Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (3): 265-274    DOI: 10.11867/j.issn.1001-8166.2019.03.0265
    
长链烯酮在古大气二氧化碳分压重建的应用
马晓旭(),刘传联(),金晓波,张洪瑞,马瑞罡
同济大学海洋地质国家重点实验室,上海 200092
The Application of Alkenone-Based pCO2 Reconstructions
Xiaoxu Ma(),Chuanlian Liu(),Xiaobo Jin,Hongrui Zhang,Ruigang Ma
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
 全文: PDF(2024 KB)   HTML
摘要:

大气二氧化碳浓度的变化与全球冰盖变化、温度、海平面变化密切相关,了解过去大气二氧化碳浓度的变化及对二氧化碳与气候之间关系的研究,是预测未来气候变化的重要手段。长链烯酮碳同位素是重建古大气二氧化碳分压(pCO2)的重要指标之一,广泛应用于新生代以来大气二氧化碳的重建。对长链烯酮重建大气二氧化碳的方法进行了综述,介绍了颗石藻长链烯酮的地球化学性质,回顾了二氧化碳被动扩散模型的发展、长链烯酮重建二氧化碳的指标的发展及其不确定性,颗石藻的碳浓缩机制以及新生代以来长链烯酮重建大气二氧化碳的地质记录。

关键词: 长链烯酮大气二氧化碳分压碳同位素颗石藻被动扩散模型    
Abstract:

The changing of atmospheric carbon dioxide concentration is closely related with the changing of global ice sheet,temperature and sea level. Knowledge of the past atmospheric carbon dioxide concentration and its relationship with climate is an important method of predicting the future climate change. Coccolith derived long-chain alkenone carbon isotope is one of the important proxies to reconstruct past carbon dioxide, which is wildly applied in the reconstruction of the Cenozoic atmospheric carbon dioxide. In this paper, we focused on the method of alkenone-based atmospheric carbon dioxide concentration, including the geochemical properties of long-chain alkenone, carbon diffusive model and the carbon isotope fraction. Then, we introduced the development of alkenone-based carbon dioxide proxy and its uncertainty. Coccolith cell geometry and growth rate have great influence on carbon dioxide fraction. Besides, there are some uncertainties about carbon concentration mechanisms in coccolithes, which may have some influence on alkenone-based carbon dioxide method to reconstruct ancient carbon dioxide more accurately. At the end, we summarized the Cenozoic carbon dioxide record with various proxies including alkenone carbon dioxide, boron isotope, palaeosol carbonate nodules and stomatal indices of fossil leaves.

Key words: Long-chain alkenone    Atmospheric carbon dioxide    Carbon isotope    Coccolith    Diffusive models.
收稿日期: 2018-12-21 出版日期: 2019-04-28
ZTFLH:  P532  
基金资助: 国家重大科技专项子课题“南海深水区古海洋学与优质烃源岩关系研究(编号:2016ZX05026007-03);国家自然科学基金项目“利用颗石藻生理作用来校正烯酮古CO2气压计中的b值”(编号:41806050)
通讯作者: 刘传联     E-mail: jiselle@163.com;liucl@tongji.edu.cn
作者简介: 马晓旭(1994-),女,山东淄博人,硕士研究生,主要从事古海洋的研究. E-mail:jiselle@163.com|刘传联(1963-),男,山东济宁人,教授,主要从事海洋微体古生物和古海洋学研究. E-mail:liucl@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马晓旭
刘传联
金晓波
张洪瑞
马瑞罡

引用本文:

马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.

Xiaoxu Ma,Chuanlian Liu,Xiaobo Jin,Hongrui Zhang,Ruigang Ma. The Application of Alkenone-Based pCO2 Reconstructions. Advances in Earth Science, 2019, 34(3): 265-274.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.03.0265        http://www.adearth.ac.cn/CN/Y2019/V34/I3/265

