1 |
RuddimanW F. Earth's climate: Past and future [J]. Eos Transactions American Geophysical Union, 2007, 82(47): 576-576.
|
2 |
Natiional Oceanic and Atmospheric Administraition Trends in Atmospheric Carbon Dioxide. [EB/OL]. [2018-10-01]., 2019-02/2019-03.
URL
|
3 |
MonninE, BarnolaJ M. Atmospheric CO2 concentrations over the last glacial termination [J]. Science, 2001, 291(5 501): 112-114.
|
4 |
LüthiD, LeF M, BereiterB, et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present [J]. Nature, 2008, 453(7 193): 379-382.
|
5 |
BartoliG, H?nischB, ZeebeR E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations [J]. Paleoceanography, 2011, 26(4):PA4213.
|
6 |
RetallackG J. Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281 (1/2): 57-65.
|
7 |
SteinthorsdottirM, VajdaV, PoleM. Significant transient, pCO2, perturbation at the New Zealand Oligocene-Miocene transition recorded by fossil plant stomata[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019,515:152-161.
|
8 |
KürschnerW M, Kva?ekZ, DilcherD L. The impact of miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems [J]. Proceeding of the National Academy of Sciences USA, 2008, 105(2): 449-453.
|
9 |
LeierA, QuadeJ, DecellesP, et al. Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration [J]. Earth and Planetary Science Letters, 2009, 279(3/4): 242-254.
|
10 |
NordtL, AtchleyS, DworkinS I. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary [J]. Geology, 2002, 30(8):703.
|
11 |
H?nischB, HemmingN G, ArcherD, et al. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition [J]. Science, 2009, 324(5 934): 1 551-1 554.
|
12 |
PearsonP N, PalmerM R, PearsonP N,et al. Atmospheric carbon dioxide over the past 60 million years[J]. Nature, 2000, 406(6 797): 695-699.
|
13 |
PaganiM, HuberM, LiuZ, et al. The role of carbon dioxide during the onset of Antarctic glaciation [J]. Science, 2011, 334(6 060): 1 261-1 264.
|
14 |
PalmerM R, BrummerG J, CooperM J, et al. Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29ka [J]. Earth and Planetary Science Letters, 2010, 295(1/2): 49-57.
|
15 |
PaganiM, LiuZ H, LariviereJ, et al. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations [J]. Nature Geoscience, 2010, 3(1): 27-30.
|
16 |
BijiP K, HoubenA J, SchoutenS, et al. Transient Middle Eocene atmospheric CO? and temperature variations [J]. Science, 2010, 330(6 005): 819.
|
17 |
ZhangY G, PaganiM, LiuZ, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A Mathematical Physical Engineering Sciences, 2013, 371(2 001): 20130096.
|
18 |
ZeebeR E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification [J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 141-165.
|
19 |
FosterG L, LearC H, RaeJ W B. The evolution of pCO2, ice volume and climate during the middle Miocene [J]. Earth and Planetary Science Letters, 2012, 341/344(8): 243-254.
|
20 |
YuJ M, ElderfieldH, H?nischB. B/Ca in planktonic foraminifera as a proxy for surface seawater pH [J]. Paleoceanography, 2007, 22(2):1-17.
|
21 |
BoonJ J, SchuylP J W, LeeuwJ W D, et al. Organic geochemical analyses of core samples from site 362, RidgeWalvis, DSDP Leg 40 [R]//Initial Reports of the Deep Sea Drilling Project.Texas:Texas A & M University, 1978.
|
22 |
PoppB N, KenigF, WakehamS G, et al. Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability inEmiliania huxleyi? [J]. Paleoceanography, 1998, 13(1): 35-41.
|
23 |
BrassellS C. Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene[M]//Engel M H, Macko S A, eds. Organic Geochemistry. Topics in Geobiology. Boston:Springer,1993.
|
24 |
BidigareR R, FlueggeA, FreemanK H, et al. Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae [J]. Global Biogeochem Cycles, 1997, 11(2): 279-292.
|
25 |
VolkmanJ K, EglntonG, CornerE D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi [J]. Phytochemistry, 1980, 19(12): 2 619-2 622.
|
26 |
MarloweI T, GreenJ C, NealA C, et al. Long chain (n-C37-C39) alkenones in the Prymnesiophyceae: Distribution of alkenones and other lipids and their taxonomic significance [J]. British Phycological Bulletin, 1984, 19(3): 203-216.
|
27 |
MarloweI T, BrassellS C, EglintonG, et al. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments [J]. Chemical Geology, 1990, 88(3): 349-375.
