地球科学进展 ›› 2020, Vol. 35 ›› Issue (3): 275 -285. doi: 10.11867/j.issn.1001-8166.2020.028

综述与评述 上一篇    下一篇

显生宙一级层序的银河年旋回响应:重要的进展与争论
张英杰 1( ),王龙 2   
  1. 1.中国地质大学(北京)地球科学与资源学院,北京 100083
    2.中国石油长庆油田分公司勘探开发研究院,陕西 西安 710018
  • 收稿日期:2019-10-28 修回日期:2020-02-22 出版日期:2020-03-10
  • 基金资助:
    国家自然科学基金项目“燕山蓟县系旋回与事件及其相关沉积问题研究”(4047206)

Response of First-Order Sequence to the Galactic Year Cycle in the Phanerozoic: An Important Progress and Topic

Yingjie Zhang 1( ),Long Wang 2   

  1. 1.School of Earth Science and Natural Resource, China University of Geoscience, Beijing 100083,China
    2.Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710018, China
  • Received:2019-10-28 Revised:2020-02-22 Online:2020-03-10 Published:2020-04-10
  • About author:Zhang Yingjie (1995-), male,Nanjing City, Jiangsu Province, Master student. Research areas include sedimentology and sequence stratigraphy. E-mail: 1850003630@qq.com
  • Supported by:
    the National Natural Science Foundation of China “Study on the cycles and events of Yanshan Jixian system and their related sedimentary problems”(4047206)

与一级海平面旋回相对应的层序被称为一级层序,一级层序与银河年旋回很可能存在内在联系,即银河年旋回在宏观上控制着一级层序。而显生宙期间所发生的诸如大气圈二氧化碳(CO2)浓度变化、相应的温室—冰室气候更替、全球海平面升降、水圈中“方解石海”与“文石海”交替出现、古地磁磁极倒转等超事件都具有良好的旋回性,且在成因上具有较为明显的相关性,很可能受控于银河年旋回与各个超事件之间复杂的成因联系。多年来的研究表明太阳系在绕银心运动时,重力加速度(G值)随之改变,太阳系因此发生膨胀(或收缩),太阳系的成员——地球,形成位能的变化,并吸收(或释放)热量;同时由于G值的改变,重力分异作用也因此改变,导致地幔的膨胀与地核的收缩,当能量积攒到一定程度时就会启动超级地幔柱,进而影响地球上的板块格局。显生宙发生的这些超事件所展示出的周期性变化在近年来引起了广泛的关注与探讨,关注这些富有智慧的认识和存在的问题,将为今后的深入研究提供重要的思考过程与研究线索。

The sequence which corresponds to the first-order sea-level cycle is called the first-order sequence, and the first-order sequence may have an internal relationship with the galactic year cycle, in other words, the galactic year cycle may control the first-order sequence macroscopically. The superevents in the Phanerozoic, such as the concentration change of atmospheric gas carbon dioxide, the alternation of "calcite sea" and "aragonite sea" in the hydrosphere, and the reversal of magnetic poles, are cyclical. They have obvious correlation in genesis, and they are likely to be controlled by the complicated genetic relationship between galactic annual cycles and various superevents. Over the years, researches have shown that when the solar system moves around the galactic center, the acceleration of gravity (value of G) changes accordingly, and the solar system expands (or shrinks). The Earth, a member of the solar system, forms a change in potential energy and absorbs (or releases) heat. At the same time, the gravitational differentiation changes as a result of the value of G change, which leads to the expansion of the mantle and the contraction of the core; when the energy accumulates to a certain degree, the superplume will be activated, which will affect the plate pattern on the earth. In recent years, the periodic changes of these superevents in Phanerozoic have attracted extensive attention and discussion. Paying attention to these wise understandings and existing problems will provide important thinking process and research clues for in-depth research.

中图分类号: 