图1  εf为25‰时,自然环境中浮游植物类群b值与[PO43-]的比值(数据来自参考文献[24,67~69])
图2  生长速率与光合作用的影响因素
图3  不同指标下的50 Ma以来pCO2记录[5,6,11,15,17,65,66,100,101,102,103,104,105]
1 RuddimanW F. Earth's climate: Past and future [J]. Eos Transactions American Geophysical Union, 2007, 82(47): 576-576.
2 Natiional Oceanic and Atmospheric Administraition Trends in Atmospheric Carbon Dioxide. [EB/OL]. [2018-10-01]., 2019-02/2019-03.
3 MonninE, BarnolaJ M. Atmospheric CO2 concentrations over the last glacial termination [J]. Science, 2001, 291(5 501): 112-114.
4 LüthiD, LeF M, BereiterB, et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present [J]. Nature, 2008, 453(7 193): 379-382.
5 BartoliG, H?nischB, ZeebeR E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations [J]. Paleoceanography, 2011, 26(4):PA4213.
6 RetallackG J. Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281 (1/2): 57-65.
7 SteinthorsdottirM, VajdaV, PoleM. Significant transient, pCO2, perturbation at the New Zealand Oligocene-Miocene transition recorded by fossil plant stomata[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019,515:152-161.
8 KürschnerW M, Kva?ekZ, DilcherD L. The impact of miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems [J]. Proceeding of the National Academy of Sciences USA, 2008, 105(2): 449-453.
9 LeierA, QuadeJ, DecellesP, et al. Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration [J]. Earth and Planetary Science Letters, 2009, 279(3/4): 242-254.
10 NordtL, AtchleyS, DworkinS I. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary [J]. Geology, 2002, 30(8):703.
11 H?nischB, HemmingN G, ArcherD, et al. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition [J]. Science, 2009, 324(5 934): 1 551-1 554.
12 PearsonP N, PalmerM R, PearsonP N,et al. Atmospheric carbon dioxide over the past 60 million years[J]. Nature, 2000, 406(6 797): 695-699.
13 PaganiM, HuberM, LiuZ, et al. The role of carbon dioxide during the onset of Antarctic glaciation [J]. Science, 2011, 334(6 060): 1 261-1 264.
14 PalmerM R, BrummerG J, CooperM J, et al. Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29ka [J]. Earth and Planetary Science Letters, 2010, 295(1/2): 49-57.
15 PaganiM, LiuZ H, LariviereJ, et al. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations [J]. Nature Geoscience, 2010, 3(1): 27-30.
16 BijiP K, HoubenA J, SchoutenS, et al. Transient Middle Eocene atmospheric CO? and temperature variations [J]. Science, 2010, 330(6 005): 819.
17 ZhangY G, PaganiM, LiuZ, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A Mathematical Physical Engineering Sciences, 2013, 371(2 001): 20130096.
18 ZeebeR E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification [J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 141-165.
19 FosterG L, LearC H, RaeJ W B. The evolution of pCO2, ice volume and climate during the middle Miocene [J]. Earth and Planetary Science Letters, 2012, 341/344(8): 243-254.
20 YuJ M, ElderfieldH, H?nischB. B/Ca in planktonic foraminifera as a proxy for surface seawater pH [J]. Paleoceanography, 2007, 22(2):1-17.
21 BoonJ J, SchuylP J W, LeeuwJ W D, et al. Organic geochemical analyses of core samples from site 362, RidgeWalvis, DSDP Leg 40 [R]//Initial Reports of the Deep Sea Drilling Project.Texas:Texas A & M University, 1978.
22 PoppB N, KenigF, WakehamS G, et al. Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability inEmiliania huxleyi? [J]. Paleoceanography, 1998, 13(1): 35-41.
23 BrassellS C. Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene[M]//Engel M H, Macko S A, eds. Organic Geochemistry. Topics in Geobiology. Boston:Springer,1993.
24 BidigareR R, FlueggeA, FreemanK H, et al. Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae [J]. Global Biogeochem Cycles, 1997, 11(2): 279-292.
25 VolkmanJ K, EglntonG, CornerE D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi [J]. Phytochemistry, 1980, 19(12): 2 619-2 622.
26 MarloweI T, GreenJ C, NealA C, et al. Long chain (n-C37-C39) alkenones in the Prymnesiophyceae: Distribution of alkenones and other lipids and their taxonomic significance [J]. British Phycological Bulletin, 1984, 19(3): 203-216.
27 MarloweI T, BrassellS C, EglintonG, et al. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments [J]. Chemical Geology, 1990, 88(3): 349-375.
28 VolkmanJ K, BarrerrS M, BlackburnS I, et al. Alkenones in Gephyrocapsa oceanica:Implications for studies of paleoclimate [J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520.
29 ThiersteinH R, GeitzenauerK R, MolfinoB, et al. Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes [J]. Geology, 1977, 5(7): 400.
