地球科学进展 ›› 2015, Vol. 30 ›› Issue (1): 37 -49. doi: 10.11867/j.issn.1001-8166.2015.01.0037

上一篇    下一篇

胡作维, 李云, 李北康, 黄思静, 韩信   
  1. 成都理工大学油气藏地质及开发工程国家重点实验室, 沉积地质研究院, 四川 成都 610059
  • 收稿日期:2014-09-21 修回日期:2014-12-06 出版日期:2015-03-05
  • 基金资助:
    国家自然科学基金项目“川西北地区中三叠统天井山组的锶同位素地层学研究”(编号:41102063)和“四川江油地区下三叠统飞仙关组白云化流体的锶同位素示踪研究”(编号: 41372113)资助

An Review of the Strontium Isotopic Vomposition of Phanerozoic Seawater

Zuowei Hu, Yun Li, Beikang Li, Sijing Huang, Xin Han   

  1. State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
  • Received:2014-09-21 Revised:2014-12-06 Online:2015-03-05 Published:2015-01-20

显生宙以来海水锶同位素组成演化是地球外部圈层物质循环研究的一个重要领域, 在地质历史期间地球表层环境变化研究中的意义不言而喻。显生宙以来海水锶同位素组成研究先后经历了早期阶段、积累阶段和集成阶段。在早期阶段, 原始的样品成岩蚀变评估、较低的仪器分析精度导致大部分锶同位素数据不具地层学意义, 大多数研究工作仅处于初始探索阶段;在积累阶段, 逐渐成熟的样品成岩蚀变评估、较高的仪器分析精度使得这一领域的研究持续进行, 尤其是新生代高分辨率海水锶同位素演化曲线的建立和发展催生了一个新的交叉学科分支——锶同位素地层学;在集成阶段, 不断积聚的高质量锶同位素数据融合成了多个显生宙以来海水锶同位素数据库, 日益成为解决地层学、岩石学、矿床学、水文学以及有关应用等问题的有效工具之一。目前显生宙以来海水锶同位素组成研究仍有诸如样品内部信息保存性差异、样品年龄不确定性、古老样品定年精度不高、寒武纪样品材料与地层疑问、样品中微量铷污染、86Sr和88Sr同位素分馏、实验室之间分析偏差、数据拟合不确定性等方面问题未圆满解决, 难以实现锶同位素地层学更具实用性和适用性。试图较系统地总结不同时期显生宙以来海水锶同位素组成演化研究的阶段性和差异性, 以期为今后进行更深入的研究提供一些思考角度。

Strontium isotopic evolution of the Phanerozoic seawater is an emerging research field of the material cycle in the Earth’s outer-spheres. It is greatly significant for the research of the environmental change on the Earth’s surface during the geological history. The researches of the strontium isotopic evolution of the Phanerozoic seawater have gone through three stages: The early stage, the accumulated stage, and the integrated stage. In the early stage, the primitive evaluation of the diagenetic alteration and the low precision of the analytical instruments resulted in most strontium isotope data without stratigraphic significance. Most researches were only at the initially exploratory stage. In the accumulated stage, the gradually mature evaluation of the diagenetic alteration and higher precision of the analytical instruments made ongoing progress in the researches, especially the establishment and development of the high-resolution strontium isotopic evolution curves of the Cenozoic seawater had spawned a new interdisciplinary branch: Strontium isotope stratigraphy. In the integrated stage, the accumulated high-quality strontium isotope data had been integrated into some strontium isotope database of Phanerozoic seawater. These databases are becoming one of the effective tools to solve the problems in the stratigraphy, petrology, ore deposit, hydrology, and other related applications. Currently, many problems still have not been satisfactorily resolved in the researches of the strontium isotopic evolution of the Phanerozoic seawater, such as the preservation differences of the original seawater information in a sample, the age of uncertainty of samples, lower dating accuracy of more ancient samples, the materials and stratigraphic questions of the Cambrian samples, trace rubidium contamination of samples, the isotope fractionation between 86Sr and 88Sr, the interlaboratory bias, the uncertainty of the data fitting, etc. These problems are the difficulties to possess more practicability and applicability of strontium isotope stratigraphy. Based on the summary of the research progress, we attempted to systematically summarize the stages and differences of the researches of strontium isotopic composition of Phanerozoic seawater at different periods. We wish this paper offer some perspective to the researches of strontium isotopic composition of Phanerozoic seawater in future.


