地球科学进展 ›› 2013, Vol. 28 ›› Issue (3): 366 -373. doi: 10.11867/j.issn.1001-8166.2013.03.0366

综述与评述 上一篇    下一篇

海洋中氟氯烃的研究进展
随伟伟,杨桂朋,丁琼瑶,陆小兰 *   
  1. 中国海洋大学化学化工学院,海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
  • 收稿日期:2012-08-20 修回日期:2012-11-19 出版日期:2013-03-10
  • 通讯作者: 陆小兰(1971-),女,安徽蚌埠人,副教授,主要从事海洋化学研究.E-mail:lxlu@ouc.edu.cn E-mail:陆小兰lxlu@ouc.edu.cn
  • 基金资助:

    国家自然科学基金项目“海水中挥发性卤代烃的分布、来源及海气通量研究”(编号:40976043);山东省优秀中青年科学家科研奖励基金项目“海洋生态系生源溴甲烷和氯甲烷释放规律的研究”(编号:BS2011HZ018);“泰山学者”建设工程专项经费(编号:JS200510016)资助.

A Study of CFCs in the Ocean

Sui Weiwei, Yang Guipeng, Ding Qiongyao, Lu Xiaolan   

  1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2012-08-20 Revised:2012-11-19 Online:2013-03-10 Published:2013-03-10

研究海洋中的氟氯烃对全球气候变化和海洋环流的研究有重要意义。氟氯烃不仅是温室气体,还破坏大气平流层中的臭氧,也是近代海洋科学研究的有效工具,可以作为化学示踪剂,广泛用于示踪海洋环流、水团运动混合过程、海洋通风过程,测定水团年龄、海水混合和循环速率以及海气交换速率等的研究。对过去几十年海洋中氟氯烃的研究进展进行了评述,介绍了海水中氟氯烃的分布特征与通量研究、氟氯烃在海洋中的应用及分析方法,同时简述了大气中氟氯烃的分布特征。概述了该研究领域有待进一步研究的问题。

Oceanic Chlorofluorocarbons (CFCs) are very significant in climate change and ocean’s circulation study. CFCs have greenhouse effect and are useful tools for modern marine research. CFCs, as chemical tracers, have been widely used to assess ocean circulation and marine ventilation pathways, and to identify the mixing processes of water mass movement. CFCs are often used to calculate the “age” of water masses and rates of ocean mixing and circulation, and to evaluate airsea exchange rate. The progressess of studies of oceanic CFCs in the past several decades are reviewed in this paper. The distribution characteristics and flux of CFCs in the ocean, and their application to marine research and analytical methods  are introduced. Their distribution characteristics in the atmosphere are also described. Some questions   for further research in this area are proposed.

中图分类号: 

[1]Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes: Chlorine atomc-atalysed detruction of ozone[J]. Nature,1974, 249: 810-812.

[2]Powell R L. CFC phase-out: Have we met the challenge[J]. Journal Fluorine Chemistry, 2002,(114): 237-250.

[3]Ashworth R A. CFC destruction of ozone major cause of recent global warming[J]. Chemical Engineering Progress, 2009,5: 1-15.

[4]Lovelock J E. Atmospheric fluorine compounds as indicators of air movements[J]. Nature, 1971, 230:379.

[5]Lovelock J E. Halogenated hydrocarbons in and over the Atlantic[J]. Nature, 1973, 241: 194-196.

[6]Danabasoglu G, Peacock S, Lindsay K, et al. Sensitivity of CFC-11 uptake to physical initial conditions and interannually varying surface forcing in a global ocean model[J]. Ocean Modelling, 2009, 29: 58-65.

[7]Lebel D A, Smethie Jr W M, Rhein M, et al. The formation rate of North Atlantic deep water and Eighteen degree water calculated from CFC-11 inventories observed during WOCE[J]. Deep-Sea ResearchⅠ, 2008, 55: 891-910.

