地球科学进展 ›› 2013, Vol. 28 ›› Issue (3): 357 -365. doi: 10.11867/j.issn.1001-8166.2013.03.0357

综述与评述 上一篇    下一篇

早三叠世海相碳酸盐碳同位素研究进展
黄可可,黄思静,兰叶芳,胡作维   
  1. 成都理工大学油气藏地质及开发工程国家重点实验室,沉积地质研究院,四川 成都 610059
  • 收稿日期:2012-07-31 修回日期:2013-02-21 出版日期:2013-03-10
  • 基金资助:

    国家自然科学基金重点项目“四川盆地东北部三叠系飞仙关组优质白云岩储层形成的成岩机制”(编号:40839908);国家自然科学基金面上项目“川渝地区早三叠世海相碳酸盐岩的碳同位素研究”(编号:41272130)资助.

Review of the Carbon Isotope of Early Triassic Carbonates

Huang Keke, Huang Sijing, Lan Yefang, Hu Zuowei   

  1. State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology,  Chengdu 610059, China)
  • Received:2012-07-31 Revised:2013-02-21 Online:2013-03-10 Published:2013-03-10

早三叠世是地球发展史上的特殊时期,代表了古、中生代过渡时期的生态重建与复苏。随着各种“异常环境事件”信息在近年陆续被揭示,早三叠世地质学研究成为地学界新的热点领域。海相碳酸盐碳同位素组成记录了碳循环的变化,是理解重大突变期的生态环境事件和地球过程的重要切入点。最近10年的研究表明,过去集中在二叠纪/三叠纪界线附近发现的“负漂移”现象只能代表海洋化学持续了约5 Ma的动荡局面的开始,直到中三叠世才趋于平稳,高频率、大幅度的整体演变型式已很难用过去提出的机制进行解释。全球范围内缺乏可精确对比性以及高达+8‰的正向极值的成因等,都是值得深入思考的问题。

The Early Triassic is a critical period in earth history, representing the ecosystem reconstruction and recovery after the endPermian biotic crisis. As a result of recent discoveries about a series of unusual environmental and evolutionary events, the research of the Early Triassic has become a focus topic in the geological fields. Variations in the carbon isotopic compositions of marine carbonate record the fluctuation of carbon cycle, and give information about ecosystem function and environmental change through the transitional period. The new carbon isotope data indicate that the P/T δ13C decline was just a start of a series of large fluctuations that continued throughout the Early Triassic before the early Middle Triassic. The high frequency and large amplitude of the δ13C excursions demonstrate that the catastrophic mechanisms proposed in the past become less attractive to explain the Early Triassic carbon isotopic record as a whole. The lack of comparability of δ13C curve globally and the genesis for the usually 8‰ positive shift are the problems worthy   further consideration.

中图分类号: 

[1]Erwin D H. The Great Paleozoic Crisis: Life and Death in the Permian Critical Moments in Paleobiology and Earth History Series[M].New York: Columbia University Press,1993.

[2]Benton M J, Twitchett R J. How to kill (almost) all life: The end-Permian extinction event[J]. Trends Ecology & Evolution,2003, 18:358-365.

[3]Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction[J]. Science, 1998, 280:1 039-1 045.

[4]Holser W T, Magaritz M. Events near the Pemian-Triassic boundary[J]. A Modern Geológia, 1987, 11: 155-180.

[5]He Jinwen, Rui Lin, Chai Zhifang, et al. The latest Permian and earliest Triassic volcanic activities in the Meishan area of Changxing, Zhejiang[J].Journal of Stratigraphy,1987, 11(3): 194-199.[何锦文, 芮琳, 柴之芳,等. 浙江长兴煤山地区晚二叠世末、早三叠世初的火山活动[J].地层学杂志,1987, 11(3): 194-199.]

[6]Renne P R, Zichao Z, Richards M A, et al. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism[J].Science,1995, 269: 1 413-1 416.