图1 显生宙大部分时间海水锶同位素演化图 [ 24 ]
Fig. 1 Sr isotope ratios of most Phanerozoic seawater [ 24 ]
图2 显生宙完整时间海水锶同位素演化曲线图 [ 21 ]
Fig. 2 Sr isotopic evolution curve of Phanerozoic seawater [ 21 ]
图3 显生宙大部分时间海水锶同位素变化速率与冰川强度曲线图 [ 30 ]
Fig. 3 The rate of change of Sr isotopic evolution curve and the glacial intensity curve of most Phanerozoic seawater [ 30 ]
图4 显生宙完整时间海水锶同位素演化曲线图 [ 34 ]
Fig. 4 Sr isotopic evolution curve of Phanerozoic seawater [ 34 ]
图5 晚白垩世—新生代海水锶同位素演化曲线图 (a)0~70 Ma海水锶同位素演化曲线[ 39 ];(b)0~75 Ma海水锶同位素演化曲线[ 40 ]
Fig. 5 Sr isotopic evolution curves of late Cretaceous and Cenzoic seawater (a) Sr isotopic evolution curve of last 70 Ma seawater [ 39 ];(b) Sr isotopic evolution curve of last 75 Ma seawater [ 40 ]
图6 0~100 Ma海水锶同位素演化图 [ 47 ]
Fig. 6 Sr isotope ratios of last 100 Ma seawater [ 47 ]
图7 显生宙以来海水锶同位素演化曲线与海平面变化曲线对比图 [ 50 ]
Fig. 7 Sr isotopic evolution curve of Phanerozoic seawater and changes of sea level during the Phanerozoic [ 50 ]
图8 5~450 Ma海水锶同位素演化曲线图 [ 52 ] 图中实线为Lowess拟合的海水锶同位素演化曲线;虚线为87Sr/86Sr比值-预测年龄的95%置信区间上下限
Fig. 8 Sr isotopic evolution curve of 5~450 Ma seawater [ 52 ] Solid line indicates the LOWESS-fitted Sr isotopic evolution curve, dashed lines indicate the upper and lower 95% confidence intervals for prediction of age from 87Sr/86Sr ratio
图9 206 Ma以来海水锶同位素演化曲线图 [ 56 ] 图中实线为Lowess拟合的海水锶同位素演化曲线
Fig. 9 Sr isotopic evolution curve of last 206 Ma seawater [ 56 ] Solid line indicates the LOWESS-fitted Sr isotopic evolution curve.
图10 显生宙以来海水锶同位素演化曲线图 [ 3 , 9 , 58 ] (a)曲线为Lowess拟合第三个版本的海水锶同位素演化曲线[ 9 ];(b)曲线为Lowess拟合第四个版本的海水锶同位素演化曲线[ 3 ];(c)曲线为Lowess拟合第五个版本的海水锶同位素演化曲线[ 58 ]
Fig. 10 Sr isotopic evolution curves of Phanerozoic seawater [ 3 , 9 , 58 ] (a)The curve indicates the third version of LOWESS-fitted Sr isotopic evolution curve[ 9 ];(b)The curve indicates the fourth version of LOWESS-fitted Sr isotopic evolution curve[ 3 ];(c)The curve indicates the fifth version of LOWESS-fitted Sr isotopic evolution curve[ 58 ]
图11 显生宙以来海水锶同位素演化图 [ 53 ]
Fig. 11 Sr isotope ratios of Phanerozoic seawater [ 53 ]
图12 显生宙以来海水锶同位素演化图 [ 2 ]
Fig. 12 Sr isotope ratios of Phanerozoic seawater [ 2 ]
图13 543 Ma以来海水锶同位素演化图 [ 59 ]
Fig. 13 Sr isotope ratios of Phanerozoic seawater [ 59 ]
[1] Dickin A P. Radiogenic Isotope Geology(Second Edition)[M]. Cambridge: Cambridge University Press, 2005: 16-17, 42-69.
[2] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C andδ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/3): 59-88.
[3] McArthur J M, Howarth R J. Strontium isotope stratigraphy[M]//Gradstein F, Ogg J, Smith A, eds. A Geologic Time Scale. Cambridge: Cambridge University Press, 2004: 96-105.
[4] Dessert C, Dupre B, Francois L M, et al. Erosion of deccan traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater[J]. Earth and Planetary Science Letters, 2001, 188(3/4): 459-474.
[5] Butterfield D A, Nelson B K, Wheat C G, et al. Evidence for basaltic Sr in midocean ridge-flank hydrothermal systems and implications for the global oceanic: Sr isotope balance[J]. Geochimica et Cosmochimica Acta, 2001, 65(22): 4 141-4 153.