|
28 |
VolkmanJ K, BarrerrS M, BlackburnS I, et al. Alkenones in Gephyrocapsa oceanica:Implications for studies of paleoclimate [J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520.
|
29 |
ThiersteinH R, GeitzenauerK R, MolfinoB, et al. Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes [J]. Geology, 1977, 5(7): 400.
|
30 |
Pujos-lamyA. Essai d‘établissement d'une biostratigraphie du nannoplancton calcaire dans le Pleistocéne de I'Atlantique Nord‐oriental [J]. Boreas, 1977, 6(4): 323-331.
|
31 |
BownP R. Taxonomy, Evolution, and Biostratigraphy of Late Triassic-Early Jurassic Calcareous Nannofossils [M]. London:Palaeontological Association, 1987.
|
32 |
FarrimondP, EglintonG, BrassellS C. Alkenones in cretaceous black shales, Blake-Bahama Basin, western North Atlantic [J]. Organic Geochemistry, 1986, 10(4/6): 897-903.
|
33 |
BrassellS C, DumitrescuM. Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific [J]. Organic Geochemistry, 2004, 35(2): 181-188.
|
34 |
PlancqJ, GrpssiV, HenderiksJ, et al. Alkenone producers during late Oligocene-early Miocene revisited [J]. Paleoceanography, 2012, 27(1): PA1202.
|
35 |
BeltranC, de RafelisM, MinolettiF, et al. Coccolith δ18O and alkenone records in middle Pliocene orbitally controlled deposits: High-frequency temperature and salinity variations of sea surface water [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5):5 003.
|
36 |
BeltranC, FloresJ A, SicreM A, et al. Long chain alkenones in the Early Pliocene Sicilian sediments (Trubi Formation—Punta di Maiata section): Implications for the alkenone paleothermometry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4): 253-263.
|
37 |
BoltonC T, LawrenceK T, GibbsS J, et al. Glacial-interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones [J]. Earth & Planetary Science Letters, 2010, 295(3): 401-411.
|
38 |
BoltonC T, LawrenceK T, GibbsS J, et al. Biotic and geochemical evidence for a global latitudinal shift in ocean biogeochemistry and export productivity during the late Pliocene [J]. Earth and Planetary Science Letters, 2011, 308(1/2): 200-210.
|
39 |
PrahlF G, MuehlhausenL A, ZahnleD L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2 303-2 310.
|
40 |
MüllerPeterJ,FischerG. C37-Alkenones as paleotemperature tool: Fundamentals based on sediment traps and surface sediments from the South Atlantic Ocean[M]//WeferG, MulitzaS,RatmeyerV, eds. The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Berlin, Heidelberg:Springer, 2004:167-193.
|
41 |
AthanasiouM, BouloubassiI, GogouA, et al. Sea surface temperatures and environmental conditions during the “warm Pliocene” interval (~ 4.1-3.2 Ma) in the Eastern Mediterranean (Cyprus) [J]. Global and Planetary Change, 2017, 150:46-57.
|
42 |
PrahlF G, WakehamS G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment [J]. Nature, 1987, 330(6 146): 367-369.
|
43 |
PaganiM. Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses [J]. Science, 1999, 285(5 429): 876-879.
|
44 |
PaganiM, ArthurM A, FreemanK H. Miocene evolution of atmospheric carbon dioxide [J]. Paleoceanography, 1999, 14(3): 273-292.
|
45 |
JasperJ P, HayesJ M. A carbon isotope record of CO2 levels during the late Quaternary [J]. Nature, 1990, 347(6 292): 462-464.
|
46 |
FreemanK H, HayesJ M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels [J]. Global Biogeochemical Cycles, 1992, 6(2): 185-198.
|
47 |
PoppB N, TakigikuR, HayesJ M, et al. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter [J]. American Journal of Science, 1989, 289(4): 436.
|
48 |
DegensE T, GuillardR R L, SackettW M, et al. Metabolic fractionation of carbon isotopes in marine plankton—I. Temperature and respiration experiments [J]. Deep Sea Research & Oceanographic Abstracts, 1968, 15(1): 1-9.
|
49 |
RauG H, TakahashiT, Des MaraisD J, et al. The relationship between delta 13C of organic matter and [CO2(aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1 413-1 419.
|
50 |
FrancoisR, AltabetM A, GoerickeR, et al. Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean [J]. Global Biogeochemical Cycles, 1993, 7(3): 627-644.
|
51 |
FarquharG, O'learyM, BerryJ. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves [J]. Australian journal of plant Physiology, 1982, 9(2): 281-292.
|
52 |
FarquharG D, EhlerngerR J R, HubickK T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Biology, 1989, 40(1): 503-537.
