地球科学进展 ›› 2015, Vol. 30 ›› Issue (8): 952 -959. doi: 10.11867/j.issn.1001-8166.2015.08.0952

全球变化研究 上一篇    

全球海洋人为碳储量估算及时空分布研究进展
黄鹏 1, 2, 陈立奇 1, 2, 蔡明刚 1   
  1. 1.厦门大学海洋与地球学院,福建厦门361102; 2.国家海洋局海洋—大气化学与全球变化重点实验室,国家海洋局第三海洋研究所,福建厦门 361005
  • 收稿日期:2015-04-14 出版日期:2015-09-15
  • 通讯作者: 陈立奇(1945-),男,福建晋江人,研究员,主要从事海洋大气化学与全球变化研究. E-mail:chenliqi@tio.org.cn
  • 基金资助:

    南北极环境综合考察与评估专项(编号:CHINARE2012-2015:01-04-0201-02-01,03-04-02); 国家自然科学基金重点项目“南大洋N2O源汇格局:驱动机制及其对海洋N2O收支的影响”(编号:41230529)资助

Progress in Anthropogenic Carbon Estimation, Spatial and Temporal Distribution in the Ocean

Huang Peng 1, Chen Liqi 1, 2, Cai Minggang 1   

  1. 1.College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; 2.Key Laboratory of Global Change and Marine-Atmospheric Chemistry, State Oceanic Administration, Third Institute of Oceanography, Xiamen 361005, China
  • Received:2015-04-14 Online:2015-09-15 Published:2015-09-15

海洋是全球最大的碳汇,确定海洋中人为碳含量及其时空变化是一件具有挑战性的工作。就当前海洋人为碳含量确定方法、人为碳储量及其随时间变化进行综述总结。研究表明海洋仍然可以吸收并储藏大量的人为碳,但未来对于海洋吸收储藏人为碳的研究仍具有诸多不确定性。已有证据表明稳态海洋的概念不完全正确,需要在非稳态条件下重新定义人为碳并开展研究。同时需要积累更多的观测数据,采用包括观测和模式模拟等手段来研究不同时间尺度的人为碳的吸收和储藏过程。

The ocean is the largest carbon sink in the world. It is difficult to determine the content of anthropogenic carbon (Cant) and the spatial and temporal distribution in the ocean. The methods of Cant determination, inventories estimation of Cant, temporal variations of Cant were summarized in this review. The ocean can still uptake and store Cant from the atmosphere. However there are still many uncertainties for the oceanic Cant uptake and storage studies. The evidences show that it is not true for Cant estimations based on the steady state assumption. Thus, it is necessary to define and study the Cant based on non-steady state. Meanwhile, it is necessary to collect more observation data and use more approaches such as observations and model simulations to study the Cant uptake and storage in different time scales.

中图分类号: 