[6] Das A, Krishnaswami S, Kumar A.Sr and 87Sr/86Sr in rivers draining the Deccan Traps (India): Implications to weathering, Sr fluxes, and the marine 87Sr/86Sr record around K/T[J]. Geochemistry, Geophysics, Geosystems, 2006, 7: Q06014.
[7] Eglington B M, Talma A S, Marais S, et al. Isotopic composition of Pongola Supergroup limestones from the Buffalo River gorge, South Africa: Constraints on their regional depositional setting[J]. South African Journal of Geology, 2003, 106(1): 1-10.
[8] Wickman F E.Isotope ratios: A clue to the age of certain marine sediments[J]. Journal of Geology, 1948, 56(1): 61-66.
[9] McArthur J M, Howarth R J, Bailey T R. Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age[J]. Journal of Geology, 2001, 109(2): 155-170.
[10] Waltham D, Gröecke D R.Non-uniqueness and interpretation of the sea water 87Sr/86Sr curve[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 384-394.
[11] Mazumdar A, Strauss H.Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the Late Neoproterozoic-Early Cambrian Bilara Group (Nagaur-Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle[J]. Precambrian Research, 2006, 149(3/4): 217-230.
[12] Nieto L M, Ruiz-Ortiz P A, Rey J, et al. Strontium-isotope stratigraphy as a constraint on the age of condensed levels: Examples from the Jurassic of the Subbetic zone (southern Spain)[J]. Sedimentology, 2008, 55(1): 1-29.
[13] Burla S, Oberli F, Heimhofer U, et al. Improved time control on Cretaceous coastal deposits: New results from Sr isotope measurements using laser ablation[J]. Terra Nova, 2009, 21(5): 401-409.
[14] Huang Sijing, Wu Sujuan, Sun Zhilei, et al. Seawater strontium isotopes and paleo-oceanic events over the past 260 Ma[J]. Earth Science Frontiers, 2005, 12(2): 133-141.
[黄思静, 吴素娟, 孙治雷, 等. 中新生代海水锶同位素演化和古海洋事件[J]. 地学前缘, 2005, 12(2): 133-141.]
[15] Huang Sijing, Sun Zhilei, Wu Sujuan, et al. Strontium isotope composition and control factors of global seawater in Triassic[J]. Journal of Mineralogy and Petrology, 2006, 26(1): 43-48.
[黄思静, 孙治雷, 吴素娟, 等. 三叠纪全球海水的锶同位素组成及主要控制因素[J]. 矿物岩石, 2006, 26(1): 43-48.]
[16] Huang Chenggang, Huang Sijing, Wu Sujuan, et al. Sr-isotope composition and evolvement in sea water over past 100 Ma and control factors[J]. Journal of Earth Sciences and Environment, 2006, 28(2): 19-24.
[黄成刚, 黄思静, 吴素娟, 等. 100Ma来海水的锶同位素组成演化及主要控制因素[J]. 地球科学与环境学报, 2006, 28(2): 19-24.]
[17] Lan Xianhong.Reviews of the marine Sr isotope[J]. Marine Geology Letters, 2001, 17(10): 1-3.
[蓝先洪. 海洋锶同位素研究进展[J]. 海洋地质动态, 2001, 17(10): 1-3.]
[18] Li Chunlei, Chen Jun, Ji Junfeng.Tibet plateau uplift and the evolution of marine strontium isotopic composition[J]. Advances in Earth Science, 1999, 14(6): 582-588.
[李春雷, 陈骏, 季峻峰. 青藏高原的隆起与海洋锶同位素组成的演化[J]. 地球科学进展, 1999, 14(6): 582-588.]
[19] Xiang Fang, Wang Chengshan.New progress in the application of strontium isotopes in sedimentology[J]. Geology-Geochemistry, 2001, 29(1): 79-82.
[向芳, 王成善. 锶同位素在沉积学中的应用新进展[J]. 地质地球化学, 2001, 29(1): 79-82.]
[20] Hu Zuowei, Huang Sijing, Wang Chunmei, et al. Application of strontium isotope geochemistry to the oil and gas reservoir diagenesis research[J]. Contributions to Geology and Mineral Resources Research, 2009, 24(2): 160-165.
[胡作维, 黄思静, 王春梅, 等. 锶同位素方法在油气储层成岩作用研究中的应用[J]. 地质找矿论丛, 2009, 24(2): 160-165.]