[8]Min D H, Bullister J L, Weiss R F. Constant ventilation age of thermocline water in the eastern subtropical North Pacific Ocean from chlorofluorocarbon measurements over a 12-year period[J]. Geophysical Reseaech Letters, 2000, 27: 2 909-3 912.

[9]Watanabe Y W, Shimamoto A, Ono T. Comparison of time-dependent tracer ages in the Western North Pacific: Oceanic background levels of SF6, CFC-11, CFC-12 and CFC-113[J]. Journal of Oceanography, 2003, 59: 719-729.

[10]Watanabe Y W, Ono T, Shimamoto A. Increase in the uptake rate of oceanic anthropogenic carbon in the North Pacific determined by CFC ages[J]. Marine Chemistry, 2000, 72: 297-315.

[11]Willey D A, Fine R A, Sonnerup R E, et al. Global oceanic chlorofluorocarbon inventory[J]. Geophysical Research Letters, 2004, 31: 1 029-1 303.

[12]Andrie C, Rhein M, Freudenthal S, et al. CFC time series in the deep water masses of the western tropical Atlantic, 1990-1999[J]. Deep-Sea ResearchⅠ, 2002, 49: 281-304.

[13]Bullister J L, Tanhua T. Sampling and Measurement of Chlorofluorocarbons and Sulfor Hexafluoride in Seawater[R].Paris: GO-SHIP IOCCP Report, 2010:1-11.

[14]Kim K H, Shon Z H, Nguyen H T, et al. A review of major chlorofluorocarbons and their halocarbon alternatives in the air[J]. Atmospheric Environment, 2011, 45: 1 369-1 382.

[15]Martinerie P, Nourtier-Mazauric E, Barnola J M, et al. Long-lived halocarbon trends and budgets from atmospheric chemistry modelling constrained with measurements in polar firn[J]. Atmospheric Chemicstry  and Physics, 2009,(9):3 911-3 934.

[16]Zheng Shulan, Deng Yongzhi, Yuan Xiaojie, et al. Distribution feature of  trichlorofluoromethane and its chemical tracer study in the North Pole of Chukchi Sea[J]. Journal of Xiamen University, 2010, 49(4): 541-547.[郑淑兰,邓永智,袁晓婕,等. 北极楚科奇海氟氯烃CFC-11的分布特征及其化学示踪[J]. 厦门大学学报, 2010, 49(4): 541-547.]

[17]Wallace D W R. Anthropogenic chlorofluoromethanes and seasonal mixing rates in the middle Atlantic Bight[J]. Deep Sea Research Ⅱ, 1994,(41): 307-321.

[18]Fine R A. CFCs in the Ocean[M]. Miami: Academic Press, 2001: 442-450.

[19]Gammon R H, Cline J, Wisegarver D. Chlorofluoromethanes in the Northeast Pacific Ocean: Measured vertical distributions and application as transient tracers of upper ocean mixing[J]. Journal of Geophysical Research, 1982, 87(12): 9 441-9 454.

[20]Liss P S, Slater P G. Flux of gases across the air-sea interface[J]. Nature, 1974, 247: 181-184.

[21]Li Yangchun, Xu Yongfu, Zhao Liang, et al. Preliminary study of the simulated distribution of CFC-11 in the global ocean circulation model[J]. Journal of Atmospheric Sciences, 2006, 30(4): 672-681.[李阳春,徐永福,赵亮,等. 全球海洋模式对CFC-11分布的初步模拟研究[J]. 大气科学,2006,30(4):672-681.]

[22]Dutay J C, Bullister J L, Doney S C, et al. Evaluation of ocean model ventilation with CFC-11:Comparison of 13 global ocean models[J]. Ocean Modelling, 2002, 4: 89-120.

[23]Bullister J L. Chlorofluorocarbons as time-dependent tracers in the ocean[J]. Oceanographic, 1989,2: 12-17.