[1] Tans P, Keeling R. Trends in Atmospheric Carbon Dioxide[Z/OL]. NOAA/ESRL. (2014-10-25) [2015-02-23].http://www.esrl.noaa.gov/gmd/ccgg/trends/.
[2] Xue Liang, Yu Weidong, Ning Chunlin, et al. Advances in sea surface partial pressure of CO 2 time-series studies[J]. Advances in Earth Science, 2013, 28(8): 859-865.[薛亮, 于卫东, 宁春林, 等. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.]
[3] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO 2 [J]. Science, 2004, 305(5 682): 367-371.
[4] Fletcher S E M, Gruber N, Jacobson A R, et al. Inverse estimates of anthropogenic CO 2 uptake, transport, and storage by the ocean[J]. Global Biogeochemical Cycles, 2006, 20(2), doi:10.1029/2005GB002530.
[5] Le Quere C, Rodenbeck C, Buitenhuis E T, et al. Saturation of the Southern Ocean CO 2 sink due to recent climate change[J]. Science, 2007, 316(5 832): 1 735-1 738.
[6] Gao Zhongyong, Chen Liqi, Cai Weijun, et al. Arctic carbon sink in global change: Present and future[J]. Advances in Earth Science, 2007, 22(8): 857-865.[高众勇,陈立奇, 蔡卫君, 等. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.]
[7] Chen Liqi, Gao Zhongyong, Zhan Liyang, et al. Rapid change in Arctic and Antarctic Oceans and their feedbacks to global climate change[J]. Journal of Applied Oceanography, 2013, 32(1): 138-144.[陈立奇, 高众勇, 詹力扬, 等. 极区海洋对全球气候变化的快速响应和反馈作用[J]. 应用海洋学学报, 2013, 32(1): 138-144.]
[8] Chen Liqi. Research on Response and Feedback of Antarctic Region to Global Change[M]. Beijing: China Ocean Press, 2004.[陈立奇. 南极地区对全球变化的响应与反馈作用研究[M]. 北京: 海洋出版社, 2004.]
[9] Chen Liqi. Evidence of Arctic and Antarctic changes and their regulation of global climate change (further findings since the fourth IPCC assessment report released)[J]. Chinese Journal of Polar Research, 2013, 25(1): 1-6.[陈立奇. 南极和北极地区变化对全球气候变化的指示和调控作用——第四次IPCC评估报告以来一些新认知[J]. 极地研究, 2013, 25(1): 1-6.]
[10] He Shichang, Zhang Yuanhui, Chen Liqi, et al. Advances in the studies of ocean acidification[J]. Marine Sciences, 2014, 38(6): 85-93.[贺仕昌, 张远辉, 陈立奇, 等. 海洋酸化研究进展[J]. 海洋科学, 2014, 38(6): 85-93.]
[11] Qi Di, Chen Liqi. Review on researches of aragonite saturation state in the Arctic Ocean: A key parameter of Arctic Ocean acidifi cation[J]. Advances in Earth Science, 2014, 29(5): 569-576.[祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2014, 29(5): 569-576.]
[12] Zhang Yuanhui, Chen Liqi. Response of coral reef in Nansha waters to increasing atmospheric CO 2 [J]. Journal of Oceanography in Taiwan Strait, 2006, 25(1): 68-76.[张远辉 陈立奇. 南沙珊瑚礁对大气CO 2 含量上升的响应[J]. 台湾海峡, 2006, 25(1): 68-76.]
[13] Zhang Yuanhui, Wang Weiqiang, Chen Liqi. Advances in studies of oceanic carbon dioxide[J]. Advances in Earth Science, 2000, 15(5): 559-564.[张远辉, 王伟强,陈立奇. 海洋二氧化碳的研究进展[J]. 地球科学进展, 2000, 15(5): 559-564.]
[14] Chen Zhongxiao, Zhao Qi. δ 13 C methods and its progress in the study of global carbon cycle[J]. Advances in Earth Science,2011, 26(11): 1 225-1 233.[陈中笑, 赵琦. 全球碳循环研究中的 δ 13 C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1 225-1 233.]
[15] Sabine C L, Tanhua T. Estimation of Anthropogenic CO 2 inventories in the ocean[J]. Annual Review of Marine Science, 2010, 2: 175-198.
[16] Brewer P G. Direct observation of oceanic CO 2 increase[J].Geophysical Research Letters,1978, 5(12): 997-1 000.
[17] Chen G T, Millero F J. Gradual increase of oceanic CO 2 [J]. Nature, 1979, 277(5 693): 205-206.
[18] Gruber N, Sarmiento J L, Stocker T F. An improved method for detecting anthropogenic CO 2 in the oceans[J]. Global Biogeochemical Cycles, 1996, 10(4): 809-837.
[19] Sui Weiwei, Yang Guipeng, Ding Qiongyao, et al. A study of CFCs in the ocean[J]. Advances in Earth Science, 2013, 28(3): 366-373.[随伟伟, 杨桂朋, 丁琼瑶, 等. 海洋中氟氯烃的研究进展[J]. 地球科学进展, 2013, 28(3): 366-373.]