30 Pujos-lamyA. Essai d‘établissement d'une biostratigraphie du nannoplancton calcaire dans le Pleistocéne de I'Atlantique Nord‐oriental [J]. Boreas, 1977, 6(4): 323-331.
31 BownP R. Taxonomy, Evolution, and Biostratigraphy of Late Triassic-Early Jurassic Calcareous Nannofossils [M]. London:Palaeontological Association, 1987.
32 FarrimondP, EglintonG, BrassellS C. Alkenones in cretaceous black shales, Blake-Bahama Basin, western North Atlantic [J]. Organic Geochemistry, 1986, 10(4/6): 897-903.
33 BrassellS C, DumitrescuM. Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific [J]. Organic Geochemistry, 2004, 35(2): 181-188.
34 PlancqJ, GrpssiV, HenderiksJ, et al. Alkenone producers during late Oligocene-early Miocene revisited [J]. Paleoceanography, 2012, 27(1): PA1202.
35 BeltranC, de RafelisM, MinolettiF, et al. Coccolith δ18O and alkenone records in middle Pliocene orbitally controlled deposits: High-frequency temperature and salinity variations of sea surface water [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5):5 003.
36 BeltranC, FloresJ A, SicreM A, et al. Long chain alkenones in the Early Pliocene Sicilian sediments (Trubi Formation—Punta di Maiata section): Implications for the alkenone paleothermometry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4): 253-263.
37 BoltonC T, LawrenceK T, GibbsS J, et al. Glacial-interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones [J]. Earth & Planetary Science Letters, 2010, 295(3): 401-411.
38 BoltonC T, LawrenceK T, GibbsS J, et al. Biotic and geochemical evidence for a global latitudinal shift in ocean biogeochemistry and export productivity during the late Pliocene [J]. Earth and Planetary Science Letters, 2011, 308(1/2): 200-210.
39 PrahlF G, MuehlhausenL A, ZahnleD L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2 303-2 310.
40 MüllerPeterJ,FischerG. C37-Alkenones as paleotemperature tool: Fundamentals based on sediment traps and surface sediments from the South Atlantic Ocean[M]//WeferG, MulitzaS,RatmeyerV, eds. The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Berlin, Heidelberg:Springer, 2004:167-193.
41 AthanasiouM, BouloubassiI, GogouA, et al. Sea surface temperatures and environmental conditions during the “warm Pliocene” interval (~ 4.1-3.2 Ma) in the Eastern Mediterranean (Cyprus) [J]. Global and Planetary Change, 2017, 150:46-57.
42 PrahlF G, WakehamS G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment [J]. Nature, 1987, 330(6 146): 367-369.
43 PaganiM. Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses [J]. Science, 1999, 285(5 429): 876-879.
44 PaganiM, ArthurM A, FreemanK H. Miocene evolution of atmospheric carbon dioxide [J]. Paleoceanography, 1999, 14(3): 273-292.
45 JasperJ P, HayesJ M. A carbon isotope record of CO2 levels during the late Quaternary [J]. Nature, 1990, 347(6 292): 462-464.
46 FreemanK H, HayesJ M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels [J]. Global Biogeochemical Cycles, 1992, 6(2): 185-198.
47 PoppB N, TakigikuR, HayesJ M, et al. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter [J]. American Journal of Science, 1989, 289(4): 436.
48 DegensE T, GuillardR R L, SackettW M, et al. Metabolic fractionation of carbon isotopes in marine plankton—I. Temperature and respiration experiments [J]. Deep Sea Research & Oceanographic Abstracts, 1968, 15(1): 1-9.
49 RauG H, TakahashiT, Des MaraisD J, et al. The relationship between delta 13C of organic matter and [CO2(aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1 413-1 419.
50 FrancoisR, AltabetM A, GoerickeR, et al. Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean [J]. Global Biogeochemical Cycles, 1993, 7(3): 627-644.
51 FarquharG, O'learyM, BerryJ. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves [J]. Australian journal of plant Physiology, 1982, 9(2): 281-292.
52 FarquharG D, EhlerngerR J R, HubickK T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Biology, 1989, 40(1): 503-537.
53 LawsE A, PoppB N, BidigareR R, et al. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2(aq)]: Theoretical considerations and experimental results [J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1 131-1 138.
54 PoppB N, ParekhP, TilbrookB, et al. Organic carbon 13C variations in sedimentary rocks as chemostratigraphic and paleoenvironmental tools [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1): 119-132.
55 GoerickeR, FryB. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean [J]. Global Biogeochemical Cycles, 1994, 8(1): 85-90.