[7]Knoll A H, Bambach R K, Canfield D E, et al.Comparative Earth history and Late Permian mass extinction[J].Science,1996, 273: 452-457.

[8]Newton R, Pevitt P, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy[J]. Earth and Planetary Science Letters, 2004, 218: 331-345.

[9]Li Yucheng, Zhou Zhongze. Massive dissociation of gas hydrate during oceanic anoxia as a cause of mass extinction at the end of Permian[J].Geology-Geochemistry, 2002, 30(1): 57-63.[李玉成, 周忠泽. 华南二叠纪末缺氧海水中的有毒气体与生物集群绝灭[J]. 地质地球化学, 2002, 30(1): 57-63.]

[10]Cerling T E. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Messozoic paleosols[J].American Journal of Science,1991, 291: 377-400.

[11]Kump L R, Arthur M A. Interpreting carbon-isotope excursions Carbonate and organic matter[J]. Chemical Geology,1999, 6: 181-198.

[12]Magaritz M, Krishnamurthy R V, Holser W T. Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary[J]. American Journal of Science, 1992, 292:727-739.

[13]Malkowski K, Gruszczynski M, Hoffman A, et al. Ocean stable isotope composition and a scenario for the Permo-Triassic crisis[J]. History Biology, 1989, 2: 289-309.

[14]Holser W T, Schnlaub H P, Attrep M J, et al. A unique geochemical record at the Permian/Triassic boundary[J].Nature, 1989, 337: 39-44.

[15]Yan Zheng, Ye Lianfang, Jin Ruogu, et al. Characteristics of carbon and oxygen isotopes of the Permian-Triassic boundary at Shangsi section of Guangyuan, Sichuan province[C]∥Proceeding of Stratigraphy and Paleontology. Beijing: Geological Society of China,1989: 166-171.[严正, 叶莲芳, 金若谷,等.四川广元上寺二叠—三叠系界线剖面的碳氧同位素特征[C]∥地层古生物论文集.北京:中国地质学会,1989:166-171.

[16]Holser W T, Schnlaub H P. The Permian-Triassic boundary in the Carnic Alps of Austria (Gartnerkofel region)[M]∥Abhandlungender Geologische Bundesanstalt Autriche.Wien: Geologiche Bundesonstalt, 1991, 45: 232.

[17]Jing Yisong.  Event Stratigraphy during Permian-Triassic Transitional Period in Jiangsu, Zhejiang and Anhui[D]. Nanjing: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 1992.[景一松.苏浙皖地区二叠—三叠纪转换时期的事件地层[D].南京:中国科学院南京地质古生物研究所,1992.]

[18]Xu D Y, Yan Z. Carbon isotope and iridium event markers near the Permian/Triassic boundary in the Meishan section, Zhejiang Province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 104: 171-176.

[19]Li Yucheng. Gradual and abrupt shifts in carbon isotope of limestones during Permian Triassic transitional period in South China[J].Geochimica,1999, 28(4): 351-358.[李玉成. 中国南方二叠—三叠纪过渡时期的碳同位和素旋回地层与突变事故[J].地球化学, 1999, 28(4): 351-358.]

[20]Payne J L, Lehrmann D J, Wei J Y, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction[J]. Science, 2004, 305: 506-509.

[21]Mu X, Kershaw S, Li Y, et al. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China;implications for control and growth of earliest Triassic microbialites[J]. Journal of Asian Earth Sciences, 2009, 36: 434-441.

[22] Tong Jinnan, Yin Hongfu. Advance in the study of early Triassic lift and environment[J].Palaeontologica Sinica,2009, 48(3): 497-508.[童金南, 殷鸿福. 早三叠世生物与环境研究进展[J]. 古生物学报,2009, 48(3): 497-508.]

[23]Nielsen J K, Shen Y. Evidence for sulfidic deep water during the late Permian in the East Greenland Basin[J]. Geology, 2004, 32: 1 037-1 040.