[20] Touratier F, Goyet C. Applying the new TrOCA approach to assess the distribution of anthropogenic CO 2 in the Atlantic Ocean[J]. Journal of Marine Systems, 2004, 46(1/4): 181-197.
[21] Touratier F, Azouzi L, Goyet C. CFC-11, Delta C-14 and H-3 tracers as a means to assess anthropogenic CO 2 concentrations in the ocean[J]. Tellus Series B—Chemical and Physical Meteorology, 2007, 59(2): 318-325.
[22] Lo Monaco C, Metzl N, Poisson A, et al. Anthropogenic CO 2 in the Southern Ocean: Distribution and inventory at the Indian-Atlantic boundary (World Ocean Circulation Experiment line I6)[J]. Journal of Geophysical Research—Oceans, 2005, 110: C06010, doi:10.1029/2004JC002643.
[23] Vázquez-Rodríguez M, Padin X A, Ríos A F, et al. An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO 2 in the Atlantic Ocean[J]. Biogeosciences Discuss, 2009, 6(2): 4 527-4 571.
[24] Wallace D W R. Introduction to special section: Ocean measurements and models of carbon sources and sinks[J]. Global Biogeochemical Cycles, 2001, 15(1): 3-10.
[25] Beining P, Roether W. Temporal evolution of CFC 11 and CFC 12 concentrations in the ocean interior[J].Journal of Geophysical Research—Oceans, 1996, 101(C7): 16 455-16 464.
[26] Haine T W N, Hall T M. A generalized transport theory: Water-mass composition and age[J]. Journal of Physical Oceanography, 2002, 32(6): 1 932-1 946.
[27] Hall T M, Haine T W N, Waugh D W. Inferring the concentration of anthropogenic carbon in the ocean from tracers[J]. Global Biogeochemical Cycles, 2002, 16(4), doi:10.1029/2001GB001835.
[28] Khatiwala S, Primeau F, Hall T. Reconstruction of the history of anthropogenic CO 2 concentrations in the ocean[J]. Nature, 2009, 462(7 271): 346-349.
[29] Wallace D W R. Monitoring Global Ocean Carbon Inventories, OOSDP Background Report[R]. Texas, USA: Texas A&M University, 1995:54.
[30] Friis K, Kortzinger A, Patsch J, et al. On the temporal increase of anthropogenic CO 2 in the subpolar North Atlantic[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52(5): 681-698.
[31] Tanhua T, Kortzinger A, Friis K, et al. An estimate of anthropogenic CO 2 inventory from decadal changes in oceanic carbon content[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(9): 3 037-3 042.
[32] Gammon R H, Cline J, Wisegarver D. Chlorofluoromethanes in the Northeast Pacific Ocean: Measured vertical distributions and application as transient tracers of upper ocean mixing[J]. Journal of Geophysical Research—Oceans and Atmospheres,1982, 87(NC12): 9 441-9 454.
[33] Pardo P C, Perez F F, Khatiwala S, et al. Anthropogenic CO 2 estimates in the Southern Ocean: Storage partitioning in the different water masses[J]. Progress in Oceanography,2014, 120: 230-242.
[34] Rios A F, Vazquez-Rodriguez M, Padin X A, et al. Anthropogenic carbon dioxide in the South Atlantic western basin[J].Journal of Marine Systems, 2010, 83(1/2): 38-44.
[35] Vázquez-Rodríguez M, Touratier F, Lo Monaco C, et al. Anthropogenic carbon distributions in the Atlantic Ocean: Data-based estimates from the Arctic to the Antarctic[J]. Biogeosciences, 2009, 6(3): 439-451.
[36] Broecker W S, Takahashi T, Peng T. Reconstruction of Past Atmospheric CO 2 Contents from the Chemistry of the Contemporary Ocean: An Evaluation[R].Palisades: Columbia University,1985:79.
[37] Khatiwala S, Tanhua T, Fletcher S M, et al. Global ocean storage of anthropogenic carbon[J]. Biogeosciences, 2013, 10(4): 2 169-2 191.
[38] Tanhua T, Bates N R, Krtzinger A. The marine carbon cycle and ocean carbon inventories[M]∥Siedler G, Griffies S M, Gould J, eds. International Geophysics.New York: Academic Press,2013:787-815.