56 HayesJ M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence [J]. Marine Geology, 1993, 113(1/2): 111-125.
57 LawsE A, BidigareR R, PoppB N. Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum [J]. Limnology and Oceanography, 1997, 42(7): 1 552-1 560.
58 PoppB N, LawsE A, BidigareR R, et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation [J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 69-77.
59 RauG H, RiebesellU, Wolf-gladrowD. A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake [J]. Marine Ecology Progress Series, 1996, 133:275-285.
60 PaganiM. The alkenone-CO2 proxy and ancient atmospheric carbon dioxide [J]. Philosophical Transactions of The Royal Society A Mathematical Physical Engineering Sciences, 2002, 360(1 793): 609-632.
61 HayesJ M, TakigikuR, OcampoR, et al. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale [J]. Nature, 1987, 329(6 134): 48-51.
62 JasperJ P, HayesJ M. Reconstruction of paleoceanic PCO2 levels from carbon isotopic compositions of sedimentary biogenic components[M]//ZahnR, PedersenT F, KaminskiM A, alet, eds. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series (Series I: Global Environmental Change), vol 17. Berlin, Heidelberg: Springer,1994.
63 RiebesellU, RevillA T, HoldsworthD G, et al. The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4 179-4 192.
64 Van DongenB E, SchoutenS, Sinninghe DamsteJ S. Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants [J]. Marine Ecology Progress Series, 2002, 232:83-92.
65 PaganiM, ZachosJ C, FreemanK H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5 734): 600-603.
66 SekiO, FosterG L, SchmidtD N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1/2): 201-211.
67 LawsE A, PoppB N, BidigareR R, et al. Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae [J]. Geochemistry Geophysics Geosystems, 2001, 2(1): 2000GC000057.
68 EekM K, WhiticarM J, BishopJ K B, et al. Influence of nutrients on carbon isotope fractionation by natural populations of Prymnesiophyte algae in NE Pacific [J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 1999, 46(11/12): 2 863-2 876.
69 PoppB N, TrullT, KenigF, et al. Controls on the carbon isotopic composition of southern ocean phytoplankton [J]. Global Biogeochemical Cycles, 1999, 13(4): 827-843.
70 PaganiM. Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy [R]. Oxford:Elsevier, 2014: 361-378.
71 RauG H, TakahashiT, MaraisD J D. Latitudinal variations in plankton |[delta]|13C: Implications for CO2 and productivity in past oceans [J]. Nature, 1989, 341(6 242): 516-518.
72 MüllerM N, BeaufortL, BernardO, et al. Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta) [J]. Biogeosciences, 2012, 9(10): 4 155-4 167.
73 BeaufortL, CouapelM, BuchetN, et al. Calcite production by coccolithophores in the south east Pacific Ocean [J]. Biogeosciences, 2008, 5(4): 1 101-1 117.
74 HenderiksJ, PaganiM. Coccolithophore cell size and the Paleogene decline in atmospheric CO2 [J]. Earth and Planetary Science Letters, 2008, 269(3): 576-584.
75 HenderiksJ, PaganiM. Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone‐based pCO2 records [J]. Paleoceanography, 2007, 22(3): 324-329.
76 HenderiksJ. Coccolithophore size rules—Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths [J]. Marine Micropaleontology, 2008, 67(1): 143-154.
77 AloisiG. Co-variation of metabolic rates and cell-size in coccolithophores [J]. Biogeosciences, 2015, 12(15): 4 665-4 692.
78 MüllerM N, AntiaA N, LarocheJ. Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi [J]. Limnology and Oceanography, 2008, 53(2): 506-512.
79 KawahataH. Biogenic sediments in the Eauripic Rise of the equatorial western Pacific during the last 265 kyr [J]. Geochemical Journal, 1996, 30:201-215.
80 RostB, ZondervanI, RiebesellU. Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi [J]. Limnology and Oceanography, 2002, 47(1): 120-128.
81 BurnsB D, BeardallJ. Utilization of inorganic carbon by marine microalgae [J]. Journal of Experimental Marine Biology and Ecology, 1987, 107(1): 75-86.
82 ColmanB, HuertasI E, BhatilS, et al. The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae [J]. Functional Plant Biology, 2002, 29(2/3): 261-270.
83 GiordanoM, BeardallJ, RavenJ A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution [J]. Annual Review of Plant Biology, 2005, 56:99-131.
84 RavenJ A. Inorganic carbon acquisition by eukaryotic algae: Four current questions [J]. Photosynthesis Research, 2010, 106(1/2): 123-134.
85 NimerN A, GuanQ, MerrettM J. Extra- and intra-cellular carbonic anhydrase in relation to culture age in a high-calcifying strain of Emiliania huxleyi lohmann [J]. New Phytologist, 1994, 126(4): 601-607.
