1 |
Shen Zheqi , Tang Youmin , Gao Yanqiu . The theoretical framework of the ensemble-based data assimilation method and its prospect in oceanic data assimilation[J]. Acta Oceanologica Sinica, 2016, 38(3):1-14.
|
|
沈浙奇, 唐佑民, 高艳秋 . 集合资料同化方法的理论框架及其在海洋资料同化的研究展望[J]. 海洋学报, 2016, 38(3):1-14.
|
2 |
Wang Shihong , Zhao Yiding , Yin Xunqiang , et al . Current status of global ocean reanalysis datasets [J]. Advances in Earth Science, 2018, 33(8):794-807.
|
|
王世红,赵一丁,尹训强,等 . 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8):794-807.
|
3 |
Le Dimet F X , Talagrand O . Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J]. Tellus A: Dynamic Meteorology and Oceanography, 1986, 38(2):97-110.
|
4 |
Li Hong , Xu Jianping . Development of data assimilation and its application in ocean science[J]. Marine Science Bulletin, 2011, 30(4):463-472.
|
|
李宏, 许建平 . 资料同化技术的发展及其在海洋科学中的应用[J]. 海洋通报, 2011, 30(4):463-472.
|
5 |
Kalman R E . A new approach to linear filtering and prediction problems[J]. Journal of Fluids Engineering, 1960,81(1):35-45.
|
6 |
Evensen G . Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5):10 143-10 162.
|
7 |
Hunt B R , Kostelich E J , Szunyogh I . Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter[J]. Physica D, 2007, 230(1/2):112-126.
|
8 |
Miyoshi T , Aranami K . Applying a four-dimensional local ensemble transform Kalman filter (4D-LETKF) to the JMA nonhydrostatic model (NHM)[J]. Sola, 2006, 2: 128-131.
|
9 |
Miyoshi T .Ensemble data assimilation for idealized California current system with ROMS-LETKF[C]//14th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Surface Land . 2010.
|
10 |
Xu F H , Oey L Y . State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea[J]. Ocean Dynamics, 2014, 64(6):905-923.
|
11 |
Mcphaden M J , Busalacchi A J , Cheney R , et al . The Tropical Ocean‐Global Atmosphere observing system: A decade of progress[J]. Journal of Geophysical Research: Oceans, 1998,103(C7). DOI:10.1029/97JC0926 .
doi: 10.1029/97JC0926
|
12 |
Riser S C , Freeland H J , Roemmich D , et al . Fifteen years of ocean observations with the global Argo array[J]. Nature Climate Change, 2016, 6(2):145-153.
|
13 |
Miyoshi T , Yamane S , Enomoto T . Localizing the error covariance by physical distances within a local ensemble transform Kalman filter (LETKF)[J]. Sola, 2007, 3: 89-92.
|
14 |
Bonavita M , Torrisi L , Marcucci F . The ensemble Kalman filter in an operational regional NWP system: Preliminary results with real observations[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(636): 1 733-1 744.
|
15 |
Miyoshi T , Sato Y , Kadowaki T . Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system[J]. Monthly Weather Review, 2010, 138(7): 2 846-2 866.
|
16 |
Wan Xiuquan , Liu Zedong , Shen Biao , et al . Introduction to the Community Earth System Model and application to high performance computing [J]. Advances in Earth Science, 2014, 29(4):482-491.
|
|
万修全,刘泽栋,沈飙,等 . 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4):482-491.
|
17 |
Reynolds R W , Smith T M , Liu C , et al . Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22):5 473-5 496.
|
18 |
Penny S G , Kalnay E , Carton J A , et al . The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model[J]. Nonlinear Processes in Geophysics, 2013, 20(6):1 031-1 046.
|
19 |
Xu F H , Oey L Y , Miyazawa Y , et al . Hindcasts and forecasts of Loop Current and eddies in the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation schemes[J]. Ocean Modelling, 2013, 69: 22-38.
|
20 |
Penny S G . Data Assimilation of the Global Ocean Using the 4D Local Ensemble Transform Kalman Filter (4D-LETKF) and the Modular Ocean Model (MOM2)[D]. Maryland:University of Maryland, 2011.
|
21 |
Hayes B . Computing science: The easiest hard problem[J]. American Scientist, 2002, 90(2):113-117.
|
22 |
Korf R E . Multi-way number partitioning[C]//International Joint Conference on Ijcai. DBLP, 2009.
|
23 |
Ahmed M S , Nisha T A . Solving K-Set Partition Problem Using Genetic Algorithm[R]. Chicago:East West University, 2014.
|
24 |
Karmarker N , Karp R M . The Differencing Method of Set Partitioning[M]. Campbell Hall:Berkeley California University of California at Berkeley, 1983.
|
25 |
Cormen T H , Leiserson C E , Rivest R L , et al . Introduction to Algorithms (original book third edition)[J]. Computer Education, 2013(10):237, 161-192.
|
|
Cormen T H , Leiserson C E , Rivest R L ,等 . 算法导论(原书第3版)[J]. 计算机教育, 2013(10):237, 161-192.
|
26 |
Large W G , Yeager S G . Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies[J]. National Center for Atmospheric Research, 2004. DOI:10.5065/D6KK98Q6 .
doi: 10.5065/D6KK98Q6
|