[21] Veizer J, Compston W.87Sr/86Sr composition of seawater during the Phanerozoic[J]. Geochimica et Cosmochimica Acta, 1974, 38(9): 1 461-1 484.
[22] Gast P W.Abundance of 87Sr during geologic time[J]. GSA Bulletin, 1955, 66(11): 1 449-1 454.
[23] Hedge C E, Walthall F G. Radiogenic Strontium-87 as an index of geologic processes[J]. Science, 1963, 140(3572): 1214-1217.
[24] Peterman Z E, Hedge C E, Tourtelot H A.Isotopic composition of strontium in sea water throughout Phanerozoic time[J]. Geochimica et Cosmochimica Acta, 1970, 34(1): 105-120.
[25] Boger P D, Glaze F F, Summerson C H, et al. The isotopic composition of strontium in fossils from the Kendrick shale, Kentucky[J]. The Ohio Journal of Science, 1973, 73(1): 28-33.
[26] Mukhopadhyay B, Brookins D G.Strontium isotopic composition of the Madera Formation (Pennsylvanian) near Albuquerque, New Mexico[J]. Geochimica et Cosmochimica Acta, 1976, 40(6): 611-616.
[27] Brookins D G, Chaudhuri S, Dowling P L.The isotopic composition of strontium in Permian limestones, eastern Kansas[J]. Chemical Geology, 1969, 4(3/4): 439-444.
[28] Tremba E L, Faure G, Katsikatsos G C, et al. Strontium isotope composition in the Tethys Sea, Euboea, Greece[J]. Chemical Geology, 1975, 16(2): 109-120.
[29] Faure G, Assereto R, Tremba E L.Strontium isotope composition of marine carbonates of middle Triassic to Early Jurassic age, Lombardic Alps, Italy[J]. Sedimentology, 1978, 25(4): 523-543.
[30] Brass G W.The variation of the marine 87Sr/86Sr ratio during Phanerozonic time: Interpretation using a flux model[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 721-730.
[31] Dasch E J, Biscaye P E.Isotopic composition of strontium in Cretaceous-to-recent, pelagic foraminifera[J]. Earth and Planetary Science Letters, 1971, 11(1/5): 201-204.
[32] Clauer N.87Sr/86Sr composition of evaporitic carbonates and sulphates from Miocene sediment cores in the Mediterranean Sea (D.S.D.P., Leg 13)[J]. Sedimentology, 1976, 23(1): 133-140.
[33] Brevart O, Allègre C J.Strontium isotopic ratios in limestones through geologic time as a memory of geodynamic regimes[J]. Bulletin de la Societe Geologique de France, 1977, 19(6): 1 253-1 257.
[34] Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10(10): 516-519.
[35] Jørgensen N O, Larsen O.The strontium isotopic composition of Maastrichtian and Danian chalk[J]. Bulletin of the Geological Society of Denmark, 1980, 28(3/4): 127-129.
[36] Clauer N.87Sr/86Sr Ratios of the Barremian and Early Aptian Seas[R]. Washington DC: Initial Reports of the Deep Sea Drilling Project, 1981, 62: 781-783.
[37] Koepnick R B, Burke W H, Denison R E, et al. Construction of the Seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data[J]. Chemical Geology (Isotope Geoscience Section), 1985, 58(1/2): 55-81.
[38] Elderfield H, Gieskes J M, Baker P A, et al. 87Sr/86Sr and 18O/16O ratios, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau[J]. Geochimica et Cosmochimica Acta, 1982, 46(11): 2 259-2 288.
[39] DePaolo D J, Ingram B L. High-Resolution stratigraphy with Strontium isotopes[J]. Science, 1985, 227(4 689): 938-941.
[40] Palmer M R, Elderfield H.Sr isotope composition of sea water over the past 75 myr[J]. Nature, 1985, 314(6 011): 526-528.
[41] Hess J, Bender M L, Schilling J G.Evolution of the ratio of Strontium-87 to Strontium-86 in seawater from Cretaceous to present[J]. Science, 1986, 231(4 741): 979-984.
[42] Staudigel H, Doyle P, Zindler A.Sr and Nd isotope systematics in fish teeth[J]. Earth and Planetary Science Letters, 1985, 76(1/2): 35-44.
[43] Hess J L, Scott D, Bender M L, et al. The Oligocene marine microfossil record: Age assessments using strontium isotopes[J]. Paleoceanography, 1989, 4(6): 655-679.