86 NimerN A, MerrettM J. The development of a CO2-concentrating mechanism in Emiliania huxleyi [J]. New Phytologist, 1996, 133(3): 383-389.
87 NimerN A, MerrettM J, BriwbkeeC. Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high-calcifying strain of Emiliania huxleyi (Prymnesiophyceae) 1 [J]. Journal of Phycology, 1996, 32(5): 813-818.
88 NimerN A, DeboraI R M, MerrettM J. Bicarbonate utilization by marine phytoplankton species [J]. Journal of Phycology, 2010, 33(4): 625-631.
89 HerfortL, ThakeB, RobertsJ. Acquisition and use of bicarbonate by Emiliania huxleyi [J]. New Phytologist, 2002, 156(3): 427-436.
90 LawsE A, ThompsonP A, PoppB N, et al. Sources of inorganic carbon for marine microalgal photosynthesis: A reassessment of delta 13C data from batch culture studies of thalassiosira pseudonana and Emiliania huxleyi [J]. Limnology and Oceanography, 1998, 43(1): 136-142.
91 RostB, SültemeyerD, RiebesellU. Effect of CO2 concentration on the carbon acquisition of bloom-forming marine phytoplankton [J]. Oceanography, 2003, 1(1): 55-67.
92 Rosario LorenzoM, I?iguezC, EggeJ K, et al. Increased CO2 and iron availability effects on carbon assimilation and calcification on the formation of Emiliania huxleyi blooms in a coastal phytoplankton community [J]. Environmental and Experimental Botany, 2018, 148:47-58.
93 RostB, RiebesellU, SültemeyerD. Carbon acquisition of marine phytoplankton: Effect of photoperiod length [J]. Limnology and Oceanography, 2006, 51(1): 12-20.
94 StojkovicS, BeardallJ, MatearR. CO2 -concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi [J]. Journal of Phycology, 2013, 49(4): 670-679.
95 ElzengaJ T M, PrinsH B A, StefelsJ. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique [J]. Limnology and Oceanography, 2000, 45(2): 372-380.
96 NimerN A, DixonG K, MerrettM J. Utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann) Kamptner [J]. New Phytologist, 1992, 120(1): 153-158.
97 RostB, KranzS A, RichterK U, et al. Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton [J]. Limnology and Oceanography Methods, 2007, 5(10): 328-337.
98 ReinfelderJ R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton [J]. Annual Review of Marine Science, 2011, 3:291-315.
99 MejíaL M, Méndez-VicenteA, AbrevayaL, et al. A diatom record of CO2 decline since the late Miocene [J]. Earth and Planetary Science Letters, 2017, 479:18-33.
100 BadgerM P S, LearC H, PancostR D, et al. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet [J]. Paleoceanography, 2013, 28(1): 42-53.
101 Martonez-BotiM A, FosterG L, ChalkT B, et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records [J]. Nature, 2015, 518(7 537): 49-54.
102 GreenopR, FpsterG L, WilsonP A, et al. Middle Miocene climate instability associated with high-amplitude CO2variability [J]. Paleoceanography, 2014, 29(9): 845-853.
103 VanD B J, VisscherH, DilcherD L, et al. Paleoatmospheric signatures in neogene fossil leaves [J]. Science, 1993, 260 (5 115): 1 788.
104 K?rschnerW M, KvacekZ, DilcherD L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems [J]. Proceedings of the National Academy of Sciences USA, 2008, 105(2): 449-453.
105 DaJ, ZhangY G, WangH, et al. An Early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits [J]. Earth and Planetary Science Letters, 2015, 426:69-75.
[1] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[2] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[3] 药瑛, 孙樯. 应用于流体包裹体CO2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[4] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高δ13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[5] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[6] 陈雅丽,储雪蕾,张兴亮,翟明国. 纳米离子探针分析在地球早期生命研究中的应用[J]. 地球科学进展, 2013, 28(5): 588-596.
[7] 黄可可,黄思静,兰叶芳,胡作维. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3): 357-365.
[8] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.
[9] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.
[10] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[11] 章伟艳,金海燕,张富元,赵国军,杨克红,李宏亮,白有成,高为利. 长江口—杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J]. 地球科学进展, 2009, 24(11): 1202-1209.
[12] 金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展, 2007, 22(9): 914-921.
[13] 李祥辉,陈云华,徐宝亮,AkihiroKano,ChizuruTakashima. 新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果[J]. 地球科学进展, 2007, 22(7): 666-672.
[14] 赵玉龙,刘志飞. 古新世—始新世最热事件对地球表层循环的影响及其触发机制[J]. 地球科学进展, 2007, 22(4): 341-349.
[15] 孙军. 今生颗石藻的有机碳泵和碳酸盐反向泵[J]. 地球科学进展, 2007, 22(12): 1231-1239.