[1] Tans P, Keeling R. Trends in Atmospheric Carbon Dioxide[Z/OL]. NOAA/ESRL. (2014-10-25) [2015-02-23].http://www.esrl.noaa.gov/gmd/ccgg/trends/. [2] Xue Liang, Yu Weidong, Ning Chunlin, et al. Advances in sea surface partial pressure of CO 2 time-series studies[J]. Advances in Earth Science, 2013, 28(8): 859-865.[薛亮, 于卫东, 宁春林, 等. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.] [3] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO 2 [J]. Science, 2004, 305(5 682): 367-371. [4] Fletcher S E M, Gruber N, Jacobson A R, et al. Inverse estimates of anthropogenic CO 2 uptake, transport, and storage by the ocean[J]. Global Biogeochemical Cycles, 2006, 20(2), doi:10.1029/2005GB002530. [5] Le Quere C, Rodenbeck C, Buitenhuis E T, et al. Saturation of the Southern Ocean CO 2 sink due to recent climate change[J]. Science, 2007, 316(5 832): 1 735-1 738. [6] Gao Zhongyong, Chen Liqi, Cai Weijun, et al. Arctic carbon sink in global change: Present and future[J]. Advances in Earth Science, 2007, 22(8): 857-865.[高众勇,陈立奇, 蔡卫君, 等. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.] [7] Chen Liqi, Gao Zhongyong, Zhan Liyang, et al. Rapid change in Arctic and Antarctic Oceans and their feedbacks to global climate change[J]. Journal of Applied Oceanography, 2013, 32(1): 138-144.[陈立奇, 高众勇, 詹力扬, 等. 极区海洋对全球气候变化的快速响应和反馈作用[J]. 应用海洋学学报, 2013, 32(1): 138-144.] [8] Chen Liqi. Research on Response and Feedback of Antarctic Region to Global Change[M]. Beijing: China Ocean Press, 2004.[陈立奇. 南极地区对全球变化的响应与反馈作用研究[M]. 北京: 海洋出版社, 2004.] [9] Chen Liqi. Evidence of Arctic and Antarctic changes and their regulation of global climate change (further findings since the fourth IPCC assessment report released)[J]. Chinese Journal of Polar Research, 2013, 25(1): 1-6.[陈立奇. 南极和北极地区变化对全球气候变化的指示和调控作用——第四次IPCC评估报告以来一些新认知[J]. 极地研究, 2013, 25(1): 1-6.] [10] He Shichang, Zhang Yuanhui, Chen Liqi, et al. Advances in the studies of ocean acidification[J]. Marine Sciences, 2014, 38(6): 85-93.[贺仕昌, 张远辉, 陈立奇, 等. 海洋酸化研究进展[J]. 海洋科学, 2014, 38(6): 85-93.] [11] Qi Di, Chen Liqi. Review on researches of aragonite saturation state in the Arctic Ocean: A key parameter of Arctic Ocean acidifi cation[J]. Advances in Earth Science, 2014, 29(5): 569-576.[祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2014, 29(5): 569-576.] [12] Zhang Yuanhui, Chen Liqi. Response of coral reef in Nansha waters to increasing atmospheric CO 2 [J]. Journal of Oceanography in Taiwan Strait, 2006, 25(1): 68-76.[张远辉 陈立奇. 南沙珊瑚礁对大气CO 2 含量上升的响应[J]. 台湾海峡, 2006, 25(1): 68-76.] [13] Zhang Yuanhui, Wang Weiqiang, Chen Liqi. Advances in studies of oceanic carbon dioxide[J]. Advances in Earth Science, 2000, 15(5): 559-564.[张远辉, 王伟强,陈立奇. 海洋二氧化碳的研究进展[J]. 地球科学进展, 2000, 15(5): 559-564.] [14] Chen Zhongxiao, Zhao Qi. δ 13 C methods and its progress in the study of global carbon cycle[J]. Advances in Earth Science,2011, 26(11): 1 225-1 233.[陈中笑, 赵琦. 全球碳循环研究中的 δ 13 C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1 225-1 233.] [15] Sabine C L, Tanhua T. Estimation of Anthropogenic CO 2 inventories in the ocean[J]. Annual Review of Marine Science, 2010, 2: 175-198. [16] Brewer P G. Direct observation of oceanic CO 2 increase[J].Geophysical Research Letters,1978, 5(12): 997-1 000. [17] Chen G T, Millero F J. Gradual increase of oceanic CO 2 [J]. Nature, 1979, 277(5 693): 205-206. [18] Gruber N, Sarmiento J L, Stocker T F. An improved method for detecting anthropogenic CO 2 in the oceans[J]. Global Biogeochemical Cycles, 1996, 10(4): 809-837. [19] Sui Weiwei, Yang Guipeng, Ding Qiongyao, et al. A study of CFCs in the ocean[J]. Advances in Earth Science, 2013, 28(3): 366-373.