[24]Min D H, Warner M J. Basin-wide circulation and ventilation study in the East Sea (Sea of Japan) using chlorofluorocarbon tracers[J]. Deep-Sea Research II, 2005, 52: 1 580-1 616.

[25]Lee B S, Bullister J L, Murray J W, et al. Anthropogenic chlorofluorocarbons in the Black Sea and Sea of Marmara[J].  Deep-Sea ResearchⅠ, 2002, 49: 895-913.

[26]Lee B S, Bullister J L, Whitney F A. Chlorofluorocarbon CFC-11 and carbon tetrachloride removal in Saanich Inlet, an intermittently anoxic basin[J]. Marine Chemistry, 1999, 66: 171-185.

[27]Horneman A, Stute M, Schlosser P, et al. Degradation rates of CFC-11, CFC-12 and CFC-113 in anoxic shallow aquifers of Araihazar, Bangladesh[J]. Journal of Contaminant Hydrology, 2008, 97: 27-41.

[28]Warner M J, Weiss R F. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater[J]. Deep Sea Research Ⅰ, 1985, 32(12): 1 485-1 497.

[29]Xin B, Warner M J. Solubility of chlorofluorocarbon 113 in water and seawater[J]. Deep-Sea Research Ⅰ, 1995, 42(7): 1 151-1 161.

[30]Craig A P, Bullister J L, Harrison D E, et al. A comparison of temperature,salinity,and chloronuorocarbon observations with results from a 1° resolution three-dimensional global ocean model[J]. Journal of Geophysical Research, 1998,103: 1 099-1 119.

[31]England M H, Garcon V, Minster J F. Chlorofluorocarbon uptake in a world ocean model 1. Sensitivity to the surface gas forcing[J]. Journal of Geophysical Research, 1994,12(99): 25 215-25 233.

[32]Sun Na, Li Wenquan. Application of chlorfluorocarbon chemical tracer technique in marine research[J]. Ocean Technology, 2004, 23(4): 44-47.[孙娜,李文权. 氟利昂化学示踪技术在海洋研究中的应用[J]. 海洋技术, 2004, 23(4): 44-47.]

[33]Sun Na. Distribution of Chlorofluorocarbon and Its Tracer Study of Water Masses in the Arctic Ocean, Bering Sea and the Southern South China Sea[D]. Xianmen:Xiamen University, 2006.[孙娜. 北冰洋、白令海、南海南部海域氟氯烃分布特征及其水团示踪研究[D]. 厦门:厦门大学,2006.]

[34]Watanabe Y W, Ishida A, Tamaki M, et al. Water column inventories of chlorofluorocarbons and production rate of intermediate water in the North Pacific[J]. Deep-Sea ResearchⅠ, 1997, 44: 1 091-1 104.

[35]Mecking S, Warner M J, Greene C E, et al. Influence of mixing on CFC

uptake and  CFC ages in the North Pacificuptake  in the North Pacific thermocline[J]. Journal of Geophysical Research, 2004, 109: 1 988-2 003.

[36]Mecking S, Warner M J, Bullister J L. Temporal changes in pCFC-12 ages and AOU along two hydrographic sections in the eastern subtropical North Pacific[J]. Deep-Sea ResearchⅠ, 2006, 53: 169-187.

[37]Tokieda T, Watanabe S, Tsunogal S.  Chlorofluorocarbons in the Western North Pacific in 1993 and formation of North Pacific intermediate water[J]. Journal of Oceanography, 1996, 52: 475-490.

[38]Smethie Jr W M, Fine R A. Rates of North Atlantic deep water formation calculate from chlorofluorocarbon inventories[J]. Deep-Sea ResearchⅠ, 2001, 48: 189-215.

[39]Alvarez M, Gourcuff C. Uncoupled transport of chlorofluorocarbons and anthropogenic carbon in the subpolar North Atlantic[J]. Deep-Sea ResearchⅠ, 2010, 57: 860-868.