图1 显生宙期间一级海平面变化所展现出的旋回性(据参考文献[ 3 ]修改)
1表示显生宙第1个一级海平面变化旋回,2表示显生宙第2个一级海平面变化旋回
Fig.1 Cyclicity of first-order sea level changes in the Phanerozoic (modified after reference [ 3 ])
1 represent the first first-order sea level change cycle during Phanerozoic, 2 represent the second first-order sea level change cycle during Phanerozoic
图2 发生在显生宙期间的多个旋回性超事件(据参考文献[ 33 , 34 , 35 , 36 , 37 ]修改)
(a)地磁正极性所占百分比;(b)大气圈O 2浓度;(c)CO 2浓度;(d)北美火山活动曲线;A:方解石海;B:文石海;C:尚不确定
Fig. 2 Several cyclic superevents occurring in the Phanerozoic (modified after references [33~37])
(a)Percentage of positive geomagnetic polarity; (b)Atmosphere O 2 concentration; (c)CO 2 partial pressure; (d)North American volcanic activity curve. A:Calcite sea;B:Aragonite sea;C:Unknown
图3 显生宙多个海洋组分所展示的旋回性(据参考文献[36,52~56]修改)
(a)Mg/Ca值变化;(b)SO 4 2 - 浓度变化;A:Hardie模型;B:Wilkinson-Algeo模型
Fig.3 Cyclicity of multiple ocean components during Phanerozoic (modified after references [36,52~56])
(a)Mg/Ca change; (b) SO 4 2 - concentration change; A: Hardie method; B: Wilkinson-algeo method
图4 3 000 Ma以来大气圈O2CO2浓度变化(据参考文献[ 34 , 49 , 74 ]修改)
(a)O 2浓度变化;(b)CO 2浓度变化
Fig. 4 Changes of O2 and CO2 concentration in the atmosphere since nearly 3 000 Ma (modified after references [34,49,74])
(a) O 2 concentration change; (b) CO 2 concentration change
1 Mei Mingxiang. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy [J]. Journal of Palaeogeography, 2010, 12(5): 549-564.
梅冥相. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学进展之一[J]. 古地理学报, 2010, 12(5): 549-564.
2 Mei Mingxiang. Research on form ingmechanism of long-term sequences: The second advance in sequence stratigraphy [J]. Journal of Palaeogeography, 2010, 12(6): 711-728.
梅冥相. 长周期层序形成机制的探索: 层序地层学进展之二[J]. 古地理学报, 2010, 12(6): 711-728.
3 Vail P R, Mitchum Jr R M, Todd Jr R G, et al. Seismic stratigraphy and global changes in sea level[C]//Payton C E. Seismic: Applications to Hydrocarbon Exploration. Salt Lake City: AAPG, 1977: 63-81.
4 Sloss L, Krumbein W, Dapples E. Integrated facies analysis[C]//Longwell C. Sedimentary Facies in Geologichistory. Indiana: Geological Society of America, 1949: 91-124.
5 Posamentier H W, Vail P R. Sea level changes—An integrated approach[C]//Wilgus C K. Flagstaff: SEPM Special Publication42. 1988: 71-108.
6 Miller K G, Kominz M A, Browning J V, et al. The phanerozoic record of global sea-level change[J]. Science, 2005, 310(25): 1 293-1 298.
7 Miall A D. Eustatic sea-level change interpreted from seismic stratigraphy: A critique of the methodology with particular reference to the North Sea Jurassic record[J]. AAPG Bulletin, 1986, 70(2): 131-137.
8 Miall A D. Stratigraphic sequences and their chronostratigraphic correlation[J]. Journal of Sedimentary Research, 1991, 61(4): 497-505.
9 Miall A D. The Exxon global cycle chart: An event for every occasion?[J]. Geology, 1992, 20(9): 787-790.
10 Catuneanu O, Galloway W E, Kendall C G St C, et al. Sequence stratigraphy: Methodology and nomenclature[J]. Newsletters on Stratigraphy, 2011, 44 (3): 173-245.
11 Catuneanu O, Zecchin M. High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development[J]. Marine and Petroleum Geology, 2013, 39(1): 26-38.
12 Fischer A G, Hilgen F J, Garrison R E, et al. Mediterranean contributions to cyclostratigraphy and astrochronology[J]. Sedimentology, 2009, 56(1): 63-94.
13 Mei Mingxiang. Three misreadings during the developing course of sequence stratigraphy[J]. Earth Science Frontiers, 2014, 21(2): 67-80.
梅冥相. 层序地层学发展历程中的三个误判[J]. 地学前缘, 2014, 21(2): 67-80.
14 Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
15 Boulila S, Hinnov L A, Huret E, et al. Astornomical calibration of the Early Oxfordian(Vocontian and Paris basins, France): Consequences of revising the Late Jurassic time scale[J]. Earth and Planetary Science Letters, 2008, 276(1/2): 40-51.
