of carbon materials: Structural basis of observed spectra [J].Chemistry of Materials,1990,2(5):557-563.
41 Pasteris J D,Wopenka B.Raman spectra of graphite as indicators of degree of metamorphism [J].The Canadian Mineralogist,1991,29(1):1-9.
42 Wopenka B,Pasteris J D.Structural characterization of kerogens to granulite-facies graphite: Applicability of raman microprobe spectroscopy [J].American Mineralogist,1993,78(5/6):533-557.
43 Sadezky A,Muckenhuber H,Grothe H,et al.Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information [J].Carbon,2005,43(8):1 731-1 742.
44 Kwiecinska B,Suárez-Ruiz I,Paluszkiewicz C,et al.Raman spectroscopy of selected carbonaceous samples [J].International Journal of Coal Geology,2010,84(3/4):206-212.
45 Pimenta M A,Dresselhaus G,Dresselhaus M S,et al.Studying disorder in graphite-based systems by raman spectroscopy [J].Physical Chemistry Chemical Physics,2007,9(11):1 276-1 291.
46 Dresselhaus M S,Jorio A,Souza Filho A G,et al.Defect characterization in graphene and carbon nanotubes using raman spectroscopy [J].Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2010,368(1 932):5 355-5 377.
47 Jawhari T,Roid A,Casado J.Raman spectroscopic characterization of some commercially available carbon black materials [J].Carbon,1995,33(11):1 561-1 565.
48 Beyssac O,Pattison D R M,Bourdelle F.Contrasting degrees of recrystallization of carbonaceous material in the Nelson aureole, British Columbia and Ballachulish aureole, Scotland, with implications for thermometry based on raman spectroscopy of carbonaceous material [J].Journal of Metamorphic Geology,2019,37(1):71-95.
49 Marcin W.Fityk: A general-purpose peak fitting program[J].Journal of Applied Crystallography,2010,43:1 126-1 128.
50 Jiao S,Fitzsimons I,Guo J.Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating [J].Precambrian Research,2017,303:208-227.
51 Jiao S,Guo J H,Wang L,et al.Short-lived High-temperature Prograde and Retrograde Metamorphism in Shaerqin Sapphirine-bearing metapelites from the Daqingshan Terrane, North China Craton [J].Precambrian Research,2015,269:31-57.
52 Liu S,Tsunogae T,Li W,et al.Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton [J].Lithos,2012,148:54-70.
53 Guo J,Peng P,Chen Y,et al.UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton [J].Precambrian Research,2012,222/223:124-142.
54 Pasteris J D.In situ analysis in geological thin-sections by laser raman microprobe spectroscopy: A cautionary note [J].Society for Applied Spectroscopy,1989,43(3):567-570.
55 Wang A,Dhamelincourt P,Dubessy J,et al.Characterization of graphite alteration in an uranium deposit by micro-raman spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy [J].Carbon,1989,27(2):209-218.
56 Beyssac O,Goffé B,J-P Petitet,et al.On the characterization of disordered and heterogeneous carbonaceous materials by raman spectroscopy [J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2003,59(10):2 267-2 276.
57 Tan P,Dimovski S,Gogotsi Y.Raman scattering of non-planar graphite: Arched edges, polyhedral crystals, whiskers and cones [J].Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2004,362(1 824):2 289-2 310.
58 Beyssac O,J-N Rouzaud,Goffé B,et al.Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study [J].Contributions to Mineralogy and Petrology,2002,143(1):19-31.
59 Van Zuilen M A,Fliegel D,Wirth R,et al.Mineral-templated growth of natural graphite films [J].Geochimica et Cosmochimica Acta,2012,83:252-262.
60 Buseck P R,Beyssac O.From organic matter to graphite: Graphitization [J].Elements,2014,10(6):421-426.
61 Katagiri G,Ishida H,Ishitani A.Raman spectra of graphite edge planes [J].Carbon,1988,26(4):565-571.
62 Bernard S,Benzerara K,Beyssac O,et al.Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks [J].Earth and Planetary Science Letters,2007,262:257-272.
63 Bernard S,Beyssac O,Benzerara K.Raman mapping using advanced line-scanning systems: Geological applications [J].Society for Applied Spectroscopy,2008,62:1 180-1 188.
64 Bernard S,Beyssac O,Benzerara K,et al.XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis [J].Carbon,2010,48(9):2 506-2 516.