[24]Retallack G J, Sheldonb N D, Carr P F, et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 233-251.

[25]Algeo T J, Twitchett R J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences[J]. Geology,2010, 38: 1 023-1 026.

[26]Ward P D, Botha J, Buick R, et al. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa[J]. Science,2005, 307: 709-714.

[27]Rees P M. Land-plant diversity and the end-Permian mass extinction[J]. Geology, 2002, 30: 827-830.

[28]Isozaki Y, Yao J, Shimizu N, et al. Late Permian double mass extinction and double felsic volcanism: G-L and P-T boundary record in northern Sichuan, South China[C]∥Geological Society of America Cordilleran Section, 100th Annual Meeting. Anonymous,2004,36(4): 19.

[29]Algeo T J, Chen Z Q, Fraiser M L, et al. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2011, 308(1/2): 1-11.

[30]Flügel E. Triassic reef patterns[M]∥Kiessling W, Flügel E, Golonka J,eds. Phanerozoic Reef Patterns.Tulsa: SEPM Special Publication,2002, 72: 391-463.

[31]Beauchamp B, Baud A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of the thermohaline circulation[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2002,184: 37-63.

[32]Faure K, de Wit M J, Willis J P. Late Permian global coal hiatus linked to 13C depleted CO2 flux into the atmosphere during final consolidation of Pangea[J]. Geology, 1995, 23: 507-510.

[33]Baud A, Richoz S, Pruss S. The lower Triassic anachronistic carbonate facies in space and time[J]. Global and Planetary Change,2007, 55:81-89.

[34]Zhao Xiaoming, Tong Jinnan, Yao Huazhou, et al. Anachroronistic facies and its significance on ecosystem during the early Triassic recovery time in south China[J].Science in China (Series D), 2008, 38: 1 564-1 574.[赵小明, 童金南, 姚华舟,等. 华南早三叠世错时相沉积及其对复苏期生态系的启示[J]. 中国科学:D辑,2008, 38: 1 564-1 574.]

[35]Shi Zhiqiang, An Hongyan, Yi Haisheng, et al. Classification and characters of the early Triassic anomalous carbonate rocks in upper Yangtze area[J].Journal of Palaeogeography,2011, 13(1): 1-10.[时志强, 安红艳, 伊海生,等. 上扬子地区早三叠世异常碳酸盐岩的分类与特征[J]. 古地理学报,2011, 13(1): 1-10.]

[36]Korte C, Kozur H W, Bruckschen P, et al. Strontium isotope evolution of Late Permian and Triassic seawater[J]. Geochimica et Cosmochimica Acta,2003, 67: 47-62.

[37]Veizer J, Ala D, Azmy K, et al.87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J].Chemical Geology,1999, 161: 59-88.

[38]Atudorei V, Baud A. Carbon isotope events during the Triassic[J]. Albertiana, 1997, 20: 45-49.

[39]Corsetti F A, Baud A, Marenco P J, et al. Summary of Early Triassic carbon isotope records[J].Comptes Rendus Palevol, 2005, 4(6/7): 473-486.

[40]Zakharov Y D, Ukhaneva N G, Lgnatyev A V, et al. Preliminary evidence of carbon and oxygen isotopic composition of Triassic organogenous carbonates from the Tethyan Belt and marine bioproductivity in Triassic time[J]. Geology of Pacific Ocean, 2000, 16: 469-480.

[41]Zakharov Y D, Ukhaneva N G, Lgnatyev A V, et al. Latest Permian and Triassic carbonates of Russia: New paleontological findings, stable isotopes, Ca-Mg ratio, and correlation[J].Development in Palaeontology and Stratigraphy, 2000, 18: 141-171.