[40]Rodehacke C B, Roether W, Hellmer H H, et al. Temporal variations and trends of CFC11 and CFC12 surface-water saturations in Antarctic marginal seas: Results of a regional ocean circulation model[J]. Deep-Sea ResearchⅠ, 2010, 57: 175-198.

[41]William M, Smethie J, Fine R A. Rates of North Atlantic deep water formation calculatedfrom chlorofluorocarbon  inventories[J]. Deep-Sea ResearchⅠ, 2001, 48: 189-215.

[42]Sun Na, Li Wenquan. Distribution of chlorofluorovarbons in Canada Basin and their tracer study[J]. Chinese Journal of Polar Research, 2006, 18(1): 21-29. [孙娜,李文权. 加拿大海盆氟氯烃的分布及其示踪研究[J]. 极地研究, 2006, 18(1): 21-29.]

[43]Doney S C, Bullister J L. A chlorofluorocarbon section in the eastern North Atlantic [J]. Deep-Sea Research A,1992, 39(11/12): 1 857-1 883.

[44]Weiss R F, Bullister J L, Gammon R H, et al. Atmospheric chlorofluoromethanes in the deep equatorial Atlantic[J]. Nature, 1985, 314: 608-610.

[45]Wisegarver D P, Gammon R H. A new transient tracer: Measured vertical distribution of CFC-113 in the North Pacific subarctic gyre[J]. Geophysical Research Letters, 1988, 15: 188-191.

[46]Zhang Dong, He Ying, Zheng Xiaoling, et al. Study advances on techno-determination and trace of Freon in sea[J]. Marine Environmental Science, 2011, 6(30): 897-901.[张栋,何鹰,郑晓玲,等. 海水中氟利昂检测技术及示踪研究进展[J]. 海洋环境学报,2011, 6(30): 897-901.]

[47]Beining P, Roether W. Temporal evolution of CFC-11 and CFC-12 concentrations in the ocean interior[J]. Journal of Geophysical Research, 1996, 101(C7): 16 455-16 464.

[48]Zhang Fang, Wang Xinming, Li Longfeng, et al. Recentlevels and trends of trace Chlorofluorocarbons(CFCs) in the pearl river delta region[J]. Earth and Environment, 2006, 34(4): 19-24.[张芳,王新明,李龙凤,等. 近年来珠三角地区大气中痕量氟氯烃(CFCs)的浓度水平与变化特征[J]. 地球与环境, 2006, 34(4): 19-24.]

[49]Chen Limin, Duan Yang, Le Zhiwei, et al. Study on the trends of atmospheric CFCs[J]. Environmental Science, 1999, 20(1): 27-29.[陈立民,段杨,乐致威,等. 大气中氯氟烃类物质浓度变化的研究[J]. 环境科学,1999, 20(1):27-29.]

[50]Bullister J L, Weiss R F. Determination of CCl3F and CCl2F2 in seawater and air [J]. Deep Sea Research A, 1987, 35(5): 839-853.

[51]Massolo S, Rovaro P, Frache R. Simultaneous determination of CFC-11, CFC-12 and CFC-113 in seawater samples using a purge and trap gas-chromatographic system[J]. Talanta, 2009, 80: 959-966.

[52]Vollmer M K, Weiss R F. Simultaneous determination of sulfur hexafluoride and three chlorofluorocarbons in water and air[J]. Marine Chemistry, 2002, 78: 137-148.

[53]Sun Na, Li Wenquan, Deng Yongzhi, et al. Determination of chlorofluorocarbons in seawater by purge-trap gas Chromatography[J]. Journal of Xiamen University (Natural Science), 2006, 45(6): 816-817.[孙娜,李文权,邓永智,等. 海水中氟氯烃的吹扫捕集气相色谱分析[J]. 厦门大学学报:自然科学版,2006, 45(6): 816-817.]