[随伟伟, 杨桂朋, 丁琼瑶, 等. 海洋中氟氯烃的研究进展[J]. 地球科学进展, 2013, 28(3): 366-373.] [20] Touratier F, Goyet C. Applying the new TrOCA approach to assess the distribution of anthropogenic CO 2 in the Atlantic Ocean[J]. Journal of Marine Systems, 2004, 46(1/4): 181-197. [21] Touratier F, Azouzi L, Goyet C. CFC-11, Delta C-14 and H-3 tracers as a means to assess anthropogenic CO 2 concentrations in the ocean[J]. Tellus Series B—Chemical and Physical Meteorology, 2007, 59(2): 318-325. [22] Lo Monaco C, Metzl N, Poisson A, et al. Anthropogenic CO 2 in the Southern Ocean: Distribution and inventory at the Indian-Atlantic boundary (World Ocean Circulation Experiment line I6)[J]. Journal of Geophysical Research—Oceans, 2005, 110: C06010, doi:10.1029/2004JC002643. [23] Vázquez-Rodríguez M, Padin X A, Ríos A F, et al. An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO 2 in the Atlantic Ocean[J]. Biogeosciences Discuss, 2009, 6(2): 4 527-4 571. [24] Wallace D W R. Introduction to special section: Ocean measurements and models of carbon sources and sinks[J]. Global Biogeochemical Cycles, 2001, 15(1): 3-10. [25] Beining P, Roether W. Temporal evolution of CFC 11 and CFC 12 concentrations in the ocean interior[J].Journal of Geophysical Research—Oceans, 1996, 101(C7): 16 455-16 464. [26] Haine T W N, Hall T M. A generalized transport theory: Water-mass composition and age[J]. Journal of Physical Oceanography, 2002, 32(6): 1 932-1 946. [27] Hall T M, Haine T W N, Waugh D W. Inferring the concentration of anthropogenic carbon in the ocean from tracers[J]. Global Biogeochemical Cycles, 2002, 16(4), doi:10.1029/2001GB001835. [28] Khatiwala S, Primeau F, Hall T. Reconstruction of the history of anthropogenic CO 2 concentrations in the ocean[J]. Nature, 2009, 462(7 271): 346-349. [29] Wallace D W R. Monitoring Global Ocean Carbon Inventories, OOSDP Background Report[R]. Texas, USA: Texas A&M University, 1995:54. [30] Friis K, Kortzinger A, Patsch J, et al. On the temporal increase of anthropogenic CO 2 in the subpolar North Atlantic[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52(5): 681-698. [31] Tanhua T, Kortzinger A, Friis K, et al. An estimate of anthropogenic CO 2 inventory from decadal changes in oceanic carbon content[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(9): 3 037-3 042. [32] Gammon R H, Cline J, Wisegarver D. Chlorofluoromethanes in the Northeast Pacific Ocean: Measured vertical distributions and application as transient tracers of upper ocean mixing[J]. Journal of Geophysical Research—Oceans and Atmospheres,1982, 87(NC12): 9 441-9 454. [33] Pardo P C, Perez F F, Khatiwala S, et al. Anthropogenic CO 2 estimates in the Southern Ocean: Storage partitioning in the different water masses[J]. Progress in Oceanography,2014, 120: 230-242. [34] Rios A F, Vazquez-Rodriguez M, Padin X A, et al. Anthropogenic carbon dioxide in the South Atlantic western basin[J].Journal of Marine Systems, 2010, 83(1/2): 38-44. [35] Vázquez-Rodríguez M, Touratier F, Lo Monaco C, et al. Anthropogenic carbon distributions in the Atlantic Ocean: Data-based estimates from the Arctic to the Antarctic[J]. Biogeosciences, 2009, 6(3): 439-451. [36] Broecker W S, Takahashi T, Peng T. Reconstruction of Past Atmospheric CO 2 Contents from the Chemistry of the Contemporary Ocean: An Evaluation[R].Palisades: Columbia University,1985:79. [37] Khatiwala