65 Can?ado L G,Takai K,Enoki T,et al.General equation for the determination of the crystallite size La of nanographite by raman spectroscopy [J].Applied Physics Letters,2006,88(16):163106.
66 Vidano R P,Fischbach D B,Willis L J,et al.Observation of raman band shifting with excitation wavelength for carbons and graphites [J].Solid State Communications,1981,39(2):341-344.
67 Sato K,Saito R,Oyama Y,et al.D-band raman intensity of graphitic materials as a function of laser energy and crystallite size [J].Chemical Physics Letters,2006,427(1/3):117-121.
68 Quirico E,Rouzaud J N,Bonal L,et al.Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems [J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2005,61(10):2 368-2 377.
69 Henry D G,Jarvis I,Gillmore G,et al.Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure [J].International Journal of Coal Geology,2018,191:135-151.
70 Everall N,Lumsdon J,Christopher D.The effect of laser-induced heating upon the vibrational raman spectra of graphites and carbon fibers [J].Carbon,1991,29(2):133-137.
71 Kagi H,Tsuchida I,Wakatsuki M,et al.Proper understanding of down-shifted Raman spectra of natural graphite: Direct estimation of baser-induced rise in sample temperature [J].Geochimica et Cosmochimica Acta,1994,58:3 527-3 530.
72 Mostefaoui S,Perron C,Zinner E,et al.Metal-associated carbon in primitive chondrites: Structure, isotopic composition, and origin [J].Geochimica et Cosmochimica Acta,2000,64(11):1 945-1 964.
73 Brolly C,Parnell J,Bowden S.Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments [J].Planetary and Space Science,2016,121:53-59.
74 Beyssac O,Bollinger L,J-P Avouac,et al.Thermal metamorphism in the lesser Himalaya of Nepal determined from raman spectroscopy of carbonaceous material [J].Earth and Planetary Science Letters,2004,225(1/2):233-241.
75 AygüL M,Okay A I,Oberh?Nsli R,et al.Thermal structure of low-grade accreted Lower Cretaceous distal turbidites, the Central Pontides, Turkey: Insights for tectonic thickening of an accretionary wedge [J].Turkish Journal of Earth Sciences,2015,24:461-474.
76 Bellanger M,Augier R,Bellahsen N,et al.Shortening of the European Dauphinois margin (Oisans Massif, Western Alps): New insights from RSCM maximum temperature estimates and 40Ar/39Ar in situ dating [J].Journal of Geodynamics,2015,83:37-64.
77 Beyssac O,Cox S C,Vry J,et al.Peak metamorphic temperature and thermal history of the Southern Alps (New Zealand) [J].Tectonophysics,2016,676:229-249.
78 Pecher A.The metamorphism in the Central Himalaya [J].Journal of Metamorphic Geology,1989,7(1):31-41.
79 Paudel LP,Arita K.Tectonic and polymetamorphic history of the Lesser Himalaya in central Nepal [J].Journal of Asian Earth Sciences,2000,18(5):561-584.
80 Wiederkehr M,Bousquet R,Ziemann M A,et al.3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material: An example from the margin of the Lepontine dome (Swiss Central Alps) [J].International Journal of Earth Sciences,2011,100(5):1 029-1 063.
81 Galvez M E,Beyssac O,Martinez I,et al.Graphite formation by carbonate reduction during subduction [J].Nature Geoscience,2013,6(6):473-477.
82 Negro F,Beyssac O,Goffe B,et al.Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from raman spectroscopy of carbonaceous material [J].Metamorphic Geology,2006,24(4):309-327.
83 Molli G,Vitale Brovarone A,Beyssac O,et al.RSCM thermometry in the Alpi Apuane (NW Tuscany, Italy): New constraints for the metamorphic and tectonic history of the inner northern Apennines [J].Journal of Structural Geology,2018,113:200-216.
84 Beyssac O,Simoes M,Avouac J P,et al.Late Cenozoic metamorphic evolution and exhumation of Taiwan [J].Tectonics,2007,26(6).DOI:10.1029/2006TC002064.
doi: 10.1029/2006TC002064    
85 Chen C T,Chan Y C,Lu C Y,et al.Nappe structure revealed by thermal constraints in the Taiwan metamorphic belt [J].Terra Nova,2011,23(2):85-91.
86 Hirono T,Maekawa Y,Yabuta H.Investigation of the records of earthquake slip in carbonaceous materials from the Taiwan Chelungpu fault by means of infrared and Raman spectroscopies [J].Geochemistry,Geophysics,Geosystems,2015,16(5):1 233-1 253.