[42]Korte C, Kozur H.Carbon isotope stratigraphy across the Permian/Triassic boundary at Jolfa (NW-Iran), Peitlerkofel (Sas de Putia, Sass de Putia), Pufels (Bula, Bulla), Tesero (all three Southern Alps, Italy) and Gerennavár (Bukk Mts.,Hungary)[J]. Journal of Alpine Geology, 2005, 47: 119-135.

[43]Horacek M, Richoz S, Brandner R, et al. Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys: The δ13C record from marine sections in Iran[J].Paleogeography, Paleoclimatology,Paleoecology,2007, 252: 355-369.

[44] Richoz S. Stratigraphie et Variations Isotopiques du Carbone Dans de Permien Superieur et le Trias Inférieur de Quelques Localités de la Néotéthys: Turquie, Oman et Iran[M]. Lausanne: Institut de Geólogie et Paléontologie, 2006, 46: 283.

[45]Horacek M, Koike T, Richoz S.Lower Triassic δ13C isotope curve from shallow-marine carbonates in Japan,Panthalassa realm: Confirmation of the Tethys δ13C curve[J].Journal of Asian Earth Sciences, 2009, 36: 481-490.

[46]Morante R.Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary[J]. Historical Biology, 1996, 11: 289-310.

[47]Horacek M, Brandner R, Abart R. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252: 347-354.

[48]Tong J N, Qiu H O, Zhao L S, et al. Lower Triassic inorganic carbon isotope excursion in Chaohu, Anhui Province, China[J].Journal of China University of Geosciences,2002, 13: 98-106.

[49]Tong J N, Zuo J ,Chen Z Q.Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction[J].Geological Journal,2007, 42: 371-389.

[50]Zuo Jingxun, Tong Jinnan, Qiu Haiou, et al. Carbon and oxygen isotope stratigraphy of the Lower Triassic at northern Pingdingshan section of  Chaohu, Anhui Province, China[J].Journal of Stratigraphy,2004, 28(1): 35-40.[左景勋, 童金南, 邱海鸥,等.巢湖平顶山北坡剖面早三叠世碳、氧同位素地层学研究[J].地层学杂志,2004, 28(1): 35-40.]

[51]Zuo J X, Tong J N, Qiu H O, et al.Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China[J].Science in China (Series D),2006, 49: 225-241.

[52]Payne J L, Summers M, Rego B L.Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: Implications for tempo and mode of biotic recovery from the end-Permian mass extinction[J].Paleobiology,2011, 37(3): 409-425.

[53]Lehrmann D J, Ramezani J, Martin M W.Timing of biotic recovery from the end-Permian extinction: Biostratigraphic and geochronologic constraints from south China[J].Geology,2006, 34: 1 053-1 056.

[54]Galfetti T, Bucher H, Ovtcharova M. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones[J].Earth and Planetary Science Letters,2007, 258: 593-604.

[55]Meyer K M, Yu M, Jost A B, et al.δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction[J]. Earth and Planetary Science Letters,2011, 302(3/4): 378-384.

[56]Li Xiaowei, Yu Meiyi, Payne J L. Comparison of rock and chemical stratum of  Lower Triassic series of great back of Guizhou[J]. Guizhou Geology, 2011, 28(3):161-166,218.[李晓伟, 喻美艺, Payne J L.大贵州滩下三叠统岩石和化学地层对比[J].贵州地质,2011, 28(3): 161-166,218.]

[57]Huang S J, Huang K K, Lü J, et al. Carbon isotopic composition of Early Triassic marine carbonates, Eastern Sichuan Basin, China[J]. Science in China (Series D), 2012, 55(12):  2 026-2 038.

[58]Brühwiler T, Goudemand N, Galfetti T, et al. The Lower Triassic sedimentary and carbon isotope records from Tulong (South Tibet) and their significance for Tethyan palaeoceanography[J]. Sedimentary Geology,2009, 222:314-332.

[59]Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta,1990, 54:3 123-3 137.