16 Boulila S, Galbrun B, Miller K G, et al. On the origin of Cenozoic and Mesozoic “Third-Order” eustatic sequences[J]. Earth-Science Reviews, 2011, 109(3/4): 94-112.
17 Ren Zhenqiu. New thoughts on global change research [J]. Earth Science Frontiers, 2002, 9(1): 27-33.
任振球. 全球变化研究的新思维[J]. 地学前缘, 2002, 9(1): 27-33.
18 Meng Xianghua, Ge Ming. China and Korea Plate Sequence, Events and Evolution[M]. Beijing: Science Press, 2004.
孟祥化, 葛铭. 中朝板块层序·事件·演化[M] . 北京: 科学出版社, 2004.
19 Ma Xueying, Deng Shenghui, Lu Yuanzheng, et al. The astronomical age framework of the upper Ordovician pagoda formation in Southern China and its geological significance [J]. Earth Science Frontiers, 2019, 26(2): 281-291.
马雪莹, 邓胜徽, 卢远征, 等. 华南上奥陶统宝塔组天文年代格架及其地质意义[J]. 地学前缘, 2019, 26(2): 281-291.
20 Mei Mingxiang, Xu Debin, Zhou Hongrui. Genetic types of meter-scale cyclic sequences and their fabric features of facies -succession [J]. Acta Sedimentologica Sinica, 2000,18(1): 43-49, 62.
梅冥相, 徐德斌, 周洪瑞. 米级旋回层序的成因类型及其相序组构特征[J]. 沉积学报, 2000,18(1): 43-49, 62.
21 Mei Mingxiang, Luo Guangwen, Su Dechen. Carbonate allogenic cyclic sequence of composite sea-level change—Example from the Zhangxia formation of Middle Cambrian in Western Hill of Beijing[J]. Journal of Guilin University of Technology, 1994,14(2): 145-153.
梅冥相, 罗光文, 苏德辰. 碳酸盐异成因复合海平面变化施回层序──以北京西山张夏组为例[J]. 桂林冶金地质学院学报, 1994,14(2): 145-153.
22 Ren Zhenqiu. Influences of the global gravity anomaly on activity center of atmosphere and regions incident to cyclone[J]. Chinese Journal of Geophysics, 2002, 45(3): 313-318.
任振球. 全球重力异常对大气活动中心、气旋多发区的影响[J]. 地球物理学报, 2002, 45(3): 313-318.
23 Mei Mingxiang. Sedimentery response of galactic year cycleand the great anomaly of Earth system—A discussion on the division of first-order cyclic-sequences from 1 800 Ma to modern time [C]//Guo Wenkui. Proceedings of the Fourth National Symposium of Young Geologists. Beijing:Geological Society of China, 1999:224-231.[
梅冥相. 银河年旋回的沉积学响应与地球系统大异常——1 800 Ma以来一级旋回层序划分的探讨[C]//郭文魁.第四届全国青年地质工作者学术讨论会论文集.北京:中国地质学会,1999:224-231.]
24 Huang Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
25 Wang Xunlian, Wu Huaichun. High resolution integrated stratigraphy in the age of Earth system science[J]. Earth Science Frontiers, 2016, 23(6): 246-252.
王训练, 吴怀春. 地球系统科学时代的高分辨综合地层学[J]. 地学前缘, 2016, 23(6): 246-252.
26 Sloss L. Sequences in the cratonic interior of North America[J]. Geological Society of America Bulletin, 1963, 74(2): 93-114.
27 Vail P R, Audemard F, Bowman S A, et al. The stratigraphic signatures of tectonics, eustasy and sedimentology—An overview[C]//Einsele G. Cycles and Events in Stratigraphy. Berlin: Springer-Verlag, 1991: 617-659.
28 Roca X, Nadon G C. Tectonic control on the sequence stratigraphy of Nonmarine Retroarc Foreland Basin Fills: Insights from the Upper Jurassic of central Utah[J]. Journal of Sedimentary Research, 2007, 77(3): 239-255.
29 Catuneanu O. Principles of Sequence Stratigraphy[M]. Amsterdam: Elsevier, 2006.
30 Miall A D. The Geology of Stratigraphic Sequences[M]. Berlin: Springer-Verlag, 2010.
31 Csato I, Catuneanu O, Granjeon D. Millennial-scale sequence stratigraphy: Numerical simulation with Dionisos[J]. Journal of Sedimentary Research, 2014, 84(5): 394-406.
32 Simmons M D. Sequence stratigraphy and sea-level change[C]//Gradstein F M. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012: 239-267.
33 Tang Maocang, Gao Xiaoqing, Dong Wenjie. Galactic arms, circulation in core and great ice age[J]. Earth Science Frontiers, 1997, 4 (Suppl.1): 173-181.
汤懋苍, 高晓清, 董文杰. 银河旋臂、地核环流与地球大冰期[J]. 地学前缘, 1997, 4(增刊1): 173-181.