[39] Waugh D W, Hall T M, McNeil B I, et al. Anthropogenic CO 2 in the oceans estimated using transit time distributions[J]. Tellus Series B—Chemical and Physical Meteorology, 2006, 58(5): 376-389.
[40] Arrigo K R, van Dijken G, Pabi S. Impact of a shrinking Arctic ice cover on marine primary production[J]. Geophysical Research Letters, 2008, 35: L19603, doi:10.1029/2008GL035028.
[41] Bates N R, Mathis J T. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO 2 exchanges, ocean acidification impacts and potential feedbacks[J]. Biogeosciences, 2009, 6(11): 2 433-2 459.
[42] Bates N R, Moran S B, Hansell D A, et al. An increasing CO 2 sink in the Arctic Ocean due to sea-ice loss[J]. Geophysical Research Letters, 2006, doi:10.1029/2006GL027028.
[43] Anderson L G, Olsson K, Jones E P, et al. Anthropogenic carbon dioxide in the Arctic Ocean: Inventory and sinks[J]. Journal of Geophysical Research—Oceans, 1998, 103(C12): 27 707-27 716.
[44] Tanhua T, Jones E P, Jeansson E, et al. Ventilation of the Arctic Ocean: Mean ages and inventories of anthropogenic CO 2 and CFC-11[J]. Journal of Geophysical Research—Oceans, 2009, 114: C01002, doi:10.1029/2008JC004868.
[45] Schneider A, Tanhua T, Kortzinger A, et al. High anthropogenic carbon content in the eastern Mediterranean[J]. Journal of Geophysical Research—Oceans, 2010, 115: C12050, doi:10.1029/2010JC006171.
[46] Park G-H, Lee K, Tishchenko P, et al. Large accumulation of anthropogenic CO 2 in the East (Japan) Sea and its significant impact on carbonate chemistry[J]. Global Biogeochemical Cycles, 2006, 20: GB4013, doi:10.1029/2005GB002676.
[47] Olsen A, Omar A M, Jeansson E, et al. Nordic seas transit time distributions and anthropogenic CO 2 [J]. Journal of Geophysical Research—Oceans, 2010, 115: C05005, doi:10.1029/2009JC005488.
[48] Murata A, Kumamoto Y, Sasaki K, et al. Decadal increases of anthropogenic CO 2 in the subtropical South Atlantic Ocean along 30 degrees S[J]. Journal of Geophysical Research—Oceans, 2008, 113: C06007, doi:10.1029/2007JC004424.
[49] Rios A F, Velo A, Pardo P C, et al. An update of anthropogenic CO 2 storage rates in the western South Atlantic basin and the role of Antarctic Bottom Water[J]. Journal of Marine Systems, 2012, 94: 197-203.
[50] Schuster U, McKinley G A, Bates N, et al. An assessment of the Atlantic and Arctic sea-air CO 2 fluxes, 1990-2009[J]. Biogeosciences, 2013, 10(1): 607-627.
[51] Ericson Y, Ulfsbo A, van Heuven S, et al. Increasing carbon inventory of the intermediate layers of the Arctic Ocean[J]. Journal of Geophysical Research—Oceans, 2014, 119(4): 2 312-2 326.
[52] Sabine C L, Feely R A, Millero F J, et al. Decadal changes in Pacific carbon[J]. Journal of Geophysical Research—Oceans, 2008, 113: C07021, doi:10.1029/2007JC004577.
[53] Murata A, Kumamoto Y, Sasaki K, et al. Decadal increases of anthropogenic CO 2 along 149 degrees E in the western North Pacific[J]. Journal of Geophysical Research—Oceans, 2009, 114: C04018, doi:10.1029/2008JC004920.
[54] Peng T-H, Wanninkhof R, Feely R A. Increase of anthropogenic CO 2 in the Pacific Ocean over the last two decades[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50(22/26): 3 065-3 082.
[55] Matear R J, McNeil B I. Decadal accumulation of anthropogenic CO 2 in the Southern Ocean: A comparison of CFC-age derived estimates to multiple-linear regression estimates[J]. Global Biogeochemical Cycles, 2003, 17:1 113, doi:10.1029/2003GB002089.
[56] Murata A, Kumamoto Y, Watanabe S, et al. Decadal increases of anthropogenic CO 2 in the South Pacific subtropical ocean along 32 degrees S[J]. Journal of Geophysical Research—Oceans, 2007, 112: C05033, doi:10.1029/2005jc003405.
[57] Murata A, Kumamoto Y, Sasaki K, et al. Decadal increases in anthropogenic CO 2 along 20 degrees S in the South Indian Ocean[J]. Journal of Geophysical Research—Oceans, 2010, 115: C12055, doi:10.1029/2010jc006250.