[44] DePaolo D J. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B[J]. Geology, 1986, 14(2): 103-106.
[45] McKenzie J A, Hodell D A, Mueller P A, et al. Application of strontium isotopes to late Miocene-early Pliocene stratigraphy[J]. Geology, 1988, 16(11): 1 022-1 025.
[46] Hodell D A, Mueller P A, McKenzie J A, et al. Strontium isotope stratigraphy and geochemistry of the late Neogene ocean[J]. Earth and Planetary Science Letters, 1989, 92(2): 165-178.
[47] Elderfield H.Strontium isotope stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 57(1): 71-90.
[48] Veizer J.Strontium isotopes in seawater through time[J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 141-167.
[49] Vail P R, Mitchurn R M, Todd R G, et al. Seismic Stratigraphy and Global Changes of Sea Level[M]. Tulsa: AAPG Memoir, 1977, 26: 49-212.
[50] Chaudhuri S, Clauer N.Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic Eon[J]. Chemical Geology (Isotope Geoscience Section), 1986, 59(4): 293-303.
[51] McArthur J M. Recent trends in strontium isotope stratigraphy[J]. Terra Nova, 1994, 6(4): 331-358.
[52] Smalley P C, Higgins A C, Howarth R J, et al. Seawater Sr isotope variations through time: A procedure for constructing a reference curve to date and correlate marine sedimentary rocks[J]. Geology, 1994, 22(5): 431-434.
[53] Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy: Potential resolution and event correlation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/4): 65-77.
[54] Bailey T R, McArthur J M, Prince H, et al. Dissolution methods for strontium isotope stratigraphy: Whole rock analysis[J]. Chemical Geology, 2000, 167(3/4): 313-319.
[55] Howarth R J, McArthur J M, Thirlwall M F. A statistically-rigorous robust Lowess fit to the Sr-isotope curve for 0 to 250 Ma, accompanied by lookup tables for derivation of numeric age, and some new francolite ages[C]//Hine H, Albert C, Robert B. Linked Earth Systems. Tulsa: Society of Economic Paleontologists and Mineralogists Congress Program and Abstracts, 1995:70.
[56] Howarth R J, McArthur J M. Statistics for strontium isotope stratigraphy: A robust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age[J]. Journal of Geology, 1997, 105(4): 441-456.
[57] McArthur J M, Howarth R J. Strontium Isotope Stratigraphy: LOWESS V2. A Revised Best-fit to the Marine Sr-isotope Curve for 0 to 206 Ma, with a Revised Look-up Table for Derivation of Numeric Age[C]. Salt Lake City: AAPG Annual Meeting, 1998.
[58] McArthur J M, Howarth R J, Shields G A. Strontium isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M, et al, eds. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012: 127-144.
[59] Prokoph G, Shields G A, Veizer J.Compilation and time series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history[J]. Earth-Science Reviews, 2008, 87(3/4): 113-133.
[60] Kani T, Fukui M, Isozaki Y, et al. The Paleozoic minimum of 87Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A critical turning point in the late Paleozoic[J]. Journal of Asian Earth Sciences, 2008, 32(1): 22-33.
[61] Briot D.Sr isotopes of the shells of the euryhaline gastropod Potamides lamarcki from the Oligocene of the French Massif Central and Paris Basin: A clue to its habitats[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(1/2): 116-122.
[62] Azmy K, Knight I, Lavoie D, et al. Origin of dolomites in the Boat Harbour Formation, St. George Group, in western Newfoundland, Canada: Implications for porosity development[J]. Bulletin of Canadian Petroleum Geology, 2009, 57(1): 81-104.
[63] Faure G, Powell J L. Strontium Isotope Geology (Chinese Edition)[M]. Isotope Geology Research Laboratory, Institute of Geochemistry, Chinese Academy of Sciences, translated. Beijing: Science Press, 1975: 109-129.[Faure G, Powell J L. 锶同位素地质学[M]. 中国科学院贵阳地球化学研究所同位素地质研究室, 译. 北京: 科学出版社, 1975: 109-129.]
[64] Zhou Yaoqi, Chai Zhifang, Mao Xueying, et al. The strontium isotope anomaly event across the Permian/Triassic boundary section in Meishan, Zhejiang, China[J]. Journal of Graduate School USTC, 1990, 7(1): 83-88.
[周瑶琪, 柴之芳, 毛雪瑛, 等. 浙江长兴煤山二叠、三叠系界线Sr同位素异常事件[J]. 中国科技大学研究生院学报, 1990, 7(1): 83-88.]