34 Ross R L, Mukherjee Indrani, Gregory Dan, et al. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic[J]. Mineralium Deposita, 2019, 54(4): 485-506.
35 Shaviv N, Veizer J, Royer D L, et al. CO2 as a primary driver of Phanerozoic climate[J]. GSA Today, 2004, 14(3): 7-18.
36 Lowenstein T K, Hardie L A, Timofeeff N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines[J]. Geology, 2003, 31(10): 857-860.
37 Yang Xuexiang, Chen Dianyou. Volcanism and astronomical periods[J]. Geological Review, 1999, 45 (Suppl.1): 33-42.
杨学祥, 陈殿友. 火山活动与天文周期[J]. 地质论评, 1999, 45(增刊1): 33-42.
38 Yang Shuzhuang. Discussion on the genesis of the Great Ice Age[J]. Global Geology, 2004, 23(3): 252-254, 294.
杨树庄. 大冰期成因探讨[J]. 世界地质, 2004, 23(3): 252-254, 294.
39 Lu Huayu, Wang Yao. What causes ice ages?[J]. Chinese Science Bulletin, 2016, 61(11): 1 164-1 172.
鹿化煜, 王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报, 2016, 61(11): 1 164-1 172.
40 Frisch P C, Mueller H R. Time-variability in the interstellar boundary conditions of the heliosphere: Effect of the solar journey on the galactic cosmic ray flux at Earth[J]. Space Science Reviews, 2013, 176(1/4): 21-34.
41 Yang Xuexiang. Internal pressure change in Earth and tectonic significance[J]. Earthquake Research in Northeast China, 1997, 13(3): 2-10.
杨学祥. 地球内部压力变化及其构造意义[J]. 东北地震研究, 1997, 13(3): 2-10.
42 Yang Xuexiang, Wang Ruiting, Chen Dianyou. Discussions on the Earth's center of mass migration and plate driving forces [J]. Journal of Changchun Institute of Geology, 1993, 23(4): 470-475.
杨学祥, 王瑞庭, 陈殿友. 对地球质心偏移及板块驱动力的讨论[J]. 长春地质学院学报, 1993, 23(4): 470-475.
43 Yang Xuexiang, Liu Shuqin, Zheng Wenrui, et al. Annual pulsation of the solar system and changes of planetary thermal state[J]. Earth Science Frontiers, 1997, 4(3/4): 194.
杨学祥, 刘淑琴, 郑文瑞, 等. 太阳系银河年脉动与行星热状态变化[J]. 地学前缘, 1997, 4(3/4): 194.
44 Wallmann K. Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record[J]. Geochemistry · Geophysics · Geosystems, 2004, 5(6): 1-29.
45 Jones P, Lister D, Osboru T, et al. Hemispheric and large-scale land-surfaee air temperature variations: An extensive revision and an update to 2010[J]. Journal of Geophysical Research, 2012, 117(D5): 214-22l.
46 Kennedy J, Rayner N, Smith R, et al. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since l850: 2. Biases and homogenization[J]. Journal of Geophysical Research Atmospheres, 2011, 116(D14): 811-840.
47 Qian Weihong, Lu Be, Zhu Congwen. How would global—Mean temperature change in the 21st century[J].Chinese Science Bulletin, 2010, 55(19): 1 963-1 967.
48 Kerr R A. What happened to global warming?Scientists say just wait a bit[J]. Science, 2009, 326(5 949): 28-29.
49 Schlager W. Secular oscillations in the stratigraphic record—An acute debate[J]. Facies, 2005, 51(1/4): 12-16.
50 Williams G E. Possible relation between periodic glaciation and the flexure of the Galaxy[J]. Earth and Planetary Science Letters, 1975, 26(3): 361-369.
51 McKenzie N R, Horton B K, Loomis S E, et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability[J]. Science, 2016, 352(6 284): 444-447.
52 Li Fei. Permian Triassic Intersection Oolitic Structure Characteristics and Space-time Distribution of Ancient Marine Environment [D]. Wuhan: Chinese University of Geology, 2016.
李飞. 二叠纪—三叠纪之交鲕粒结构特征及时空分布对古海洋环境的指示[D]. 武汉: 中国地质大学, 2016.
53 Cheng Huaide, Ma Haizhou. Seawater composition constraints on the marine Potash evaporites during the phanerozoic [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 609-618.
程怀德, 马海州. 显生宙以来海水组分变化对海相钾盐蒸发岩的制约作用[J]. 矿物岩石地球化学通报, 2013, 32(5): 609-618.
54 Bemer R A. GEOCARB Ⅲ: A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001, 301 (2): 182-204.