[58] Hall T M, Waugh D W, Haine T W N, et al. Estimates of anthropogenic carbon in the Indian Ocean with allowance for mixing and time-varying air-sea CO 2 disequilibrium[J]. Global Biogeochemical Cycles, 2004, 18, doi:10.1029/2003GB002120.
[59] Huhn O, Rhein M, Hoppema M, et al. Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984-2011[J]. Deep-Sea Research Part I—Oceanographic Research Papers, 2013, 76: 66-84.
[60] van Heuven S, Hoppema M, Jones E M, et al. Rapid invasion of anthropogenic CO 2 into the deep circulation of the Weddell Gyre[J]. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2014, 372, doi:10.1098/rsta.2013.0056.
[61] Waugh D W, Primeau F, DeVries T, et al. Recent changes in the ventilation of the Southern Oceans[J]. Science, 2013, 339(6 119): 568-570.
[62] Levitus S, Antonov J I, Boyer T P, et al. World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010[J]. Geophysical Research Letters, 2012, 39: L10603, doi:10.1029/2012gl051106.
[63] Wanninkhof R, Doney S C, Bullister J L, et al. Detecting anthropogenic CO 2 changes in the interior Atlantic Ocean between 1989 and 2005[J]. Journal of Geophysical Research—Oceans, 2010, 115: C11028, doi:10.1029/2010JC006251.
[64] Thomas H, Friederike Prowe A E, Lima I D, et al. Changes in the North Atlantic Oscillation influence CO 2 uptake in the North Atlantic over the past 2 decades[J]. Global Biogeochemical Cycles, 2008, 22: GB4027, doi:10.1029/2007GB003167.
[65] Stramma L, Schmidtko S, Levin L A, et al. Ocean oxygen minima expansions and their biological impacts[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 587-595.
[66] Stendardo I, Gruber N. Oxygen trends over five decades in the North Atlantic[J]. Journal of Geophysical Research—Oceans, 2012, 117: C1104, doi:10.1029/2012JC007909.
[67] Ono T, Midorikawa T, Watanabe Y W, et al. Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998[J]. Geophysical Research Letters, 2001, 28(17): 3 285-3 288.
[68] Keeling R F, Kortzinger A, Gruber N. Ocean Deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2: 199-229.
[69] Helm K P, Bindoff N L, Church J A. Observed decreases in oxygen content of the global ocean[J]. Geophysical Research Letters, 2011, 38: L23602, doi:10.1029/2011GL049513.
[70] Sarmiento J L, Gloor M, Gruber N, et al. Trends and regional distributions of land and ocean carbon sinks[J]. Biogeosciences,2010, 7(8): 2 351-2 367.
[71] Wang S, Moore J K, Primeau F W, et al. Simulation of anthropogenic CO 2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: Comparison with data-based estimates[J]. Biogeosciences, 2012, 9(4): 1 321-1 336.
[72] McNeil B I, Matear R J. The non-steady state oceanic CO 2 signal: Its importance, magnitude and a novel way to detect it[J]. Biogeosciences, 2013, 10(4): 2 219-2 228.

[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[3] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[4] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[5] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
[6] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 冷疏影,汪建君,张亮,连展,王清. 2020年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1189-1200.
[9] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[10] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[11] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[12] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[13] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[14] 冷疏影,李薇,汪建君,邵伟增,李刚,邢荣莲. 2019年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2019, 34(11): 1202-1211.
[15] 胡毅,丁见祥,房旭东,王立明,刘伯然,李海东. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10): 1081-1091.
阅读次数
全文


摘要