[65] Lu Wuchang, Cui Bingquan, Zhang Ping, et al. Strontium isotopic evolution of the Carboniferous marine carbonates from Majiaoba profile[J]. Journal of Mineralogy and Petrology, 1992, 12(2): 86-93.
[卢武长, 崔秉荃, 张平, 等. 石炭纪海相碳酸盐岩的锶同位素演化及其意义[J]. 矿物岩石, 1992, 12(2): 86-93.]
[66] Lu Wuchang, Cui Bingquan, Yang Shaoquan, et al. Strontium isotopic evolution of the Permian marine carbonates and implications[J]. Journal of Mineralogy and Petrology, 1992, 12(4): 80-87.
[卢武长, 崔秉荃, 杨绍全, 等. 二叠纪海相碳酸盐的锶同位素演化及其意义[J]. 矿物岩石, 1992, 12(4): 80-87.]
[67] Chen Xiaoming, Wang Yinxi.The carbon, oxygen, strontium isotope and rare earth element geochemistry of the Permian limestone from the Chaohu[J]. Journal of Nanjing University (Earth Science), 1992, 4(2): 36-44.
[陈小明, 王银喜. 巢湖二叠系剖面碳、氧、锶同位素和稀土元素地球化学研究[J]. 南京大学学报:地球科学, 1992, 4(2): 36-44.]
[68] Cui Bingquan, Lu Wuchang, Yang Shaoquan.Strontium and carbon isotopes and sea level fluctuation of Devonian in Longmen mountain region[J]. Journal of Chengdu College of Geology, 1993, 20(2): 1-8.
[崔秉荃, 卢武长, 杨绍全. 龙门山地区泥盆纪锶、碳同位素与海平面变化[J]. 成都地质学院学报, 1993, 20(2): 1-8.]
[69] Tian Jingchun.Relationship between the stable isotopic compositions of marine-carbonate of the early Permian period and hot event in Guizhou[J]. Journal of Mineralogy and Petrology, 1993, 13(2): 67-70.
[田景春. 贵州早二叠世海相碳酸盐岩稳定同位素组成与玄武岩浆喷发热事件的关系[J]. 矿物岩石, 1993, 13(2): 67-70.]
[70] Huang Sijing.Carbon, strontium isotopes of marine carbonate rocks of Middle-Upper Devonian in Ganxi, Northwestern Sichuan Province and their geological significance[J]. Acta Petrologica Sinica, 1993, 9(Suppl.): 214-221.
[黄思静. 川西北甘溪中、上泥盆统海相碳酸盐岩的碳、锶同位素组成及其地质意义[J]. 岩石学报, 1993, 9(增刊): 214-221.]
[71] Wang Zhongcheng, Chu Xuelei.Strontium isotopic composition of the Early Cambrian barite and witherite deposits[J]. Chinese Science Bulletin, 1994, 39(1): 52-55.
[王忠诚, 储雪蕾. 早寒武世重晶石与毒重石的锶同位素比值[J]. 科学通报, 1993, 38(16): 1 490-1 492.]
[72] Tong Jinggui, Li Shengrong, Li Xianghui, et al. Measurement of Sr isotopic ratio and dating using single grain of foraminifer fossil[J]. Chinese Science Bulletin, 2006, 51(15): 2 141-2 145.
[佟景贵, 李胜荣, 李向辉, 等. 单颗有孔虫化石Sr同位素测定及定年[J]. 科学通报, 2006, 51(17): 1 817-1 820.]
[73] Wang Xi, Wan Xiaoqiao, Li Guobiao.Late Cretaceous to early Paleogene strontium isotopic stratigraphy in the Gamba area, Tibet[J]. Geology in China, 2008, 35(4): 598-607.
[王曦, 万晓樵, 李国彪. 西藏岗巴晚白垩世—古近纪早期锶同位素地层[J]. 中国地质, 2008, 35(4): 598-607.]
[74] Huang Sijing, Shi He, Zhang Meng, et al. Strontium isotope age calibration of rudist bivalves from Late Cretaceous section in Southern Tibet[J]. Earth Science—Journal of China University of Geosciences, 2005, 30(4): 437-442.
[黄思静, 石和, 张萌, 等. 西藏南部晚白垩世厚壳蛤的锶同位素年龄标定[J]. 地球科学——中国地质大学学报, 2005, 30(4): 437-442.]
[75] Shi He, Huang Sijing, Sun Zhilei.Strontium isotopic curve of the Upper Cretaceous from Dingri, Tibet, and the chronostratigraphic division[J]. Journal of Stratigraphy, 2006, 30(1): 21-25.