55 Hardie L A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.[J]. Geology, 1996, 24(3): 279-283.
56 Wilkinson B H, Algeo T J. Sedimentary carbonate record of calcium-magnesium cycling[J]. American Journal of Science, 1989, 289(10): 1 158-1 194.
57 Wang Long, Khalid L, Muhammad R, et al. The genesis, classification, problems and prospects of microbial carbonates: Implications from the cambrian carbonate of North China platform[J]. Advances in Earth Science, 2018, 33(10): 1 005-1 023.
王龙, Khalid Latif, Muhammad Riaz, 等. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1 005-1 023.
58 Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5 929): 19-22.
59 Mei Mingxiang. Stratigraphical natures for the Hadean: An important clue for understanding of both evolutionary history and palaeogeographical background in forming and initial periods of the Earth[J]. Journal of Palaeogeography, 2016, 18(4): 513-524.
梅冥相. 冥古宙的地层学属性: 了解地球形成初期古地理背景和演变历史的重要线索[J]. 古地理学报, 2016, 18(4): 513-524.
60 Van Kranendonk M J, Altermann W, Beard B L, et al. A chronostratigraphic division of the Precambrian[C]//Gradstein F M. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012: 299-392.
61 Mei Mingxiang, Meng Qingfen. The rise of atmosphere oxygen and the biological evolution: An important geobiological process[J]. Geoscience, 2017, 31(5): 1 022-1 038.
梅冥相, 孟庆芬. 大气圈氧气上升与生物进化:一个重要的地球生物学过程[J]. 现代地质, 2017, 31(5): 1 022-1 038.
62 Kump L R. The rise of atmospheric oxygen[J]. Nature, 2008, 451: 277-278.
63 Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7 488): 307-315.
64 Tian Biao, Ding Minghu, Sun Weijun, et al. Research progress of atmospheric carbon monoxide[J]. Advances in Earth Science, 2017, 32(1): 34-43.
田彪, 丁明虎, 孙维君, 等. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
65 Li Ligang. What causes reversals in Earth’s magnetic field?[J]. Chinese Science Bulletin, 2016, 61(13): 1 395-1 400.
李力刚. 地磁倒转的原因是什么? [J]. 科学通报, 2016, 61(13): 1 395-1 400.
66 Biggin A J, Steinberger B, Aubert J, et al. Possible links between long-term geomagnetic variations and whole-mantle convection processes[J]. Nature Geoscience, 2012, 5(8): 526-533.
67 Amit H, Olson P. Lower mantle superplume growth excites geomagnetic reversals[J]. Earth and Planetary Science Letters, 2015, 414: 68-76.
68 Pacca I G, Frigo E, Harmann G A. Possible relationship between the Earth’s rotation variations and geomagnetic field reversals over the past 510 Myr[J]. Frontiers in Earth Science, 2015, 3: 14.
69 Yoshida S, Hamano Y. The westward drft of the geomagnetic field caused by length-of-day variation, and the topography of the core-mantle boundary[J]. Geophysical Journal International, 1993, 114(3): 696-710.
70 Ma Xuechang. Discussions on the driving force of crustal movement: Nucleur energy and Earth evolution[J]. Acta Geologica Sinica, 2016, 90(1): 24-36.
马学昌. 地壳运动驱动力的探讨——核能与地球演化[J]. 地质学报, 2016, 90(1): 24-36.
71 Li Sanzhong, Zhao Shujuan, Yu Shan, et al. Perspectives of supercontinent cycle and global plate reconstruction[J]. Marine Geology and Quaternary Geology, 2015, 35(1): 51-60.
李三忠, 赵淑娟, 余珊, 等. 超大陆旋回与全球板块重建趋势[J]. 海洋地质与第四纪地质, 2015, 35(1): 51-60.
72 Zhong Shijie, Zhang Nan, Li Zhengxiang, et al. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 551-564.
73 Catuneanu O. Scale in sequence stratigraphy[J]. Marine and Petroleum Geology, 2019, 106: 128-159.
74 Kasting J F, Catling D. Evolution of a habitable planet[J]. Annual Review of Astronomy and Astrophysics, 2003, 41: 429-463.
[1] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[2] 胡作维, 李云, 李北康, 黄思静, 韩信. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.
[3] 史斗,刘文汇,郑军卫. 深层气理论分析和深层气潜势研究[J]. 地球科学进展, 2003, 18(2): 236-244.
阅读次数
全文


摘要