|
53 |
LawsE A, PoppB N, BidigareR R, et al. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2(aq)]: Theoretical considerations and experimental results [J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1 131-1 138.
|
54 |
PoppB N, ParekhP, TilbrookB, et al. Organic carbon 13C variations in sedimentary rocks as chemostratigraphic and paleoenvironmental tools [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1): 119-132.
|
55 |
GoerickeR, FryB. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean [J]. Global Biogeochemical Cycles, 1994, 8(1): 85-90.
|
56 |
HayesJ M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence [J]. Marine Geology, 1993, 113(1/2): 111-125.
|
57 |
LawsE A, BidigareR R, PoppB N. Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum [J]. Limnology and Oceanography, 1997, 42(7): 1 552-1 560.
|
58 |
PoppB N, LawsE A, BidigareR R, et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation [J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 69-77.
|
59 |
RauG H, RiebesellU, Wolf-gladrowD. A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake [J]. Marine Ecology Progress Series, 1996, 133:275-285.
|
60 |
PaganiM. The alkenone-CO2 proxy and ancient atmospheric carbon dioxide [J]. Philosophical Transactions of The Royal Society A Mathematical Physical Engineering Sciences, 2002, 360(1 793): 609-632.
|
61 |
HayesJ M, TakigikuR, OcampoR, et al. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale [J]. Nature, 1987, 329(6 134): 48-51.
|
62 |
JasperJ P, HayesJ M. Reconstruction of paleoceanic PCO2 levels from carbon isotopic compositions of sedimentary biogenic components[M]//ZahnR, PedersenT F, KaminskiM A, alet, eds. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series (Series I: Global Environmental Change), vol 17. Berlin, Heidelberg: Springer,1994.
|
63 |
RiebesellU, RevillA T, HoldsworthD G, et al. The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4 179-4 192.
|
64 |
Van DongenB E, SchoutenS, Sinninghe DamsteJ S. Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants [J]. Marine Ecology Progress Series, 2002, 232:83-92.
|
65 |
PaganiM, ZachosJ C, FreemanK H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5 734): 600-603.
|
66 |
SekiO, FosterG L, SchmidtD N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1/2): 201-211.
|
67 |
LawsE A, PoppB N, BidigareR R, et al. Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae [J]. Geochemistry Geophysics Geosystems, 2001, 2(1): 2000GC000057.
|
68 |
EekM K, WhiticarM J, BishopJ K B, et al. Influence of nutrients on carbon isotope fractionation by natural populations of Prymnesiophyte algae in NE Pacific [J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 1999, 46(11/12): 2 863-2 876.
|
69 |
PoppB N, TrullT, KenigF, et al. Controls on the carbon isotopic composition of southern ocean phytoplankton [J]. Global Biogeochemical Cycles, 1999, 13(4): 827-843.
|
70 |
PaganiM. Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy [R]. Oxford:Elsevier, 2014: 361-378.
|
71 |
RauG H, TakahashiT, MaraisD J D. Latitudinal variations in plankton |[delta]|13C: Implications for CO2 and productivity in past oceans [J]. Nature, 1989, 341(6 242): 516-518.
|
72 |
MüllerM N, BeaufortL, BernardO, et al. Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta) [J]. Biogeosciences, 2012, 9(10): 4 155-4 167.
|
73 |
BeaufortL, CouapelM, BuchetN, et al. Calcite production by coccolithophores in the south east Pacific Ocean [J]. Biogeosciences, 2008, 5(4): 1 101-1 117.
|
74 |
HenderiksJ, PaganiM. Coccolithophore cell size and the Paleogene decline in atmospheric CO2 [J]. Earth and Planetary Science Letters, 2008, 269(3): 576-584.
|
75 |
HenderiksJ, PaganiM. Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone‐based pCO2 records [J]. Paleoceanography, 2007, 22(3): 324-329.
|
76 |
HenderiksJ. Coccolithophore size rules—Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths [J]. Marine Micropaleontology, 2008, 67(1): 143-154.
|
77 |
AloisiG. Co-variation of metabolic rates and cell-size in coccolithophores [J]. Biogeosciences, 2015, 12(15): 4 665-4 692.
|
78 |
MüllerM N, AntiaA N, LarocheJ. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi [J]. Limnology and Oceanography, 2008, 53(2): 506-512.
|
79 |
KawahataH. Biogenic sediments in the Eauripic Rise of the equatorial western Pacific during the last 265 kyr [J]. Geochemical Journal, 1996, 30:201-215.
|
80 |
RostB, ZondervanI, RiebesellU. Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi [J]. Limnology and Oceanography, 2002, 47(1): 120-128.