[石和, 黄思静, 孙治雷. 西藏定日贡扎上白垩统锶同位素曲线及年代地层划分[J]. 地层学杂志, 2006, 30(1): 21-25.]
[76] Liu Jianqing, Jia Baojiang, Yang Ping, et al. The application of carbon, oxygen and strontium isotopes to the study of middle-upper Jurassic sequence stratigraphy in Longweicuo area, Qiangtang Basin[J]. Acta Geoscientica Sinica, 2007, 28(3): 253-260.
[刘建清, 贾保江, 杨平, 等. 碳、氧、锶同位素在羌塘盆地龙尾错地区层序地层研究中的应用[J]. 地球学报, 2007, 28(3): 253-260.]
[77] Hu Zuowei, Huang Sijing, Wang Qingdong, et al. Strontium isotopic characteristics near the Feihsienkuan-Chialingchiang Formation boundary from a lower Triassic section in Eastern Sichuan[J]. Journal of Stratigraphy, 2007, 31(4): 354-360.
[胡作维, 黄思静, 王庆东, 等. 川东下三叠统飞仙关组—嘉陵江组界线附近的锶同位素组成[J]. 地层学杂志, 2007, 31(4): 354-360.]
[78] Huang Sijing, Hairuo Qing, Huang Peipei, et al. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China[J]. Science in China (Series D), 2008, 51(4): 528-539.
[黄思静, Hairuo Qing, 黄培培, 等. 晚二叠世—早三叠世海水的锶同位素组成与演化—基于重庆中梁山海相碳酸盐的研究结果[J]. 中国科学:D辑, 2008, 38(3): 273-283.]
[79] Hu Zuowei, Huang Sijing, Qing H R, et al. Evolution and global correlation for strontium isotopic composition of marine Triassic from Huaying Mountains, eastern Sichuan, China[J]. Science in China (Series D), 2008, 51(4):540-549.
[胡作维, 黄思静, Qing H R, 等. 四川东部华蓥山海相三叠系锶同位素组成演化及其与全球对比[J]. 中国科学:D辑, 2008, 38(2): 157-166.]
[80] Xiao Jiafei, Li Rongxi, Wang Xingli, et al. The characteristics of strontium isotopes composition about Permian-Triassic boundary in the Great Bank of Guizhou[J]. Geological Review, 2009, 55(5): 647-652.
[肖加飞, 李荣西, 王兴理, 等. 大贵州滩二叠系—三叠系界线附近锶同位素组成特征[J]. 地质论评, 2009, 55(5): 647-652.]
[81] Hu Zuowei, Huang Sijing, Liu Lihong, et al. Strontium isotopic composition near marine Permian/Triassic boundary of the Huaying Mountain, Eastern Sichuan[J]. Acta Geoscientica Sinica, 2010, 31(6): 853-859.
[胡作维, 黄思静, 刘丽红, 等. 四川东部华蓥山海相二叠/三叠系界线附近的锶同位素组成[J]. 地球学报, 2010, 31(6): 853-859.]
[82] Chang Xiaolin, Shi He, Luo Wei, et al. Sr isotopic curve of the Lower-Middle Triassic of East Sichuan and the chronostratigraphic division[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(1): 9-14.
[常晓琳, 石和, 罗威, 等. 川东地区下—中三叠统的锶同位素曲线及年代地层划分[J]. 成都理工大学学报:自然科学版, 2010, 37(1): 9-14.]
[83] Huang Sijing, Huang Yu, Lan Yefang, et al. A comparative study on strontium isotope composition of dolomites and their coeval seawater in the Late Permian-Early Triassic, NE Sichuan Basin[J]. Acta Petrologica Sinica, 2011, 27(12): 3831-3842.[黄思静, 黄喻, 兰叶芳, 等. 四川盆地东北部晚二叠世—早三叠世白云岩与同期海水锶同位素组成的对比研究[J]. 岩石学报, 2011, 27(12): 3 831-3 842.]
[84] Wang Wenqian, Wang Wei, Feng Xiancui, et al. Strontium isotope stratigraphy on the division and correlation of marine sequences: An example from Lopingian marine carbonate sections[J]. Journal of Stratigraphy, 2014, 38(4): 402-416.
[王文倩, 王伟, 冯先翠, 等. 锶同位素地层学在海相地层划分和对比中的应用——以二叠纪乐平世海相碳酸盐岩地层为例[J]. 地层学杂志, 2014, 38(4): 402-416.]