S, Tanhua T, Fletcher S M, et al. Global ocean storage of anthropogenic carbon[J]. Biogeosciences, 2013, 10(4): 2 169-2 191. [38] Tanhua T, Bates N R, Krtzinger A. The marine carbon cycle and ocean carbon inventories[M]∥Siedler G, Griffies S M, Gould J, eds. International Geophysics.New York: Academic Press,2013:787-815. [39] Waugh D W, Hall T M, McNeil B I, et al. Anthropogenic CO 2 in the oceans estimated using transit time distributions[J]. Tellus Series B—Chemical and Physical Meteorology, 2006, 58(5): 376-389. [40] Arrigo K R, van Dijken G, Pabi S. Impact of a shrinking Arctic ice cover on marine primary production[J]. Geophysical Research Letters, 2008, 35: L19603, doi:10.1029/2008GL035028. [41] Bates N R, Mathis J T. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO 2 exchanges, ocean acidification impacts and potential feedbacks[J]. Biogeosciences, 2009, 6(11): 2 433-2 459. [42] Bates N R, Moran S B, Hansell D A, et al. An increasing CO 2 sink in the Arctic Ocean due to sea-ice loss[J]. Geophysical Research Letters, 2006, doi:10.1029/2006GL027028. [43] Anderson L G, Olsson K, Jones E P, et al. Anthropogenic carbon dioxide in the Arctic Ocean: Inventory and sinks[J]. Journal of Geophysical Research—Oceans, 1998, 103(C12): 27 707-27 716. [44] Tanhua T, Jones E P, Jeansson E, et al. Ventilation of the Arctic Ocean: Mean ages and inventories of anthropogenic CO 2 and CFC-11[J]. Journal of Geophysical Research—Oceans, 2009, 114: C01002, doi:10.1029/2008JC004868. [45] Schneider A, Tanhua T, Kortzinger A, et al. High anthropogenic carbon content in the eastern Mediterranean[J]. Journal of Geophysical Research—Oceans, 2010, 115: C12050, doi:10.1029/2010JC006171. [46] Park G-H, Lee K, Tishchenko P, et al. Large accumulation of anthropogenic CO 2 in the East (Japan) Sea and its significant impact on carbonate chemistry[J]. Global Biogeochemical Cycles, 2006, 20: GB4013, doi:10.1029/2005GB002676. [47] Olsen A, Omar A M, Jeansson E, et al. Nordic seas transit time distributions and anthropogenic CO 2 [J]. Journal of Geophysical Research—Oceans, 2010, 115: C05005, doi:10.1029/2009JC005488. [48] Murata A, Kumamoto Y, Sasaki K, et al. Decadal increases of anthropogenic CO 2 in the subtropical South Atlantic Ocean along 30 degrees S[J]. Journal of Geophysical Research—Oceans, 2008, 113: C06007, doi:10.1029/2007JC004424. [49] Rios A F, Velo A, Pardo P C, et al. An update of anthropogenic CO 2 storage rates in the western South Atlantic basin and the role of Antarctic Bottom Water[J]. Journal of Marine Systems, 2012, 94: 197-203. [50] Schuster U, McKinley G A, Bates N, et al. An assessment of the Atlantic and Arctic sea-air CO 2 fluxes, 1990-2009[J]. Biogeosciences, 2013, 10(1): 607-627. [51] Ericson Y, Ulfsbo A, van Heuven S, et al. Increasing carbon inventory of the intermediate layers of the Arctic Ocean[J]. Journal of Geophysical Research—Oceans, 2014, 119(4): 2 312-2 326. [52] Sabine C L, Feely R A, Millero F J, et al. Decadal changes in Pacific carbon[J]. Journal of Geophysical Research—Oceans, 2008, 113: C07021, doi:10.1029/2007JC004577. [53] Murata A, Kumamoto Y, Sasaki K, et al. Decadal increases of anthropogenic CO 2 along 149 degrees E in the western North Pacific[J]. Journal of Geophysical Research—Oceans, 2009, 114: C04018, doi:10.1029/2008JC004920. [54] Peng T-H, Wanninkhof R, Feely R A. Increase of anthropogenic CO 2 in the Pacific Ocean over the last two decades[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50(22/26): 