|
81 |
BurnsB D, BeardallJ. Utilization of inorganic carbon by marine microalgae [J]. Journal of Experimental Marine Biology and Ecology, 1987, 107(1): 75-86.
|
82 |
ColmanB, HuertasI E, BhatilS, et al. The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae [J]. Functional Plant Biology, 2002, 29(2/3): 261-270.
|
83 |
GiordanoM, BeardallJ, RavenJ A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution [J]. Annual Review of Plant Biology, 2005, 56:99-131.
|
84 |
RavenJ A. Inorganic carbon acquisition by eukaryotic algae: Four current questions [J]. Photosynthesis Research, 2010, 106(1/2): 123-134.
|
85 |
NimerN A, GuanQ, MerrettM J. Extra- and intra-cellular carbonic anhydrase in relation to culture age in a high-calcifying strain of Emiliania huxleyi lohmann [J]. New Phytologist, 1994, 126(4): 601-607.
|
86 |
NimerN A, MerrettM J. The development of a CO2-concentrating mechanism in Emiliania huxleyi [J]. New Phytologist, 1996, 133(3): 383-389.
|
87 |
NimerN A, MerrettM J, BriwbkeeC. Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high-calcifying strain of Emiliania huxleyi (Prymnesiophyceae) 1 [J]. Journal of Phycology, 1996, 32(5): 813-818.
|
88 |
NimerN A, DeboraI R M, MerrettM J. Bicarbonate utilization by marine phytoplankton species [J]. Journal of Phycology, 2010, 33(4): 625-631.
|
89 |
HerfortL, ThakeB, RobertsJ. Acquisition and use of bicarbonate by Emiliania huxleyi [J]. New Phytologist, 2002, 156(3): 427-436.
|
90 |
LawsE A, ThompsonP A, PoppB N, et al. Sources of inorganic carbon for marine microalgal photosynthesis: A reassessment of delta 13C data from batch culture studies of thalassiosira pseudonana and Emiliania huxleyi [J]. Limnology and Oceanography, 1998, 43(1): 136-142.
|
91 |
RostB, SültemeyerD, RiebesellU. Effect of CO2 concentration on the carbon acquisition of bloom-forming marine phytoplankton [J]. Oceanography, 2003, 1(1): 55-67.
|
92 |
Rosario LorenzoM, I?iguezC, EggeJ K, et al. Increased CO2 and iron availability effects on carbon assimilation and calcification on the formation of Emiliania huxleyi blooms in a coastal phytoplankton community [J]. Environmental and Experimental Botany, 2018, 148:47-58.
|
93 |
RostB, RiebesellU, SültemeyerD. Carbon acquisition of marine phytoplankton: Effect of photoperiod length [J]. Limnology and Oceanography, 2006, 51(1): 12-20.
|
94 |
StojkovicS, BeardallJ, MatearR. CO2 -concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi [J]. Journal of Phycology, 2013, 49(4): 670-679.
|
95 |
ElzengaJ T M, PrinsH B A, StefelsJ. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique [J]. Limnology and Oceanography, 2000, 45(2): 372-380.
|
96 |
NimerN A, DixonG K, MerrettM J. Utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann) Kamptner [J]. New Phytologist, 1992, 120(1): 153-158.
|
97 |
RostB, KranzS A, RichterK U, et al. Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton [J]. Limnology and Oceanography Methods, 2007, 5(10): 328-337.
|
98 |
ReinfelderJ R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton [J]. Annual Review of Marine Science, 2011, 3:291-315.
|
99 |
MejíaL M, Méndez-VicenteA, AbrevayaL, et al. A diatom record of CO2 decline since the late Miocene [J]. Earth and Planetary Science Letters, 2017, 479:18-33.
|
100 |
BadgerM P S, LearC H, PancostR D, et al. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet [J]. Paleoceanography, 2013, 28(1): 42-53.
|
101 |
Martonez-BotiM A, FosterG L, ChalkT B, et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records [J]. Nature, 2015, 518(7 537): 49-54.
|
102 |
GreenopR, FpsterG L, WilsonP A, et al. Middle Miocene climate instability associated with high-amplitude CO2variability [J]. Paleoceanography, 2014, 29(9): 845-853.
|
103 |
VanD B J, VisscherH, DilcherD L, et al. Paleoatmospheric signatures in neogene fossil leaves [J]. Science, 1993, 260 (5 115): 1 788.
|
104 |
K?rschnerW M, KvacekZ, DilcherD L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems [J]. Proceedings of the National Academy of Sciences USA, 2008, 105(2): 449-453.
|
105 |
DaJ, ZhangY G, WangH, et al. An Early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits [J]. Earth and Planetary Science Letters, 2015, 426:69-75.
|