[85] Wang Kun, Li Wei, Lu Jin, et al. Carbon, oxygen, strontium isotope characteristics and cause analysis of Carboniferous carbonate rocks in the eastern Sichuan Basin[J]. Geochimica, 2011, 40(4): 351-362.
[王坤, 李伟, 陆进, 等. 川东地区石炭系碳酸盐岩碳、氧、锶同位素特征及其成因分析[J]. 地球化学, 2011, 40(4): 351-362.]
[86] Chen Daizhao, Qing H R, Li Renwei.The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights fromδ13C carb, δ13C org and 87Sr/86Sr isotopic systematics[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 151-166.
[87] Cheng Hongguang, Li Xinqing, Yuan Honglin, et al. Strontium isotope composition and paleoenvironmental implication of Devonian brachiopod shells from Longmen Mountains[J]. Geochimica, 2009, 38(2): 187-194.
[程红光, 李心清, 袁洪林, 等. 龙门山泥盆纪腕足化石锶同位素组成特征及其古环境意义[J]. 地球化学, 2009, 38(2): 187-194.]
[88] Wang Yong, Shi Zejin, Peng Jun, et al. The C, O, Sr isotope composition of Shiniulan Formation in southeast area of Sichuan and its geologic implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4): 330-335.
[王勇, 施泽进, 彭俊, 等. 川东南地区石牛栏组碳、氧、锶同位素特征及其地质意义[J]. 矿物岩石地球化学通报, 2009, 28(4): 330-335.]
[89] Huang Wenhui, Yang Min, Yu Bingsong, et al. Strontium isotope composition and its characteristics analysis of Cambrian-Ordovician carbonate in Tazhong district, Tarim Basin[J]. Earth Science—Journal of China University of Geosciences, 2006, 31(6): 839-845.
[黄文辉, 杨敏, 于炳松, 等. 塔中地区寒武系—奥陶系碳酸盐岩Sr元素和Sr同位素特征[J]. 地球科学——中国地质大学学报, 2006, 31(6): 839-845.]
[90] Cheng Yongquan, Zhou Xinyuan.Geochemical characteristics of Middle Cambrian-Early Ordovician limestone and paleo-ocean reconstruction based on δ18Osmow, 87Sr/86Sr and rare Earth elements, Tarim Basin[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 47-52.
[陈永权, 周新源. 塔里木盆地中寒武统—下奥陶统泥晶灰岩地球化学与古海洋学[J]. 海洋地质与第四纪地质, 2009, 29(1): 47-52.]
[91] Li Rongxi, Wei Jiayong, Yang Weidong, et al. Variations of ratio of 87Sr/86Sr in seawater with time: Implications for sea level changes and global correlation[J]. Advances in Earth Science, 2000, 15(6): 729-733.
[李荣西, 魏家庸, 杨卫东, 等. 用87Sr/86Sr研究海平面变化与全球对比问题[J]. 地球科学进展, 2000, 15(6): 729-733.]
[92] Qin Jianhua, Pan Guitang, Du Gu, et al. The progress for study on the change of Cenozoic global climate, continental silicate rock weathering and marine strontium isotope[J]. Journal of Mineralogy and Petrology, 2002, 22(1): 31-35.
[秦建华, 潘桂堂, 杜谷, 等. 新生代气候变化与陆地硅酸盐岩风化和海洋Sr同位素研究[J]. 矿物岩石, 2002, 22(1): 31-35.]
[93] Luo Chao, Zheng Hongbo, Wu Weihua, et al. Temporal variation in Sr and 87Sr/86Sr of Yangtze River: An example from Datong hydrological station[J]. Advances in Earth Science, 2014, 29(7): 835-843.
[罗超, 郑洪波, 吴卫华, 等. 长江河水87Sr/86Sr值的季节性变化及其指示意义: 以长江大通站为例[J]. 地球科学进展, 2014, 29(7): 835-843.]
[94] Huang Keke, Huang Sijing, Lan Yefang, et al. Review of the carbon isotope of early Triassic carbonates[J]. Advances in Earth Science, 2013, 28(3): 357-365.
[黄可可, 黄思静, 兰叶芳, 等. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3): 357-365.]
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[8] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[9] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[10] 张英杰,王龙. 显生宙一级层序的银河年旋回响应:重要的进展与争论[J]. 地球科学进展, 2020, 35(3): 275-285.
[11] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[12] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[13] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[14] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[15] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.