[54]Ye Xinrong, Zhang Haisheng, Pan Jianming. Determined of chlorofluorocarbons in sea water by gas chromatography[J]. Marine Environmental Science, 2004, 23(2): 68-71.[叶新荣,张海生,潘建明. 海水中氯氟烃的气相色谱法测定[J]. 海洋环境科学,2004, 23(2): 68-71.]

[55]Ye Xinrong. Research of determination method for chorofluorocarbonsin sea water[J]. Journal of Zhejiang University of Science and Technology, 2003, 15: 11-13.[叶新荣. 海水中氯氟烃测定方法研究[J]. 浙江科技学院学报,2003, 15: 11-13.]

[56]Walker S J, Weiss R F, Salameh P K. Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11 CFC-12, CFC-113, and carbon tetrachloride[J]. Journnal of Geophysical Reseach, 2000, 105(6): 14 285-14 296.

[57]“NOAA (National Oceanic and Atmospheric Administration)”, Combined datasets from four programs (Old flask GC, Otto flask GC, RITS and CATS in situ)[Z/OL].

[2012-07-10]http:∥www.esrl.noaa.gov/gmd/hats.

[58]McCulloch A, Ashford P, Midgley P M. Historic emissions of fluorotrichloromethane (CFC-11) based on amarket survey[J].  Atmospheric Environment, 2001, 35: 4 387-4 397.

[59]McCulloch A, Midgley P M, Ashford P. Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere[J]. Atmospheric Environment, 2003, 37: 889-902.

[60]Shi Xiaoling. The application and damage of chlorofluorocarbons and relevant international conventions[J]. Study on Public Security and Law, 2007, 6: 108-110.[石晓玲. 氯氟烃的使用、危害及其相关的国际公约[J]. 公安法治研究,2007, 6: 108-110.]

[61]Lovelock. Atmospheric halocarbons and stratospheric ozone[J]. Nature, 1974, 252: 292-293.

[62]Lee B S, Chiou C B. The relationship of meteorological and anthropogenic factors to time series measurements of CFC-11, CFC-12, and CH3CCl3 concentrations in the urban atmosphere[J]. Atmospheric Environment, 2008, 42: 7 706-7 717.

[63]Lee B S, Chiou C B. The use of CFC-12, CFC-11 and CH3CCl3 to trace terrestrialairborne pollutant transport by land-sea breezes[J]. Atmospheric Environment, 2007, 41: 3 360-3 372.

[64]Yang Y,Chen L, Li Y S, et al. Study on the character and trends of atmospheric CCl3F and CCl2 FCClF2 varying with latitude in the Northern Hemisphere[J]. Journal of Fudan University, 2001, 4(40): 416-419.

[65]Qin D.Decline in the concentrations of Chlorofluorocarbons (CFC-11,CFC-12 and CFC-113) in an urban area of Beijing, China[J]. Atmospheric Environment, 2007, 41: 8 424-8 430.

[66]Zhang F, Zhou L, Yao B, et al. Analysis of 3-year observations of CFC-11, CFC-12 and CFC-113 from a semi-rural site in China[J]. Atmospheric Environment, 2010, 44: 4 454-4 462.

[67]Xiu Tianyang, Wang Yuesi, Sun Yang, et al. Trends and variation of CFC-11 in the atmosphere of Beijing [J]. Environmental Science, 2005, 26(1):1-6.[修天阳,王跃思,孙扬,等.北京大气中CFC-11的浓度观测与变化趋势[J]. 环境科学,2005, 26(1): 1-6.]

[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[3] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[4] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[5] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[6] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[7] 张翔, 陈能成, 胡楚丽, 彭小婷. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10): 1048-1057.
[8] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[9] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[10] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[11] 孙晓霞. 海洋微塑料生态风险研究进展与展望[J]. 地球科学进展, 2016, 31(6): 560-566.
[12] 陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(8): 915-921.
[13] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[14] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[15] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
阅读次数
全文


摘要