87 Furuichi H,Ujiie K,Kouketsu Y,et al.Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments [J].Earth and Planetary Science Letters,2015,424:191-200.
88 Kuo L W,Di Felice F,Spagnuolo E,et al.Fault gouge graphitization as evidence of past seismic slip [J].Geology,2017,45(11):979-982.
89 Kouketsu Y,Shimizu I,Wang Y,et al.Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks [J].Tectonophysics,2017,699:129-145.
90 Kuo L W,Huang J R,Fang J N,et al.Carbonaceous materials in the fault zone of the longmenshan fault belt: 2. characterization of fault gouge from deep drilling and implications for fault maturity[J].Minerals,2018,8(9):393.
91 Zheng Guodong,Luo Binjie,Cheng Keming,et al.Thermally simulating dtudy on the vitrinite teflectance and the rvolution of organic materials from various source rocks [J].Acta Sedimentologica Sinica,1996,12(14):122-130.
郑国东,罗斌杰,程克明,等.源岩镜质体反射率和有机质演化的热模拟研究 [J].沉积学报,1996,12(14):122-130.
92 Kong Weisi,Fang Shi,Yuan Wei,et al.Research status of vitrinite rreflectivity [J].Contemporary Chemical Industry,2015,44(5):1 020-1 028.
孔伟思,方石,袁魏,等.镜质体反射率的研究现状 [J].当代化工,2015,44(5):1 020-1 028.
93 Kelemen S R,Fang H L.Maturity trends in raman spectra from kerogen and coal [J].Energy Fuels,2001,15:653-658.
94 Liu Dehan,Xiao Xianming,Tian Hui,et al.Sample maturation calculated using raman spectroscopic parameters for solid organics: Methodology and geological applications [J].Chinese Science Bulletin,2013,58(13):1 228-1 241.
刘德汉,肖贤明,田辉,等.固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用 [J].科学通报,2013,58(13):1 228-1 241.
95 Wilkins R W T,Boudou R,Sherwood N,et al.Thermal maturity evaluation from inertinites by raman spectroscopy: The “RaMM” technique [J].International Journal of Coal Geology,2014,128/129:143-152.
96 Wilkins R W T,Wang M,Gan H J,et al.A RaMM study of thermal maturity of dispersed organic matter in marine source rocks [J].International Journal of Coal Geology,2015,150-151:252-264.
97 Wang Min,Li Zhongsheng.Thermal maturity evaluation of sedimentary organic matter using laser Raman spectroscopy [J].Acta Petrolei Sinica,2016,37(9):1 129-1 136.
王民,Li Zhongsheng.激光拉曼技术评价沉积有机质热成熟度 [J].石油学报,2016,37(9):1 129-1 136.
98 Zhang Cong,Xia Xianghua,Yang Yuru,et al.Raman spectrum characteristics of organic matter in silurian Longmaxi Formation shale of well Anye-1 and its geological significance [J].Rock and Mineral Analysis,2019,38(1):26-34.
张聪,夏响华,杨玉茹,等.安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义 [J].岩矿测试,2019,38(1):26-34.
99 Nibourel L,Herman F,Cox S C,et al.Provenance analysis using Raman spectroscopy of carbonaceous material: A case study in the Southern Alps of New Zealand [J].Journal of Geophysical Research: Earth Surface,2015,120(10):2 056-2 079.
100 Jiao R,Herman F,Beyssac O,et al.Erosion of the southern alps of New Zealand during the last deglaciation[J].Geology,2018,46(11):975-978.
101 Galy V,Beyssac O,France-Lanord C,et al.Recycling of graphite during himalayan Erosion: A geological stabilization of carbon in the crust [J].Science,2008,322(5 903):943-945.
102 Sparkes R B,Hovius N,Galy A,et al.Survival of graphitized petrogenic organic carbon through multiple erosional cycles [J].Earth and Planetary Science Letters,2020,531:115992.
103 Airaghi L,de Sigoyer J,Guillot S,et al.The Mesozoic along-strike tectonometamorphic segmentation of Longmen Shan (eastern Tibetan Plateau) [J].Tectonics,2018,37:4 655-4 678.
[1] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[2] 郑海飞;段体玉;孙樯;乔二伟. 一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法[J]. 地球科学进展, 2005, 20(7): 804-808.
阅读次数
全文


摘要