[60]Patzkowski M E, Slupik L M, Arthur M A, et al. Late Middle Ordovician environmental change and extinction: Harbinger of the Late Ordovician or continuation of Cambrian patterns?[J]. Geology,1997, 25: 911-914.

[61]Meyer K, Yu M Y, Payne J. Paired organic and inorganic carbon isotope evidence for a coupled Early Triassic carbon cycle[C]∥Vienna:Geophysical Research Abstracts, Vol. 13: A484. Austria: EGU General Assembly 2011, EGU2011-9220, 2011.

[62]Derry L A. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly[J]. Earth and Planetary Science Letters, 2010, 294:152-162.

[63]Sakuma H, Tada R, Ikeda M, et al. High-resolution lithostratigraphy and organic carbon isotope stratigraphy of the Lower Triassic pelagic sequence in central Japan[J]. Island Arc, 2012, 21:79-100.

[64]Foster C B, Logan G A, Summons R E. The Permian-Triassic boundary in Australia-Organic carbon isotopic anomalies relate to organofacies, not a biogeochemical ‘event’[C]∥Ninth Annual Goldschmidt Conference. Cambridge MA, USA, 1999:110.

[65]Kamo S L, Czamanske G K, Amelin Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251Ma[J]. Earth and Planetary Science Letters,2003, 214:75-91.

[66]Schrag D P, Berner R A, Hoffman P F, et al. On the initiation of a snowball Earth[J]. Geophysics, Geochemistry, Geosystems, 2002, 3, doi:10.1029/2001GC000219.3434.

[67]Hu Zuowei, Huang Sijing, Qing H R, et al. Evolution and global correlation for strontium isotopic composition of marine Triassic from Huaying Mountains, Eastern Sichuan[J]. Science in China (Series D), 2008, 38(2): 157-166.[胡作维, 黄思静, Qing H R,等.四川东部华蓥山海相三叠系锶同位素组成演化及其与全球对比[J].中国科学:D辑,2008, 38(2): 157-166.]

[68]Huang Sijing, Qing H R, Huang Peipei, et al. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China[J].Science in China (Series D),2008, 37(3): 273-283.[黄思静, Qing H R, 黄培培,等.晚二叠世—早三叠世海水的锶同位素组成与演化——基于重庆中梁山海相碳酸盐的研究结果[J].中国科学:D辑,2008, 37(3): 273-283.]

[69]Scholle P A. Carbon and Sulfur isotope stratigraphy of the Permian and adjacent intervals[C]∥Scholle P A, Peryt T M, Ulmer-Scholle D S, eds. The Permian of Northern Pangea. Berlin: Springer Verlag, 1995: 133-149.

[70]Kampschulte A, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulphate in carbonates[J]. Chemical Geology, 2004, 204:255-286.

[71]Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology[J]. Science,1999, 284: 2 129-2 137.

[72]Maloof A C, Schrag D P, Crowley J L, et al. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas margin, Morocco[J].Canada Jounal of Earth Science, 2005, 42: 2 195-2 216.

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[6] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[7] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[8] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[9] 黄云飞, 童金南. 古-中生代之交双壳类演变研究进展[J]. 地球科学进展, 2014, 29(8): 922-933.
[10] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[11] 陈雅丽,储雪蕾,张兴亮,翟明国. 纳米离子探针分析在地球早期生命研究中的应用[J]. 地球科学进展, 2013, 28(5): 588-596.
[12] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[13] 章伟艳,金海燕,张富元,赵国军,杨克红,李宏亮,白有成,高为利. 长江口—杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J]. 地球科学进展, 2009, 24(11): 1202-1209.
[14] 金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展, 2007, 22(9): 914-921.
[15] 李祥辉,陈云华,徐宝亮,AkihiroKano,ChizuruTakashima. 新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果[J]. 地球科学进展, 2007, 22(7): 666-672.
阅读次数
全文


摘要