3 065-3 082. [55] Matear R J, McNeil B I. Decadal accumulation of anthropogenic CO 2 in the Southern Ocean: A comparison of CFC-age derived estimates to multiple-linear regression estimates[J]. Global Biogeochemical Cycles, 2003, 17:1 113, doi:10.1029/2003GB002089. [56] Murata A, Kumamoto Y, Watanabe S, et al. Decadal increases of anthropogenic CO 2 in the South Pacific subtropical ocean along 32 degrees S[J]. Journal of Geophysical Research—Oceans, 2007, 112: C05033, doi:10.1029/2005jc003405. [57] Murata A, Kumamoto Y, Sasaki K, et al. Decadal increases in anthropogenic CO 2 along 20 degrees S in the South Indian Ocean[J]. Journal of Geophysical Research—Oceans, 2010, 115: C12055, doi:10.1029/2010jc006250. [58] Hall T M, Waugh D W, Haine T W N, et al. Estimates of anthropogenic carbon in the Indian Ocean with allowance for mixing and time-varying air-sea CO 2 disequilibrium[J]. Global Biogeochemical Cycles, 2004, 18, doi:10.1029/2003GB002120. [59] Huhn O, Rhein M, Hoppema M, et al. Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984-2011[J]. Deep-Sea Research Part I—Oceanographic Research Papers, 2013, 76: 66-84. [60] van Heuven S, Hoppema M, Jones E M, et al. Rapid invasion of anthropogenic CO 2 into the deep circulation of the Weddell Gyre[J]. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2014, 372, doi:10.1098/rsta.2013.0056. [61] Waugh D W, Primeau F, DeVries T, et al. Recent changes in the ventilation of the Southern Oceans[J]. Science, 2013, 339(6 119): 568-570. [62] Levitus S, Antonov J I, Boyer T P, et al. World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010[J]. Geophysical Research Letters, 2012, 39: L10603, doi:10.1029/2012gl051106. [63] Wanninkhof R, Doney S C, Bullister J L, et al. Detecting anthropogenic CO 2 changes in the interior Atlantic Ocean between 1989 and 2005[J]. Journal of Geophysical Research—Oceans, 2010, 115: C11028, doi:10.1029/2010JC006251. [64] Thomas H, Friederike Prowe A E, Lima I D, et al. Changes in the North Atlantic Oscillation influence CO 2 uptake in the North Atlantic over the past 2 decades[J]. Global Biogeochemical Cycles, 2008, 22: GB4027, doi:10.1029/2007GB003167. [65] Stramma L, Schmidtko S, Levin L A, et al. Ocean oxygen minima expansions and their biological impacts[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 587-595. [66] Stendardo I, Gruber N. Oxygen trends over five decades in the North Atlantic[J]. Journal of Geophysical Research—Oceans, 2012, 117: C1104, doi:10.1029/2012JC007909. [67] Ono T, Midorikawa T, Watanabe Y W, et al. Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998[J]. Geophysical Research Letters, 2001, 28(17): 3 285-3 288. [68] Keeling R F, Kortzinger A, Gruber N. Ocean Deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2: 199-229. [69] Helm K P, Bindoff N L, Church J A. Observed decreases in oxygen content of the global ocean[J]. Geophysical Research Letters, 2011, 38: L23602, doi:10.1029/2011GL049513. [70] Sarmiento J L, Gloor M, Gruber N, et al. Trends and regional distributions of land and ocean carbon sinks[J]. Biogeosciences,2010, 7(8): 2 351-2 367. [71] Wang S, Moore J K, Primeau F W, et al. Simulation of anthropogenic CO 2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: Comparison with data-based estimates[J]. Biogeosciences, 2012, 9(4): 1 321-1 336. [72] McNeil B I, Matear R J. The non-steady state oceanic CO 2 signal: Its importance, magnitude and a novel way to detect it[J]. Biogeosciences, 2013, 10(4): 2 219-2 228. |